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Abstract

We show that the spectrum and eigenstates of open-shell multicharged atomic ions near the
ionisation threshold are chaotic, as a result of extremely high level densities of multiply
excited electron states (103 eV−1 in Au24+) and strong configuration mixing. This complexity
enables one to use statistical methods to analyse the system. We examine the dependence
of the orbital occupation numbers and single-particle energies on the excitation energy of the
system, and show that the occupation numbers are described by the Fermi–Dirac distribution,
and the temperature and chemical potential can be introduced. The Fermi–Dirac temperature
is close to the temperature defined through the canonical distribution. Using a statistical
approach we estimate the contribution of multielectron resonant states to the radiative capture
of low-energy electrons by Au25+ and demonstrate that this mechanism fully accounts for
the 102 times enhancement of the recombination over the direct radiative recombination, in
agreement with recent experimental observations.

1. Introduction

In this paper we investigate the spectrum and eigenstates of a multicharged
positive ion at energies close to its ionisation threshold I. Using Au24+ (I = 750
eV) as an example, we show that this spectrum is dominated by multiple
electron excitations into a few low-lying unoccupied orbitals. As a result, it is
extremely dense, with level spacings ∼ 1 meV between the states of a given total
angular momentum and parity Jπ. The electron Coulomb interaction induces
strong mixing of the multiply-excited configurations, which leads to a statistical
equilibrium in the system. The latter is similar to a thermal equilibrium, and
variables such as temperature can be introduced to describe it. This enables one
to use a statistical approach in the situation where a full dynamical quantum
calculation is simply impossible because of the enormous size of the Hilbert space
( >∼ 105 for Au24+).

We apply this approach to the problem of radiative capture of low-energy electrons
by multicharged positive ions, and show that in these systems the contribution of
resonant multielectronic recombination that proceeds via electron capture into the
multiply-excited compound states is responsible for high recombination rates, much
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greater than those expected from the simple direct radiative recombination. Our
calculation resolves quantitatively the long-standing puzzle of huge enhancements
of the electron–ion recombination rates, and essentially removes the ‘enormous
discrepancies between theoretical and experimental rate coefficients’ (Hoffknecht
et al . 1998). The situation here turns out to be similar to the radiative neutron
capture by complex nuclei [(n, γ) reaction] where the resonance mechanism
involving the compound nucleus states is also much stronger than the direct
capture (Flambaum and Sushkov 1984, 1985).

So far the enhancement of the recombination rates at low electron energies
<∼ 1 eV has been observed for a number of ions.∗ Its magnitude ranges from
a factor of about ten for Ar13+ (Gao et al. 1995), Au50+ and Pb53+ (Uwira
et al . 1997a), and U28+ (Müller and Wolf 1997), to over a hundred for Au25+

(Hoffknecht et al . 1998). This enhancement is sensitive to the electronic structure
of the target, e.g., the recombination rates of Au49+ and Au51+ are much smaller
than that of Au50+ (Uwira et al . 1997a). For few-electron ions, e.g. C4+, Ne7+

and Ar15+, the observed rates are described well by the sum of the direct and
dielectronic recombination rates (Schennach et al . 1994; Zong et al . 1997; Schuch
et al . 1997). In more complicated cases, like U28+ or Au25+, the questions
of what are the particular resonances just above the threshold and how they
contribute to the recombination ‘remain a mystery’ (Mitnik et al . 1998).

2. Spectrum and Eigenstates of Au24+

Let us consider the problem of electron recombination on Au25+. Due to
electron correlations the low-energy electron can be captured into an excited
state of the compound Au24+ ion. This system is the main object of our
analysis. Au24+ has 55 electrons. Its ground state belongs to the 1s2 . . . 4f9

configuration. Fig. 1 shows the energies of its relativistic orbitals nlj obtained in
the relativistic Hartree–Fock calculation. All orbitals below the Fermi level, 1s
to 4f , were obtained in the self-consistent calculation of the Au24+ ground state.
Each of the excited orbitals above the Fermi level, 5s, 5p, etc., was calculated
by placing one electron into it, in the field of the frozen 1s2 . . . 4f8 core. The
energy of the highest orbital occupied in the ground state is ε4f7/2 = −27 ·9 a.u.
This value gives an estimate of the ionisation potential of Au24+: I ≈ |ε4f7/2 |.
Our relativistic configuration-interaction (CI) calculation of the ground states of
Au24+4f9 and Au25+4f8 shows that they are characterised by J = 15

2 and 6,
and their total energies are −18792 ·36 and −18764 ·80 a.u. respectively. Thus,
the ionisation threshold of Au24+ is I = 27 ·56 a.u. = 750 eV, in agreement with
Hoffknecht et al . (1998).

