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Abstract

The finite-difference method for electron–hydrogen scattering is presented in a simple, easily
understood form for a model collision problem in which all angular momentum is neglected.
The model Schrödinger equation is integrated outwards from the atomic centre on a grid of
fixed spacing h. The number of difference equations is reduced each step outwards using an
algorithm due to Poet, resulting in a propagating solution of the partial-differential equation.
By imposing correct asymptotic boundary conditions on this general, propagating solution,
the particular solution that physically corresponds to scattering is obtained along with the
scattering amplitudes. Previous works using finite differences (and finite elements) have
extracted scattering amplitudes only for low-level transitions (elastic scattering and n = 2
excitation). If we are to eventually extract ionisation amplitudes, however, the numerical
method must remain stable for higher-level transitions. Here we report converged cross
sections for transitions up to n = 8, as a first step towards obtaining ionisation (e, 2e) results.

1. Introduction

In this paper, we report progress towards a direct numerical solution of the
Schrödinger equation for electron–atom ionisation [the (e, 2e) problem]. This
problem has remained unsolved even for the simplest case of atomic hydrogen as
target. The primary obstacle to obtaining accurate (e, 2e) cross sections is that
correct three-particle boundary conditions need to be imposed in the asymptotic
region. A direct approach (as opposed to e.g. close-coupling methods) can make
this part of the problem much easier. We have chosen to use the finite-difference
method, which was introduced by Poet (1980) for a simplified ‘S-wave model’
in which all angular momentum is neglected. Wang and Callaway (1993, 1994)
extended Poet’s (1980) method to real electron–hydrogen scattering, but only
for energies below the n = 3 threshold. The similar finite-element method has
been employed by Botero and Shertzer (1992) and Shertzer and Botero (1994)
to describe real scattering below the n = 3 threshold. Neither method has yet
been extended to ionisation.
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When developing a general method for solving the six-dimensional three-body
Schrödinger equation, it makes sense to consider first, simplified models of lower
dimensionality. An ideal, two-dimensional, three-body model is the S-wave, or
Temkin–Poet model (Temkin 1962; Poet 1978) mentioned above. Although only
s-states are included for both projectile and atomic electrons, this model problem
contains most of the features that make the real scattering problem hard to solve.
Indeed, even in this simplified model, converged (e, 2e) energy distributions have
never been obtained (see e.g. Bray 1997). We want to be sure our numerical
method can obtain ionisation amplitudes for this simplified model before we
include angular momentum.

This is a work in progress and we have just finished testing our code for energies
below the ionisation threshold. Our cross sections for 1s–1s elastic scattering,
1s–2s and 1s–3s excitation are in excellent agreement with the convergent
close-coupling (CCC) results of Bray and Stelbovics (1994) for electron–hydrogen
scattering. We also present detailed results at the ionisation threshold, where we
obtained converged cross sections for transitions up to n = 8.

Fig. 1. Schematic diagram of the grid.

2. Finite-difference Method

The simplest finite-difference scheme involves solving Schrödinger’s equation
on a grid of fixed spacing h, with only nearest-neighbour points contributing
with the central grid point to each difference equation (see Fig. 1). Since the
wave function is symmetric (singlet spin state) or antisymmetric (triplet) about
x = y, the region of integration reduces to a triangle. Although the triplet case
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is easier, we consider the singlet case here since it provides a better test of the
numerical method. The electron–hydrogen ‘S-wave model’ Schrödinger equation
reads (Temkin 1962), in atomic units (a.u.)

(
∂2

∂x2 +
∂2

∂y2 +
2
y

+ 2E

)
Ψ(x, y) = 0, x ≥ y . (1)

Here the wave function, which must remain finite, has been multiplied by xy, so
that

Ψ(x, 0) = 0 , (2)

Ψ(0, y) = 0 . (3)

Because we are integrating over a triangular region, the symmetry condition

Ψ(y, x) = Ψ(x, y) (4)

must be imposed as well (this will come into play only when nearest-neighbour
points lie above the triangular region, i.e. when the central grid point is on the
line x = y). If the atom is initially in a state m, then for impact energies at or
below the ionisation threshold, the asymptotic behaviour of the wave function is
given in terms of unknown S-matrix elements Snm by

Ψ(x→∞, y) ∼ φ∗km(x)ψm(y)−
∑
n

Snmφkn(x)ψn(y) . (5)

Here ψn(y) is the (s-state) wave function for the hydrogen atom with principal
quantum number n and kn is the corresponding wave number of the free electron
described by φkn(x) = Nn exp(iknx), where Nn is a normalisation factor. Singlet
cross sections are given by

σnm =
1

4k2
m

|Snm − δnm|2 . (6)

Note that this is just the usual expression for the real electron–hydrogen cross
section with all angular momentum set equal to zero.

