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Abstract

This paper examines the positron–hydrogen scattering process by numerically solving the
time-dependent Schrödinger equation in the s-wave model. The overall behaviour of the system
wavefunction as it propagates through the collision region is studied above the positronium
formation threshold and is found to match expectations qualitatively.

1. Introduction

Positron–hydrogen scattering involves four possible processes, i.e. elastic
scattering, atomic excitation, atomic ionisation, and positronium formation. As a
member of the class of three-body Coulomb problems, this study is of fundamental
importance in atomic physics. It is also important because it involves interactions
of matter with antimatter and thus has applications in cosmology and astrophysics.

Over the past decades, extensive studies have been conducted for a similar
three-body Coulomb system, namely electron–hydrogen scattering, but much less
work has been done for the positron–hydrogen system. Experimentally, this is
mainly due to the difficulty of developing appropriate positron sources. However,
substantial progress has been made in this direction in the past decade and
useful cross section data are now available. The interested reader is referred
to the review papers by Raith (1998) and Charlton (1998). Positron–hydrogen
scattering is also a more challenging theoretical problem because of the extra
reaction channel, i.e. positronium formation. Substantial progress has also been
made in theoretical calculations but several questions remain to be resolved. One
of the most important is that relating to the description of ionisation because
the usual close-coupling equation formalism requires expansion in hydrogenic and
positronium states. These over-complete expansions raise questions about double
counting for ionisation and also have the potential to cause numerical instabilities.

A scattering event is clearly a time-dependent process. During such an event
two particles approach each other, interact, and then separate. In the case where
the event is on an atomic scale and is fully quantum mechanical in nature, the
system wavefunction of the particles will evolve as the collision takes place in
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accordance with the time-dependent Schrödinger equation. Nevertheless, nearly
all reported theoretical studies of electron/positron scattering from atoms utilise
a time-independent approach. For example, the convergent-close-coupling method
(Bray and Stelbovics 1995, 1997; Ryzhikh and Mitroy 1997), the distorted-wave
Born approximation method (Madison et al . 1995; Wang et al . 1995), the
convergent R-matrix method (Bartschat et al . 1996), the intermediate energy
R-matrix method (Scott et al . 1997), the hyperspherical-coordinates method
(Yang et al . 1996), the converged J -matrix method (Konovalov and McCarthy
1996), and the Faddeev method (Faddeev and Merkuriev 1993; Kvitsinski and
Hu 1996) are all time-independent theories.

The kernel of these methods is built around a set of stationary scattering
states that are independent of time. Over the past half a century, considerable
and continuous progress has been made in developing these very sophisticated
time-independent methods, which can now describe a wide range of experimental
findings. However, there are many mathematical difficulties inherent in the
time-independent approaches, for example, the difficulty in handling the boundary
conditions of continuum states in electron–atom collisions due to the long-range
Coulomb interactions. These difficulties are of such magnitude that formal time-
independent scattering theory has not yet led to a universally-valid computational
method for the ionisation problem (McCarthy 1996; Bray 1997). Moreover, the
time-independent approach provides little information on the transient state of
the system during the scattering process.

On the other hand, the time-dependent approach has a more natural
correspondence to reality, i.e. starting from an initial state of the system and
following the events through time. It gives a direct solution of the quantum
equations of motion and consequently has many distinct advantages over the
traditional time-independent methods. For example, it provides information on
transient behaviours and allows direct visualisation of the collision process, where
one can ‘watch’ the electron and atom wavepacket evolving in time and in space.
It handles continuum states, ionisation, resonance and post-collision interaction
in the most natural way and is thus free of the difficulties encountered by the
time-independent approaches. As an initial value problem, it is also comparatively
easy to implement, flexible, and versatile in treating a large variety of quantum
many-body problems. It is therefore expected to resolve some serious discrepancies
between existing theories and experiments.

In this paper we examine the time-dependent approach for a simplified model
of s-wave positron–hydrogen scattering by numerically propagating the positron–
hydrogen system wavefunction in time through the collision region. Preliminary
results are reported.