The excited states of the ion are generated by transferring one, two, three,
etc. electrons from the ground state into empty orbitals above the Fermi level
(Fig. 1), or into the partially occupied 4f orbitals. We are interested in the
excitation spectrum of Au24+ near its ionisation threshold. This energy (27 ·5
a.u.) is sufficient to push up a few of the nine 4f electrons, and even excite one

∗ Apart from the enhancement at eV energies due to many-electron processes, which is the
subject of our work, there is another specific enhancement at electron energies below 1 meV.
This enhancement increases with the charge of the ion, and is observed for all ions including
fully stripped ones, see Gao et al . (1997) and Uwira et al . (1997b), and we do not consider it
here.
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or two electrons from the 4d orbital. However, the preceding 4p orbital is already
deep enough to be considered inactive. Thus, we treat Au24+ as a system of
n = 19 electrons above the frozen Kr-like 1s2 . . . 4p6 core. Note also that infinite
Rydberg series corresponding to the excitations of one electron in the field of
Au25+ belong to the single-particle aspect of the Au25+ + e− problem, and we
do not consider them here.

Fig. 1. Electron orbitals of Au24+ from the relativistic Hartree–Fock calculation.

The number of multielectron states obtained by distributing 19 electrons over
31 relativistic orbitals, 4d3/2 through to 7g9/2, is enormous, even if we are only
interested in the excitation energies below 27 ·5 a.u. It is impossible to perform
any CI calculation for them. However, there is another simpler way to analyse the
spectrum. The scale of the configuration interaction strength is determined by
the two-body Coulomb matrix elements which transfer electrons between different
configurations. Their typical size in neutral atoms is ∼ 1 eV, and in Au24+ it is
about 1 a.u., which is roughly 25 times greater, due to the smaller radius of the
ion. This scale is much smaller than I. Configuration mixing aside, the CI does
not shift the mean energies of the configurations. Therefore, we can construct
the excitation spectrum of Au24+ by calculating the mean energies Ei of the
configurations, and the numbers of many-electron states Ni within each of them:

Ei = Ecore +
∑
a

εana +
∑
a≤b

na(nb − δab)
1 + δab

Uab , (1)

Ni =
∏
a

ga!
na!(ga − na)!

, (2)

where na are the integer orbital occupation numbers of the relativistic orbitals in
a given configuration (

∑
a na = n), εa = 〈a|Hcore|a〉 is the single-particle energy

of the orbital a in the field of the core, ga = 2ja + 1, and Uab are the average
Coulomb matrix elements for the electrons in orbitals a and b (direct minus
exchange):
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Uab =
ga

ga − δab

[
R

(0)
abab −

∑
λ

δpR
(λ)
abba

(
ja
1
2

jb
− 1

2

λ

0

)2
]
. (3)

Here R
(λ)
abba is the two-body radial Coulomb integral of λ multipole, and δp = 1

when la + lb + λ is even, and 0 otherwise. The mean energy of the lowest
configuration 4d104f6

5/24f3
7/2 obtained from equation (1) is just 0 ·28 a.u. above

the CI ground state.

ρ(E) =
∑
i

Niδ(E − Ei) (4)

Fig. 2. Level density in Au24+. The full circles (connected by a
dotted line to guide the eye) are the result of our numerical calculation.
The solid line is the analytical fit, equation (5). The inset shows
the densities of states with different J near the ionisation threshold
E = I.

