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Abstract

We calculate the N* contributions to the generalised polarisabilities of the proton in virtual
Compton scattering. The following nucleon excitations are included: N*(1535), N*(1650),
N*(1520), N*(1700), A(1232), A*(1620) and A*(1700). The relationship between nucleon
structure parameters, N* properties and the generalised polarisabilities of the proton is
illustrated.

1. Introduction

The study of virtual Compton scattering (VCS), e+p — € +p' + 7, at
CEBAF and MAMI (Audit et al. 1993) could provide valuable information on the
structure of the nucleon, complementing the information obtained from elastic
form factors, real Compton scattering, and deep inelastic scattering. In this paper
we concentrate on the kinematic region where the final photon has low energy—i.e.
below the threshold for m° production. As shown by Guichon et al. (1995) the
low-energy cross sections are parametrised by ten generalised polarisabilities (GP),
functions of the virtual photon mass. Their evaluation requires a knowledge of
the nucleon excited states. This sensibility to the nucleon spectrum can provide
substantial insight into the non-perturbative aspects of the QCD Hamiltonian.

Guichon et al. (1995) made an initial evaluation of the GPs to provide an order
of magnitude estimate of these new quantities and to illustrate their variation
as a function of the virtual photon mass. In that calculation we neglected all
recoil effects, that is, terms which vary like the velocity of the nucleon. As a
result of that approximation only seven GPs were nonzero.

In this paper we extend the calculations to include the recoil corrections
which turn out to contribute only when the final photon is magnetic. We also
study the relationship of the nucleon excited states to the GPs. We use the
nonrelativistic quark model (NRQM) to take advantage of its simplicity and the
ready availability of its wavefunctions. Also, the separation of the centre-of-mass
and internal motion greatly simplifies the calculation, making it analytically
tractable. In principle, it is possible to use other wavefunctions but this can be
prohibitively laborious and messy. The NRQM estimate should be a useful guide
to the analysis of the forthcoming experimental data on the p(e, e’p)y reaction.
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Fig. 1. Direct, cross and seagull terms of the hadronic tensor in the lowest-order QED
perturbation theory.

2. General Forms of GPs in terms of Current Densities

We first briefly outline the formalism for the definition and the calculation
of the GPs. We refer to Guichon et al. (1995) for a detailed account of the
problem, as well as for the notation and conventions. The hadronic tensor (see
Fig. 1) is defined by
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where J# is the hadronic current, X the intermediate baryon excitations and
HY gull the contact term generally required by gauge invariance. The reduced

multipoles are then defined according to
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where V,,(pLM, §) are the charge (p = 0), magnetic (p = 1) and electric (p = 2)
basis vectors defined by Guichon et al. (1995).
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When p, p’ are equal to 0 or 1 the GPs are defined by

L 1 'L’ .pL)S
PEL DS (q) = | ——HYE (¢ )| (4)
q q q’'=0

In the case of a virtual electric photon the analogous definition does not yield
a GP with the usual photon limit as ¢ — 0. As explained by Guichon et al.
(1995), one must therefore introduce mixed GPs according to

o' L'M' LM, 11
H}p (g'my, qms) =

i
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where JJJL\}(Q) is the vector spherical harmonic. The ten independent GPs needed
to describe the low-energy regime are then

plLo0l  p1o1  p(1110  pLIN1 - H(112)1

p01,01)0  p(0LOD1  p(0112)1  pOL,10  HO0L11 (7)

In the low-energy regime the following excited states contribute: N *(%_, 1535),
N*(37,1650), N*(37,1520), N*(5,1700), A(g+,1232), A*(37,1620) and
A*(27,1700).

In the NRQM the current density in (1) takes the form

(X (px)II°(0)IN(p)) = No px (Px — P);

(X(px)lTO)IN®) = No | X2 oy (px - p) + Px(px — P)
q

+ o Sx(px —p) % (px — P)] ®)

Here p, P and ¥ are overlap integrals of current operators. If one takes into
account the factorisation of the c.m. and internal baryon wavefunctions, they
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can be written in the following forms:

px(Px —p) =
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where Q = ( % +74/2) is the charge operator of the third quark and o3 is twice
the spin operator of the third quark.

With specific internal wavefunctions for the nucleon (¢, ) and the intermediate
excitations (¢y), one obtains explicit forms for the current density and hence
the hadronic tensor.

3. Current Density and Hadronic Tensor in NRQM

To calculate the integrals p(py — p), P(px — p) and Y(px — p) for the seven
intermediate states X of N*(3 ", 1535), N*(3, 1650), N*(2™,1520), N*(37,1700),
A(%+,1232), A*(17,1620) and A*(27,1700), we use the wavefunctions from
Isgur and Karl (1978). The calculation is straightforward though fairly lengthy.
We arrive at the following expressions:
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where x are spin wavefunctions, 7,, the isospin quantum number of the nucleon
(i.e. :!:% for (), and e, is the mth component of the spherical basis vectors.
Equations (12)—(19) are for intermediate states with the same isospin quantum
number as the proton.