(2a) Difference Equations

To convert the partial-differential equation (1) into difference equations, we
impose a grid of fixed spacing h (Fig. 1) and approximate derivatives by finite
differences:

∂2Ψ(x, y)
∂x2 ≈ Ψ(x+ h, y)− 2Ψ(x, y) + Ψ(x− h, y)

h2 , (7)
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∂2Ψ(x, y)
∂y2 ≈ Ψ(x, y + h)− 2Ψ(x, y) + Ψ(x, y − h)

h2 . (8)

Thus the wave function at grid point (i, j) is related to nearest neighbours by
the difference equation

Ψ(i−1)
j + Ψ(i)

j−1 + (h2Tj − 4)Ψ(i)
j + Ψ(i)

j+1 + Ψ(i+1)
j = 0 . (9)

Here Ψ(i)
j = Ψ(x = ih, y = jh) and Tj = 2/(jh) + 2E is the non-derivative part

of the Schrödinger equation. There will be as many equations as there are grid
points.

Our difference equations (9) have the form (Poet 1980)

A(i) . Ψ
(i−1)

+ B(i) . Ψ
(i)

+ C(i) . Ψ
(i+1)

= 0 , (10)

where we have collected the various Ψ(i)
j , j = 1, 2, ..., i for a given value of i into

a vector Ψ
(i)

. By comparing (9) with (10), the matrix elements of A(i), B(i)

and C(i) are easily determined. At the first grid point i = j = 1, equation (9) is

Ψ(0)
1 + Ψ(1)

0 + (h2T1 − 4)Ψ(1)
1 + Ψ(1)

2 + Ψ(2)
1 = 0 . (11)

Using the boundary conditions (2), (3) and the symmetry condition (4), this
simplifies to

(h2T1 − 4)Ψ(1)
1 + 2Ψ(2)

1 = 0 . (12)

Comparing (12) with (10), A(1) = 0, and the only non-zero elements of B(1) and
C(1) are given by

B
(1)
1,1 = h2T1 − 4 , (13)

C
(1)
1,1 = 2 . (14)

At a general grid point (i, j), j 6= i, we have [comparing (9) with (10)]

A
(i)
j,j = 1 , (15)

B
(i)
j,j−1 = 1 , (16)

B
(i)
j,j = h2Tj − 4 , (17)
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B
(i)
j,j+1 = 1 , (18)

C
(i)
j,j = 1 . (19)

For j = i 6= 1, the symmetry condition (singlet) is again needed and the non-zero
elements are

B
(i)
i,i−1 = 2 , (20)

B
(i)
i,i = h2Ti − 4 , (21)

C
(i)
i,i = 2 . (22)

(2b) Propagation Method

At each value of i we can solve our equations if we apply symbolic boundary
conditions at i + 1 [solve for Ψ(i)

j in terms of Ψ(i+1)
j (j = 1, 2, . . . , i)]. This

procedure yields a propagation matrix D(i):

Ψ
(i)

= D(i) ·Ψ(i+1)
. (23)

We can obtain a recursion relation for D(i) by using (23) to eliminate Ψ
(i−1)

from equation (10):

[B(i) + A(i) ·D(i−1)] ·Ψ(i)
= −C(i) ·Ψ(i+1)

. (24)

Comparing (24) with (23), we get

D(i) = −[B(i) + A(i) ·D(i−1)]−1 ·C(i) . (25)

Thus each D(i) is determined from the previous one. D(1) is just a 1× 1 matrix
and can be determined by inspection of equations (12), (13), (14) and (23):

D
(1)
1,1 = −C(1)

1,1/B
(1)
1,1 = −2/(h2T1 − 4) . (26)

(2c) Asymptotic Solutions

In the asymptotic region, the form of the wave function is known and is given
in terms of the S-matrix S by [refer to equation (5)]

Ψ
(i) ∼ I(i) −R(i) · S . (27)

Here the matrix I(i) contains the incident part of the asymptotic solution,

I
(i)
j,n = φ∗kn(xi)ψn(yj) , (28)
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while R(i) contains the reflected part,

R
(i)
j,n = φkn(xi)ψn(yj) . (29)

Here xi = ih and yj = jh.