Using equations (1)–(3) we find that there are 9000 configurations within 35
a.u. of the Au24+ ground state. They comprise a total of 2 ·1×108 many-electron
states. If we allow for about 10 different values of J , 2J + 1 values of Jz and the
two parities, there would still be about 5× 105 states in each Jπ manifold. In
Fig. 2 we show the total density of states for Au24+ as a function of

√
E, where

E is the excitation energy of the system above the ground state. It is obtained
by smoothing out the small-scale fluctuations of the level density
by folding it with a Gaussian with 1 a.u. variance. In reality this averaging
is done by the interaction and mixing of the configurations (Flambaum et al .
1994), but the result is expected to be the same. The inset in Fig. 2 presents
a break-up of the total density near the ionisation threshold into the densities
of states with given J : ρ(E) =

∑
J(2J + 1)ρJ(E). The most abundant values

are J = 5
2 to 15

2 . For a given parity the density of such states at E ≈ I is
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ρJπ ≈ 3 ·5×104 a.u., which corresponds to the mean level spacing D = 1/ρJπ ∼ 1
meV. Fig. 2 demonstrates the characteristic ρ ∝ exp(a

√
E) behaviour of the level

density predicted by the Fermi-gas model (Bohr and Mottelson 1969), where
a is related to the single-particle level density at the Fermi level g(εF ) as
a = [2π2g(εF )/3] 1

2 , i.e. g(εF ) = 3a2/2π2. We obtain an accurate fit of the level
density at E > 1 a.u. by using a Fermi-gas model ansatz

ρ(E) = AE−ν exp(a
√
E) , (5)

with A = 31 ·6, ν = 1 ·56 and a = 3 ·35. The corresponding value of
g(εF ) = 3a2/2π2 = 1 ·7 a.u. is close to what one obtains from the Hartree–Fock
orbital spectrum in Fig. 1. The other two parameters are different from the
non-interacting Fermi-gas model values A = 1/

√
48 and ν = 1. The latter values

in fact lead to strong underestimation of the level density. For most abundant
Jπ states the density ρJπ (E) is given by equation (5) with AJπ ≈ 0 ·15.

At first sight the huge level density makes the spectrum of Au24+ enormously
complicated. On the other hand, this complexity enables one to analyse the system
using statistical methods. The interaction between multiply-excited configuration
states mixes them completely, and they loose their individual features. In this
regime the spectral statistics become close to those of a random matrix ensemble,
the eigenstates cannot be characterised by any quantum numbers except the exact
ones (energy and Jπ), and the orbital occupation numbers deviate prominently
from integers. This regime can be described as many-body quantum chaos. We
have extensively studied it in direct numerical calculations for the rare-earth
atom of Ce—a system with four valence electrons (Flambaum et al . 1994, 1996,
1998a, 1998b; Gribakina et al . 1995).

The strength of the configuration mixing is characterised by the spreading width
Γspr. For a configuration basis state Φk with energy Ek it defines the energy range
|E − Ek| <∼ Γspr of eigenstates in which this basis state noticeably participates.
By the same token it shows that a particular eigenstate Ψ =

∑
k CkΦk contains

a large number N ∼ Γspr/D of principal components—basis states characterised
by Ck ∼ 1/

√
N . Outside the spreading width Ck decrease. This effect is usually

referred to as localisation. Apart from this, Ck behave closely to Gaussian random
variables (Flambaum et al . 1994). The effect of spreading is approximated well by
the Breit–Wigner shape of the mean-squared components (Bohr and Mottelson
1969)

C2
k(E) =

1
N

Γ2
spr/4

(Ek − E)2 + Γ2
spr/4

. (6)

The normalisation
∑
k C

2
k = 1 yields N = πΓ/2D. In systems with small level

spacings D the number of principal components N can be very large. It reaches
several hundreds in Ce, and can be as large as 106 in complex nuclei. At
|Ek −E| > Γ equation (6) gives C2

k(E) ∝ 1/(Ek −E)2, which corresponds to the
simple first-order perturbation theory dependence with constant mean-squared
mixing matrix elements. In real systems the mixing between distant (in the sense
of their unperturbed energies) basis states is usually suppressed. Accordingly, the
Hamiltonian matrix is characterised by certain bandedness, i.e. the off-diagonal
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Fig. 3. Components of the 590th Jπ = 13
2

−
eigenstate from a two-

configuration calculation (top) and a fit of C2
k(E) by the Breit–Wigner

formula (6) (bottom).

matrix elements Hij decrease as one moves away from the main diagonal i = j
(Gribakina et al . 1995). This causes a faster, close to exponential, decrease of
the mean-squared components at large |Ek − E| (Flambaum et al . 1994).