2. Theory

The general time-dependent theory of wavepacket propagation has been
available for many years (see e.g. Goldberger and Watson 1964; Taylor 1972), but
computational techniques have been slow to develop and practical calculations
have had to await the arrival of powerful computers. The formal solution of
the time-dependent Schrödinger equation is ψ(r, t + ∆t) = exp(−iH∆t)ψ(r, t),
where H = −∇2/2 + V (r) is the system Hamiltonian, V (r) is the interaction
potential, and r denotes collectively the spatial coordinates. It is the method of
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approximating the exponential time propagator exp(−iH∆t) that distinguishes
different time-dependent schemes.

In an earlier publication (Wang and Scholz 1998) we discussed several approaches
including the Euler expansion, the first (FOD) and second (SOD) order difference
schemes, the Taylor expansions, the split operator scheme, and the Chebyshev
scheme. We applied the Chebyshev scheme to one-dimensional potential scattering
and our results were in excellent agreement with exact solutions. This paper
extends our previous work to study s-wave positron–hydrogen scattering. A
comprehensive discussion on the time-dependent approaches especially related to
quantum chemistry can be found in the review article written by Balakrishnan
et al . (1997).

Briefly, the Chebyshev scheme approximates the exponential time propagator
by a Chebyshev polynomial expansion:

ψ(x, y, t) = exp[−i(Emax + Emin)t/2]
N∑
n=0

an(α)φn(−iH̃)ψ(x, y, t = 0) , (1)

where Emax and E min are the upper and lower bounds on the energies sampled by
the wavepacket, α = (Emax−Emin)t/2, an(α) = 2Jn(α) except for a0(α) = J0(α),
Jn(α) are the Bessel functions of the first kind, φn are the Chebyshev polynomials,
and the normalised Hamiltonian is defined as

H̃ =
1

Emax − Emin

[2H − (Emax + Emin)] . (2)

The above normalisation ensures that the expansion of Chebyshev polynomials
is convergent. Since the Bessel functions fall to zero exponentially as n increases
beyond α, it follows that terminating the expansion at N > α would yield accurate
results. Note that α is proportional to the time step t and so is the number
of terms required in the expansion. Since the time step t can be arbitrarily
large, this scheme is often used as a one-step propagator to cover the complete
interaction.

Although the Chebyshev scheme is mathematically more involved and in some
cases computationally more expensive in comparison with other schemes, it is
the most accurate time-dependent method to date (Mohan and Sathyamurthy
1988; Leforestier et al . 1991; Wang and Scholz 1998). This scheme has been
employed in the field of quantum chemistry with considerable success (see e.g.
Kosloff 1988; Cerjan and Kulander 1991; Mowrey 1993; Huang et al . 1993; Kroes
and Neuhauser 1996; Gögtas et al . 1996; Balakrishnan et al . 1997), but it has
yet to be utilised in the atomic physics community.

Some progress has been made in developing and applying the simpler schemes
to problems in the field of atomic physics, including the calculation of electron
impact ionisation of hydrogen (Bottcher 1985, FOD), Stark shift and lifetime
of hydrogen (Hermann and Fleck 1988, split operator scheme), two-electron
atom energies (Zhang et al . 1994, split operator scheme), atomic autoionisation
(Schultz et al . 1994, FOD), photoionisation (Dehnen and Engel 1995, split
operator scheme), s-wave electron scattering from hydrogen (Ihra et al . 1995,
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split operator scheme), electron detachment from H− (Kazansky and Taulbjerg
1996, split operator scheme), and e–H scattering (Pindzola and Schultz 1996,
Taylor expansion; Pindzola and Robicheaux 1996, SOD method).

Very recently Larkin et al . (1998) studied the positron–hydrogen system using
the split operator scheme. Their study was based on a linear one-dimensional
model (i.e. the only scattering directions possible are forwards or backwards).
This one-dimensional model is not the same as the well known s-wave model, or
the Temkin–Poet model (Temkin 1962; Poet 1978), where only the first term
in the partial wave expansion is retained. The s-wave model can be readily
expanded to include the other partial waves systematically until convergence is
achieved, while the linear one-dimensional model cannot be extended to obtain a
full solution of the system unless all six dimensions are included in the calculation.

It is very encouraging that the above calculations were found to be in fairly
good agreement with results from time-independent models and/or experimental
data. Nevertheless, there is a general deep concern about the accuracy of
the final system wavefunction obtained by the time-dependent schemes, since
errors accumulated over the many time steps may cause severe distortion of the
wavepackets. This prompted us to adopt the most accurate scheme to date, i.e.
the Chebyshev scheme, for our investigation on the s-wave positron–hydrogen
scattering.