(2d) Matching Procedure

To extract an N ×N S-matrix, we need only N of the i equations (23). We
can solve for the S-matrix by substituting the asymptotic solutions (27) into N
of equations (23):

S = [R̃(i) − D̃(i) ·R(i+1)]−1 · [̃I(i) − D̃(i) · I(i+1)] . (30)

Here the tildes on I(i), R(i) and D(i) indicate that only N rows are now being
retained in these matrices. In principle, any N rows will do. Perhaps the
simplest choice is to just take the first N rows, but this is a poor choice since
the ψn(y) become linearly dependent near y = 0. We have found that the
most stable choice is to keep the rows corresponding to the global maxima of
|ψn(y)|, n = 1, 2, . . . , N . Let us label the y-value where this maximum occurs by
ym(n). One can consider rather large variations about this stable choice without
affecting the final results. If the variation is too large [e.g. if we take the rows
corresponding to ym(n)/10] the results are unstable and there is no convergence
(using double-precision arithmetic; presumably, higher precision would bring back
stability).

Table 1. Singlet 1s, 2s, 3s cross sections (in units of πa2
0) of the Temkin–Poet electron–hydrogen

scattering problem for different impact energies E0 (eV)

The present results using the finite-difference method (FDM) are compared with the convergent
close-coupling (CCC) calculations of Bray and Stelbovics (1994)

E0 σ1s,FDM σ1s,CCC σ2s,FDM σ2s,CCC σ3s,FDM σ3s,CCC

1 13 ·6 13 ·6
2 6 ·35 6 ·35
3 3 ·68 3 ·68
4 2 ·39 2 ·39
5 1 ·68 1 ·68
6 1 ·24 1 ·24
7 0 ·964 0 ·965
8 0 ·780 0 ·781
9 0 ·659 0 ·659
10 ·885 0 ·476 0 ·476 0 ·0326 0 ·0326
12 ·245 0 ·390 0 ·391 0 ·0417 0 ·0415 0 ·00322 0 ·00320

3. Results

For impact energies below 13 eV, where only a few (1, 2, or 3) channels are
open, we have calculated cross sections for 1s–1s elastic scattering as well as
1s–2s and 1s–3s excitation. In Table 1, our results are compared with those of
the convergent close-coupling (CCC) method (Bray and Stelbovics 1994). The
simple low-order scheme used here requires a small step size to obtain accurate
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results (h = 0 ·02 a.u.). It is seen from Table 1 that the present results and the
CCC results agree to better than 1%.

Since presenting Table 1 at the AIP Congress (Jones and Stelbovics 1998),
we have implemented the higher-order Numerov scheme, which brings in next-
nearest-neighbour points to each difference equation. The spacing h can now be
six times larger to obtain approximately the same accuracy. Thus the Numerov
scheme reduces storage by a factor of 62 = 36 and is 64 = 1296 times faster.
Nevertheless, we would still recommend developing one’s code using the simpler
scheme presented in Section 2 since it is considerably easier to understand and
implement. Once this code is working, it is not difficult to upgrade to the
Numerov scheme. All the necessary formulas for the Numerov scheme have been
given by Poet (1980) and need not be discussed here. We have also implemented
Poet’s (1980) technique of using all rows of the matrices I(i), R(i) and D(i). In
this case, the system of equations is overdetermined. Nevertheless, a solution
can be found by the standard method of minimising the sum of the squares of
the residuals [the differences between the left- and right-hand sides of equations
(D)]. This ‘least-squares’ method works even better than the simpler method
described earlier. Although both methods converged to the same final result, the
least-squares results converged in a quicker, more stable fashion. In Table 2, we
present our results for e−+H(1s)→ e−+H(ns), n ≤ 8, using the Numerov scheme
at the ionisation threshold (the grid spacing is h = 1/14 a.u.). Here we present
the calculated cross sections every 10 a.u., so that convergence in propagation
distance may be readily ascertained. In contrast to the cases presented in Table 1,