In Fig. 3 we illustrate the behaviour of the eigenstate components by the
results of a CI calculation which includes just two odd configurations of Au24+

with energies close to the ionisation threshold: 4f3
5/24f3

7/25p1/25p3/25f7/2 and
4f3

5/24f3
7/25p1/25d3/25g7/2. These two configurations produce a total of 143360

many-electron states with J ranging from 1
2 to 17 ·5. As an example we present

the results obtained by diagonalisation of the Hamiltonian matrix for Jπ = 13
2

−.
This total angular momentum value is among the most abundant in the spectrum,
as there are 1254 Jπ = 13

2

− states. The mixing of the two configurations included
is practically complete, since the weight of each configuration in every eigenstate
is close to 50%, see Fig. 4. Shown in the upper part of Fig. 3 are the components
of the 590th eigenstate from the middle of the two-configuration spectrum. Both
the fluctuations of Ck as a function the of basis state k, and the localisation of the
eigenstate components in the vicinity of the corresponding eigenvalue (E = 27 ·51
a.u. above the Au24+ ground state) are evident.
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A Breit–Wigner fit of the mean-squared components yields N = 975 and
Γspr = 0 ·50 a.u., see the lower part of Fig. 3. When the calculations are
performed for one of the above configurations, N is about two times smaller,
but Γspr is practically the same. The spreading width is related to the mean-
squared off-diagonal Hamiltonian matrix element and the mean level spacing
as Γspr ' 2πH2

ij/D (Bohr and Mottelson 1969). It is known to be a robust
characteristic of the system. When more configurations are included, both D and
H2
ij decrease, whereas Γspr does not change much. If one could do a full-scale CI

calculation near the ionisation threshold of Au24+ one would obtain eigenstates
with N = (π/2)ΓsprρJπ ∼ 3× 104 principal components.

Fig. 4. Weights of the 4f3
5/24f3

7/25p1/25p3/25f7/2 configuration in the

Jπ = 13
2

−
eigenstates obtained in the two-configuration calculation. Note

that for a few lower eigenstates the weights of this configuration are small,
because its mean energy is about 0 ·03 a.u. higher than that of the other
configuration.

3. Statistical Approach

The spreading of the basis states due to configuration interaction introduces
natural statistical averaging in the system. Based on this averaging, a statistical
theory of finite Fermi systems of interacting particles can be developed (Flambaum
and Izrailev 1997a, 1997b). It enables one to calculate various properties of
the system as sums over the basis states, without actually diagonalising the
Hamiltonian matrix. For example, the mean orbital occupations numbers can be
obtained as

na(E) =
∑
k

C2
k(E)n(k)

a , (7)
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where n
(k)
a is the occupation number of the orbital a in the basis state k. To

demonstrate how it works we have used a simple Gaussian model spreading,

C2
k(E) ∝ exp

[
− (Ek − E)2

2∆2
E

]
, (8)

and calculated the mean orbital occupation numbers as functions of the excitation
energy E using ∆E = 1 a.u., see Fig. 5. Of course, in our calculation we sum
over the configurations, rather than the actual many-electron basis states, and
use their mean energies and weights given by equations (1) and (2), cf. equation
(4).