The main characteristics of these integrals are summarised as:

(a) The A(1232) and the 8 component of the N* contribute only to X(px —p)-

(b) The 28 component of the N* and the A* contribute to all p(px — p),

P(px — p) and E(px —p).
(¢) For small x = |py —p| the behaviour of the integrals are Xa (z), P(x) o O(1)
and Zn- a-(x), p(x) x O().

The leading term and the recoil term of the hadronic tensor in (1) are
separated in the following way. We work in the initial Ny c.m. system so
that p = —q. In the direct term of (1), px =0 and ¢’ = —p’. So, aside from
the energy denominator, the direct amplitude factorises into a product of a g-
dependent current density J 4 x x(q) and a g’-dependent current density J ¢ nx(q’),
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where

Jd,XN(q) = <X(pX)|J(0)|N(p))direct

— 7
= No [——6 o (a) + Px(q) + —Sx(q) x q} :
Mg 2mq
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The current density in the cross term has a more complicated ¢ and ¢’
dependence. Because py = —~q—q', p+px = —¢' —2q and p+ply = —q—2q,
it involves terms depending upon both g and q’. Let

(X(pX)IJ(O)lN(p)>C7'oss = Jc,XN(ql) + 6JXN(Q7 q,)a

<N(p/)|J(O)'X(pX)>cross = Jc,NX(Q) + +6JNX (q» q/)’

then J. xn(q'), Je.nx(q), 6T xn(q,q’) and 6J yx (g, q') are given by the following
expressions:

/
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q q
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Mq

/
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From (8) we see that J° depends only on q or ¢’, so that 6J° = 0. We
define the leading term of the hadronic tensor Hj'g(q'm),qms) by neglecting
the terms depending on both g and q’ in the cross term, and the ¢’ dependence
of Ex(q+ ¢q') in the energy denominator of the cross amplitude, i.e.

uv 1ot _
HNB—leading(q ms, qms) -

Ju / Jl/ J/.t IJI/
Z d,NX(q) 2.xn(q) " c,XN(q) enx(q) + H™ (20)

Pyt M — Mx E(q) - Ex(q) seagutl
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The recoil term of Hi'5(g'm), gmy) includes all the effects coming from terms

depending on both g and q’, and those arising from the expansion of the energy
denominator of the cross term to order ¢’. The recoil contribution contains terms
to order ¢’ and higher, and can be written as

my 1,1 _
HNB-—recoil(q mg, qms) -

T JExn ()65 x(a,9") + 8% n(a,9") JEnx(q)
E(q) — Ex(q)

X#N

1 ’ q, . q " , Y
"TE@ - Bx@F (" i Ex(q)) Txnla >JC,NX<q>} .
(21)

To get the GP we need only keep terms to order ¢’. Thus the recoil effects
contribute only to GPs with a magnetic final photon, u # 0.

With (20) and (21) for the leading and recoil terms, one can carry out the
partial wave projection using the definitions of Section 2. The partial wave
projection poses no particular difficulty except the need for careful book-keeping.
We therefore skip the details of the partial wave decomposition and give the
final expressions for the GPs in Section 4.

4. Generalised Polarisabilities in the NRQM

Here we give the final results for the ten GPs in the NRQM. We also study
the properties of the GPs in relation to the parameters determining the nucleon
structure in the NRQM. Our aim is to find those properties of the nucleon
structure to which the GPs are most sensitive. This should help identify the
most useful aspects of VCS in studying nucleon structure.

The analytic expressions for the ten GPs can be written in the following form,
where the leading contributions are the same as in Guichon et al. (1995). [Note,
however, that the curve for P(®%1S in Guichon et al. has an error where the
cross term was a factor of 2 too large. We correct it here. The overall sign for
POLDS js also changed to conform with the definition for the electric virtual
photon case.]

The GPs are plotted in Fig. 2.

(4a) Leading Contributions to the Generalised Polarisabilities

1 11 ZS,JX S, Jx
ploo)s _ X 1_1_8__2_6—112/%2 Z a% 7 d i + Ze = ;o (22)
« X=N=A" TX (9) - Ex(g)
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Fig. 2. The ten GPs in the NRQM, with parameters my = 350 MeV and a = 320 MeV.
Note that P(11:001  p(1.09)1 g POAL2L q1e 4]l zero in the absence of the recoil correction.
[Note that in Fig. 20 the superscript ‘para’ refers to the paramagnetic contribution from the
A(1232) and ‘dia’ to the seagull contribution which has the opposite sign.]
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Fig. 2 (Continued)

The mixed GP is the sum of two terms:

15(01,1)5 _ P}(FOI,I)S +PéOl,1)S’
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Fig. 3. Effects of the masses of nucleon (A) excitations on the GPs. Four groups of different
masses for P-wave excitations are used: dotted curve—using the lower limit of the masses
from the Particle Data Tables (1994): N*(1520) N*(1640) N*(1515) N*(1650) A*(1615)
A*(1670); dashed curve—using the upper limit of the masses from the Particle Data Tables
(1994): N*(1555) N*(1680) N*(1530) N*(1750) A*(1675) A*(1770); dot-dash curve—using
the theoretical masses given in Isgur and Karl (1978): N*(1490) N*(1655) N*(1535) N*(1745)
A*(1685) A*(1685); and solid curve—same as Fig. 2, using the average masses from the
Particle Data Tables (1994): N*(1535) N*(1650) N*(1520) N*(1700) A*(1620) A*(1700).
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(28)
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Fig. 3 (Continued)

Angular functions Z5Jx  ZL.SJx and Zilm in the above summation are given
by:

L S Jx z37x oIx zLSx 2557 23 1202
1 0 1/2 2/3 V2/3 —2/V3 2/V3

1 0 3/2 2\/2/3 2./2/3 2v3 -2v3 V6
1 1 1/2 2 -2/3 —2v2 -2V/2/3

1 1 3/2 -2 2/3 -2 -V2/3 1

2 1 3/2 /30 30/3
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(4b) Recoil Contributions to Generalised Polarisabilities

1100)1
P:ecoil) =
_ L@ e ax Z{i% | _ Ex(@[E(q) - Ex(q)]
3v3 my xN7a- Ex(@[E(q) - Ex(9)® 3a? ’
(29)
1102)1
P:ecoil) =
_ L1 o7/ea? X Zi% _ Ex(9)[E(g) — Ex(q)]
3v3 my x5 a- Ex(9)[E(q) — Ex(q))? 3a? ’
(30)
2 2 r7J;
PO = 2 & eatsoe? DAL
3 m? x=n.a- Ex(@)[E(q) — Ex(q)]
H(112)1
P:ecoi)l =
L1 /e 0% Z{fb, | _ Ex(@)[E() - Ex(9)]
TevIs m2 2. Ex(@)[E@) - Ex(@F | 302 ’
a xv7a- Ex(@)[E(q) — Ex(q)] o
(32)
where
Jx ZlJi’fJo leféz ZlJixil
1/2 2/27 V2/27 3v6/27
3/2 —2/27 —V2/27 6v6/27

The *8 component of the excited state wavefunctions contribute nothing to the
proton GPs, because of the isospin factor (1 — 27). However, they do contribute
in the neutron case, which we do not study here. The parameters mg = 350
MeV and a = 320 MeV are taken from Isgur and Karl (1978). The P-wave
intermediate states are ordered as in the following table, together with their
representation mixing parameters ay for the 28 representation:

X N*($7,1535) N*(37,1650) N*(37,1520) N*(17,1700) A*(17,1620) A*(27, 1700)
ax 0-85 —-0-53 0-99 0-11 1-0 1-0
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Fig. 4. Effects of a 5% variation (304 and 336 MeV) in a from its normal value of 320 MeV.
Other parameters remain the same as in Fig. 2. The dotted curve is for a = 304 MeV, the
dashed curve for a = 336 MeV, and the solid curve for o = 320 MeV, as in Fig. 2.

5. N* Properties and the GPs

The NRQM parameters are well determined by fitting the static properties of
baryons (Isgur and Karl 1978). Nonetheless, there are phenomenological models
other than the NRQM, such as the bag models. Different models may not
necessarily give exactly the same properties for the nucleon and its excitations.
We do not intend to survey all the different nucleon models in this paper, but
just investigate those nucleon and N* properties which exert the most important
influence on the behaviour of the GPs in the NRQM. Two main factors are
studied here: the mass spectrum of the nucleon and the size parameter o. The
results are displayed in Figs 2, 3 and 4.

The GPs have a strong dependence on the mass and energy spectrum of the
excited states of the nucleon and the A. In Fig. 2 we used the average masses
of the N* and A* from the Particle Data Tables (1994). However, these masses
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are all determined within a range and may be different from the predictions of
the NRQM. We study the effects of the N* mass spectrum by comparing the
GPs calculated with the lower and upper limits of the masses from the Particle
Data Tables (1994) and also with those predicted in the NRQM of Isgur and
Karl (1978). Fig. 3 shows that some GPs are very sensitive to the N* masses,
particularly at small g. The effect on P11 is especially large as compared
with the theoretical masses of Isgur and Karl (1978). The changes in P(11.00)1
POALODL and PUL2T gre quite drastic due to a more complicated factor for the
mass and energy differences.

The effects of the hadron size parameter « are illustrated in Fig. 4, where
the plot is for a variation of 5% in o from its normal value of 320 MeV. The
main influences are again seen to be in the low-q region.

In conclusion, we have presented a calculation of the N* contribution to the
generalised polarisabilities for virtual Compton scattering on the proton. The
dependence of these GPs on the N* properties has been studied. We hope that
there will soon be experimental data with which these estimates can be compared.
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