3. Calculations and Results

In the s-wave Temkin–Poet model, all angular dependence is neglected and
the time-dependent Schrödinger equation of the S-partial wave is given by

i
∂

∂t
ψS(r1, r2, t) =

(
− 1

2

∂2

∂r2
1

− 1
2

∂2

∂r2
2

+
1
r1

− 1
r2

− 1
r>

)
ψS(r1, r2, t) , (3)

where r1 and r2 are the distances of the positron and the electron relative to
the nucleus respectively, r> refers to the greater of r1 and r2, ψ

S(r1, r2, t) is the
s-wave wavefunction and the system Hamiltonian is

H = −1
2

∂2

∂r2
1

− 1
2
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2

+
1
r1

− 1
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− 1
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. (4)

Assuming that the hydrogen atom is initially in the ground state, its wavefunction
is then given by

ψH(r2) = r2e−r2 . (5)

The positron is assumed to be sufficiently far away from the hydrogen atom
initially that it can be represented by a wavepacket for a free particle, i.e.

ψe+(r1) = e−(r1−a)2/4σeikr1 , (6)
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Fig. 1. Time evolution of the positron–hydrogen system wavefunction through the collision
interaction. The dominant energy of the incident positron is 3 ·4 a.u.
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where a defines the starting position of the positron, k is the dominant momentum
of the positron wavepacket, and σ is the inverse of the momentum spread in
the initial positron wavepacket. Combining the two expressions gives the initial
wavefunction for the positron–hydrogen system:

ψ(r1, r2, t = 0) = r2e−r2+ikr1−(r1−a)2/4σ . (7)

Fig. 1 illustrates the time evolution of this wavefunction under the influence
of positron–electron, positron–nucleus and electron–nucleus interactions. These
time-dependent wavefunctions were obtained by propagating the wavefunction in
time according to equation (1). The wavefunction is initially observed moving
towards the nucleus of the hydrogen atom, then being scattered by the interaction
potentials between the three particles, and finally moving away from the interaction
region.

This simulation was carried out for a dominant incident energy of 3 ·4 a.u.
with a 5% spread in momentum, which is well above the positronium formation
threshold and also the ionisation energy of hydrogen. At this energy scattering
flux into all channels should be significant. Therefore, we expect to see significant
changes in the profile of the system wavefunction in the r2 direction (i.e. the
electron coordinate), representing a finite probability in finding the electron
at greater distances from the nucleus. This is in accordance with the finite
amplitudes of excitation (including direct excitation of the hydrogen atom and
the rearragement into the positronium atom excited states) and ionisation of the
hydrogen atom at this energy. The enhancement of the larger distance amplitude
along the r1 = r2 line can be interpreted as partially due to the formation of
positronium and partially due to ionisation.

We cannot yet say with any certainty that positronium was formed at any
particular stage just by looking at the s-wave wavefunctions, because the angular
positions of the two particles are not known in this model. It was possible that
even if the two particles were at the same radius, they could have been on opposite
sides of the nucleus. Thus in contrast to the Temkin–Poet model of electron
scattering from hydrogen, where the inelastic flux can be uniquely attributed to
a discrete excitation or ionisation event, no such unique partitioning is possible
because we need angular information beyond the scope of the s-wave model to
resolve the combined flux into positronium-formation and ionisation channels.
Further work involving more extended calculations including other partial waves
will resolve the issue of how much of the amplitude along the r1 = r2 line refers
to positronium formation and how much to ionisation.

4. Conclusions

We have examined the scattering of a positron from a hydrogen atom by
numerically solving the time-dependent Schrödinger equation. Two approximations
are used. The first is a Chebyshev polynomial expansion of the time evolution
operator and the second a partial wave expansion of the initial wavefunction, of
which only the s-wave term is retained. It was found that the time-dependent
behaviour of the propagating wavefunction during and after the interaction
matched expectations qualitatively. Thus the time-dependent method shows
promise. It is worth noting that this method can be equally well applied over
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a wide range of energies without affecting the numerical procedures. Further
large-scale calculations including partial waves are needed to uniquely apportion
the scattered flux and hence to obtain quantitative cross sections for inelastic,
rearrangement and ionisation processes.
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