The oscillatory dependence with the period of about 3–4 a.u. is due to the
shell structure of the Au24+ ion, see Fig. 1. As the excitation energy increases the
oscillations die out. Apart from this the occupation numbers of the orbitals below
the Fermi level (4d and 4f) decrease, and those above it (5s, 5p, etc.) increase,
as one would expect in a Fermi system. It seems very natural to try to describe
this behaviour in the spirit of statistical mechanics, by introducing temperature
and applying the standard Fermi–Dirac (FD) distribution (Flambaum et al .
1998b). Temperature has long been used to describe highly excited nuclei, and
the question of thermalisation was investigated recently in numerical calculations
for the s − d shell nuclear model (Horoi et al . 1995; Zelevinsky et al . 1996).
Of course, temperature can always be used to describe the equilibrium of a
macroscopic system that contains a large number of particles, or to describe a
small system interacting with a heat bath. In what follows we are going to see
if the notion of temperature can be applied to our isolated system with a small
number of active particles. The total number of electrons in Au24+ is quite large,
however, most of them are inactive at the excitation energies at or below the
ionisation threshold.

The formula for the single-particle occupation numbers νa = na/ga (0 ≤ νa ≤ 1),

νa =
1

1 + exp[(εa − µ)/T ]
, (9)

at a given temperature T and chemical potential µ depends on the single-particle
orbital energies εa. These energies are well defined for non-interacting particles in
a given potential. For interacting particles (electrons in an atom or ion) one can
introduce single-particle orbitals and energies using a mean field approximation,
e.g. the Hartree–Fock method. From this point of view we could use the orbital
energies εHF

a found in the mean field of the Au24+ ground state 1s2 . . . 4d104f9,
see Fig. 1. However, they may only be suitable at low excitation energies, when
the mean field is close to that of the ground-state Au24+.

As the excitation energy increases the orbital occupation numbers change
noticeably, as shown by Fig. 5. This gives rise to a change of the mean field,
and as a result, the orbital energies are shifted by

δεa(E) =
∑
b

Uabδnb(E) , (10)
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Fig. 5. Energy dependence of the single-particle occupation numbers
na/ga calculated numerically from equation (7) for 4d, 4f , 5s and
5p orbitals: solid and open circles correspond to j = l ± 1

2 subshells
respectively. Solid and dashed lines (j = l± 1

2 respectively) show the
results obtained from the FD formula using the energy-dependent
orbital energies and chemical potential and the canonical relation
between the temperature and the excitation energy (solid line in
Fig. 9).

where δnb = nb(E)− nb(0) is the difference between the occupation numbers at
energy E and in the ground state at E = 0. Using our numerical energy-dependent
occupation numbers we find the energy dependence of the orbital energies, shown
for a few low-lying orbitals in Fig. 6. With an increase of the excitation energy the
electrons are transferred into higher orbitals which have larger radii. Accordingly,
the electron cloud becomes more diffuse, the screening of the nuclear potential
is reduced, and the orbital energies go down. This effect is especially strong for
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the inner 4d and 4f orbitals. As we will see below the shift of the lower orbital
energies is comparable with the temperature of the system, and it has to be
taken into account when applying the FD formula.

Fig. 6. Shifts of the single-particle orbital energies, equation
(10), as functions of the excitation energy for the 4d3/2,5/2

(long dash), 4f5/2,7/2 (solid), 5s (dotted), 5p1/2,3/2 (chain)
and 5g7/2,9/2 (short dash) orbitals.

In Fig. 7 we present the single-particle occupation numbers at five different
excitation energies, as functions of the shifted orbital energies

εa(E) = εa(0) + δεa(E) , (11)

where we take εa(0) = εHF
a . The numerical values agree well with the FD

distribution equation (9), obtained by the least-square fits of the temperature T
and chemical potential µ (solid lines). Figs 8 and 9 present the dependence of µ
and the ‘FD temperature’ T on the energy of the system (solid circles).