Table 2. Singlet cross sections (in units of πa2
0; superscripts indicate powers of 10) of the

Temkin–Poet electron–hydrogen scattering problem for an impact energy of 1 Rydberg versus
propagation distance x (atomic units)

x N σ1s σ2s σ3s σ4s σ5s σ6s σ7s σ8s

10 3 3 ·30−1 4 ·33−2 5 ·94−2

20 5 3 ·30−1 4 ·00−2 6 ·18−3 8 ·76−2 1 ·09−1

30 5 3 ·30−1 4 ·03−2 7 ·23−3 3 ·81−3 5 ·71−3

40 6 3 ·30−1 4 ·07−2 7 ·04−3 1 ·60−3 4 ·03−3 4 ·92−3

40 6 3 ·30−1 4 ·07−2 7 ·04−3 1 ·60−3 4 ·03−3 4 ·92−3

50 8 3 ·30−1 4 ·07−2 6 ·96−3 1 ·77−3 2 ·21−5 3 ·25−2 1 ·86−1 7 ·65−2

60 9 3 ·30−1 4 ·07−2 6 ·95−3 1 ·78−3 6 ·27−4 4 ·16−3 1 ·69−1 5 ·20−1

70 10 3 ·30−1 4 ·07−2 6 ·94−3 1 ·79−3 6 ·46−4 9 ·25−4 6 ·94−2 9 ·32−1

80 12 3 ·30−1 4 ·07−2 6 ·93−3 1 ·80−3 5 ·84−4 6 ·34−4 1 ·10−1 7 ·57+0

90 12 3 ·30−1 4 ·07−2 6 ·93−3 1 ·79−3 5 ·97−4 2 ·67−4 5 ·65−3 4 ·34−1

100 12 3 ·30−1 4 ·07−2 6 ·93−3 1 ·80−3 5 ·94−4 2 ·42−4 6 ·11−4 3 ·13−2

110 13 3 ·30−1 4 ·07−2 6 ·93−3 1 ·80−3 5 ·95−4 2 ·30−4 2 ·01−4 1 ·35−2

120 13 3 ·30−1 4 ·07−2 6 ·93−3 1 ·80−3 5 ·95−4 2 ·32−4 1 ·20−4 1 ·43−3

130 14 3 ·30−1 4 ·07−2 6 ·93−3 1 ·80−3 5 ·95−4 2 ·32−4 9 ·46−5 4 ·74−4

140 14 3 ·30−1 4 ·07−2 6 ·93−3 1 ·80−3 5 ·95−4 2 ·32−4 1 ·00−4 1 ·15−4

150 14 3 ·30−1 4 ·07−2 6 ·93−3 1 ·80−3 5 ·95−4 2 ·32−4 1 ·01−4 6 ·47−5

160 14 3 ·30−1 4 ·07−2 6 ·93−3 1 ·80−3 5 ·95−4 2 ·32−4 1 ·01−4 5 ·38−5

170 14 3 ·30−1 4 ·07−2 6 ·93−3 1 ·80−3 5 ·95−4 2 ·32−4 1 ·01−4 5 ·02−5

180 14 3 ·30−1 4 ·07−2 6 ·93−3 1 ·80−3 5 ·95−4 2 ·32−4 1 ·02−4 4 ·89−5

190 15 3 ·30−1 4 ·07−2 6 ·93−3 1 ·80−3 5 ·95−4 2 ·32−4 1 ·02−4 4 ·83−5

200 15 3 ·30−1 4 ·07−2 6 ·93−3 1 ·80−3 5 ·95−4 2 ·32−4 1 ·02−4 4 ·83−5
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here we have an infinite number of channels open. An interesting and useful
result of this work is that we have found that the rate at which states become
important in the matching procedure as the solution is propagated outwards is
about three times faster than the rate that their global maxima come onto the
grid (in Table 2 we have indicated the total number of states N included at
each stage of the calculation).

4. Conclusion and Outlook

We have presented a simple finite-difference scheme for electron–hydrogen
scattering that can be easily upgraded to improve efficiency. Matching boundary
conditions to yield a stable system of difference equations when many channels
were open proved to be a difficult task. This may explain why other investigators,
since Poet, have not yet presented results of their direct methods in this energy
regime. We can now proceed to higher energies by applying ionisation boundary
conditions. Once we have optimised our code for this simplified model we will
include angular momentum.
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