Occupation numbers aside, the relation between the temperature and energy
can be defined by the level density ρ(E), equation (4), through the canonical
average

E(T ) =

∫
e−E/TEρ(E)dE∫
e−E/T ρ(E)dE

=

∑
i

EiNie
−Ei/T

∑
i

Nie
−Ei/T

, (12)

or from the statistical physics formula

T−1 =
d ln[ρ(E)]

dE
, (13)
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Fig. 7. Orbital occupation numbers in Au24+ calculated
numerically from equation (7) at excitation energies E = 1,
4 ·5, 9 ·5, 17 and 27 ·5 a.u. (solid circles), and the FD
distributions (solid line) with temperature T and chemical
potential µ chosen to give best fits of the numerical data.

using the smooth fit (5). The latter yields T ' 2
√
E/a, or E ∝ T 2, characteristic

of the Fermi systems. Fig. 9 shows that for the energies above 3 a.u. all three
definitions of temperature give close values. As is known, the expansion of the
chemical potential in a Fermi system at small temperatures starts with a T 2 term
(Landau and Lifshitz 1969). Accordingly, its shift from the ground-state value is
proportional to the energy. Indeed, a simple linear fit µ = −27 ·6–0 ·094E closely
follows the numerical values in Fig. 8.
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Fig. 8. Chemical potential obtained
from the FD distribution fits of the
occupation numbers, Fig. 7, as a
function of the excitation energy of
Au24+ (solid circles). The solid line
is a simple linear fit
µ = −27 ·6–0 ·094E a.u.

Fig. 9. Temperature versus energy for Au24+. The solid line
is the canonical definition, equation (12); the dashed line is
the statistical physics definition, equation (13), which uses the
density fit (5); and the solid circles are the FD fits of the
occupation numbers.

If we use T (E) given by the canonical definition and the linear fit of µ,
together with the orbital energies [equation (11)], the FD formula gives smooth
energy dependencies of the occupation numbers, see Fig. 5. They reproduce the
behaviour of the numerical occupation numbers averaged over the shell-structure
fluctuations.

4. Direct and Resonant Recombination

Let us now estimate the direct and resonant contributions to the recombination
rate of Au25+. The direct radiative recombination cross section is estimated by



Quantum Chaos in Multicharged Ions 455

introducing an effective ionic charge Zi into the Kramers formula, which describes
radiative electron capture in the Coulomb potential (see e.g. Sobelman 1992)

σ(d)
n =

32π
3
√

3c3
(Z2

i Ryd)2

nε(Z2
i Ryd + n2ε)

, (14)

where ε is the initial electron energy, n is the principal quantum number of the
final electron state, and atomic units are used (Ryd = 1

2 a.u.). If we are interested
in the total recombination cross section the sum over n must be calculated,

σ(d) =
∑
n

σ(d)
n . (15)

Due to the n−1 factor in equation (14) this sum diverges logarithmically, until
values of n ∼ nmax are reached, where n2

maxε = Z2
i Ryd, after which it converges

rapidly. With the logarithmic accuracy the result is given by

σ(d) ' 32π
3
√

3c3
Ryd
ε
Z2
i ln

(
Zi

n0

√
Ryd
ε

)
, (16)

where n0 is the principal quantum number of the lowest unoccupied ionic orbital,
which determines the lower limit in the summation over n. Using Zi = 25,
n0 = 5 for electron recombination with Au25+, and choosing a small electron
energy of ε = 0 ·1 eV we obtain σ(d) ≈ 7 × 10−17 cm2. This corresponds to
the recombination rate of λ = σv = 1 ·3× 10−9 cm3 s−1, which is two orders of
magnitude smaller than the experimental λ = 1 ·8× 10−7 cm3s−1 at this energy
(Hoffknecht et al . 1998).

The electron energy of 0 ·1 eV is equal to the transversal temperature of the
electron beam in the experiment, whereas the longitudinal temperature is much
smaller, 1 meV. Therefore, to make estimates of the recombination rates at this
and higher energies one can use the cross sections without averaging over the
Maxwellian velocity distribution. It is also important that the energy dependence
of the experimental recombination rate is in agreement with that of the direct
radiative capture for electron energies 1 meV < ε <∼ 1 eV. The latter is basically
given by the 1/ε factor in equation (16). The experimental data of Hoffknecht
et al . (1998) are reproduced well by the direct radiative recombination rate
multiplied by a factor of 150.

The cross section of resonant radiative capture averaged over the resonances
is (Landau and Lifshitz 1977)

σ(r) =
π2

ε

ΓγΓe
D(Γγ + Γe)

≈ π2

ε

Γγ
D

(Γe À Γγ) , (17)

where Γγ and Γe are the mean radiative and autoionisation (or elastic) widths
of the resonances, D is the mean resonance spacing, and we drop the statistical
weights of the initial and intermediate ionic states. The relation Γe À Γγ is
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usually valid for a few lower partial waves, where the electron interaction is
stronger than the electromagnetic one. Equation (17) is written for the electron
s-wave, and the contributions of higher electron partial wave contain an extra
factor (2l + 1).

The radiative width of the resonant state at energy E ≈ I is found by summing
the partial widths for all lower-lying states E′ = E − ω,

Γγ ≈
3

2J + 1

∫ I

0

4ω3|dω|2
3c3

ρJπ (I − ω)dω , (18)

where the factor 3 accounts for J ′ = J, J±1, and dω is the reduced dipole matrix
element between the many-electron states. Because of the chaotic structure
of these states dω is suppressed compared to the typical single-particle matrix
element d0: dω ∼ d0/

√
N (Flambaum and Sushkov 1984; Flambaum et al . 1994,

1996). This estimate for systems with dense chaotic spectra in fact follows from
the dipole sum rule: the number of lines in the spectrum is large, ∝ D−1 ∝ N ,
consequently, the line strengths are small, |dω|2 ∼ |d0|2N−1.

The integrand in equation (18) peaks strongly because of the competition
between the ω3 factor, and the level density ρJπ (I − ω) that drops quickly as
we go down from the threshold, see equation (5). As a result, the integral can
be evaluated by the saddle-point method. Using the statistical estimate of dω
we obtain

σ(r) =
8πd2

0

(2J + 1)c3εΓspr

√
2π
3
ρJπ (I − ω0)ω4

0 , (19)

where ω0 = 6
√
I/a corresponds to the maximum of the decay photon spectrum in

equation (18). This cross section has the same energy dependence as σ(d). Hence,
it is also in agreement with the energy dependence observed in the experiment,
and we can estimate its magnitude at one particular electron energy, e.g. 0 ·1
eV. To do this we use a simple estimate of the single-particle dipole matrix
elements in the ion with charge Zi: d0 ∼ Z−1

i , together with 2J + 1 ≈ 10, and
substitute Γspr = 0 ·5, ω0 = 9 ·4, and ρJπ (I − ω0) = 2 ·5× 103 a.u. into equation
(19). At ε = 0 ·1 eV this gives σ(r) = 7 × 10−16 cm2, therefore, σ(r)/σ(d) = 10,
and we obtain a factor of ten enhancement over the direct recombination due
to radiative capture into multiply excited resonant states. It comes from the
large effective number of final states in the radiative width in equation (18)
(numerically Γγ ≈ 2× 10−7 a.u.). This enhancement has been obtained for the
electron s-wave. The contributions of higher electron partial waves are similar
to equation (17) times (2l + 1). Therefore, a few lower partial waves (s, p, d)
produce resonant cross section values 102 times greater than σ(d), which matches
the experimentally observed values. With the increase of the orbital angular
momentum l of the electron the capture width Γe becomes smaller than the
radiative width, and the contribution of the higher partial waves to the resonant
cross section is suppressed.
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5. Conclusions

In summary, the resonant radiative capture mechanism fully explains the
strongly enhanced recombination rates observed for eV electrons on multicharged
ions. Its origin is in the high level densities of chaotic multiply-excited electron
states in multicharged ions. The size of the enhancement is sensitive to the
electron structure of the ion, which determines the level density. We have shown
that a statistical approach can be applied to the analysis of this complex system.
One can also use a statistical theory to calculate mean-squared matrix elements
between multiply excited chaotic states in terms of single-particle amplitudes,
occupation numbers, Γspr and D (Flambaum and Vorov 1993; Flambaum et al .
1994, 1996), and obtain accurate quantitative information about the processes
involving chaotic states and resonances. At higher electron energies the resonant
capture proceeds via so-called doorway states (Bohr and Mottelson 1969)—simple
dielectronic autoionising states, which are then ‘fragmented’ into the dense
spectrum of multiply-excited resonances (see Mitnik et al . 1998; Flambaum et al .
1996 and references therein).
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