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Abstract

Since the first attempts to calculate the helium ground state in the early days of Bohr–
Sommerfeld quantisation, two-electron atoms have posed a series of challenges to theoretical
physics. Despite the seemingly simple problem of three charged particles with known
interactions it took more than half a century after quantum mechanics was established to
describe spectra of two-electron atoms satisfactorily. The evolution of the understanding of
correlated two-electron dynamics and its importance for doubly excited resonance states is
described in this overview.

1. Introduction

The theory of two-electron atoms has played an important role in the
development of theoretical physics this century. The failure of the old quantum
theory to describe a stable two-electron atom triggered the development of quantum
mechanics. Once the basic formalism had been established by Heisenberg and
Schrödinger early variational calculations produced remarkably good results for
the ground state of helium and H− and broke the ground for the general
acceptance of quantum mechanics.

In Section 2 we will briefly sketch the attempts of the old quantum theory to
describe the helium ground state. In particular, a forgotten idea by Heisenberg
comes surprisingly close to recent findings of classical dynamics which turns
out to be relevant for high lying resonances of helium. Following the first
synchrotron absorption experiments detecting doubly-excited states in the early
sixties, it became clear that the effective single particle picture, familiar from the
successful Hartree–Fock approximation, was inadequate to understand two-electron
resonances. As a consequence, sophisticated alternative quantum approximations
were developed over the next thirty years. The most important concepts were
a group theoretical approach and two adiabatic approximations. These concepts
successfully explained the high degree of regularity in the spectra of two-electron
resonances, i.e. features which could not be accounted for by an effective single
particle picture. Rather, they are intrinsically related to the correlated dynamics
of two electrons. In Section 3 the results achieved by the approximate quantum
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methods, in particular the existence of approximate collective quantum numbers
and propensity rules for the decay of resonances, are summarised.

Over the last decade the regime of extremely high excitation, i.e. principal
quantum numbers N,n for both electrons of N ≈ n ≥ 10, has become accessible,
both experimentally and computationally. For these high excitations the
approximate quantum numbers begin to lose their meaning and the regularities in
the two-electron resonance spectrum start to dissolve. Moreover, even if applicable,
the spectroscopic concept of isolated resonances identified by a set of quantum
numbers becomes very questionable if the density of resonances per unit energy
tends to infinity, which is the case towards the three-body break-up limit E = 0
when N ≈ n→∞. Hence, one needs a new concept to understand two-electron
dynamics in this regime of extreme double-excitation. The concept is provided
by a modern semiclassical approach. Its development over the last few years
has led to impressive progress in the quantitative description of the resonances.
The backbone of these semiclassical descriptions are the periodic orbits of the
full classical two-electron system without approximations. Surprisingly, from the
shortest and simplest periodic orbits and from their stability properties one can
draw a picture of two-electron excitation dynamics which agrees extremely well
with the results of the quantum approximations explaining the regular spectrum of
intermediate double excitation. However, the periodic orbits have one advantage
that goes beyond the simple structural picture: A representation of the spectra in
terms of periodic orbits does not rely on an explicit quantisation scheme based on
the quasi-separability of the problem in (collective) coordinates or the existence
of approximate quantum numbers. This advantage might point the way into
the extreme excitation regime where the increase in the number of resonances
renders a description in terms of quantum numbers meaningless. One tool which
has already proved to be very useful to characterise dynamical features in the
extreme excitation limit for hydrogen in the magnetic field is scaled periodic
orbit spectroscopy. As we will discuss in Section 4 an incredibly complex energy
spectrum with many (overlapping) resonances can look quite ordered, if properly
Fourier transformed into the time domain where peaks at certain times indicate
the periods of relevant periodic orbits.

We will deal exclusively with the nonrelativistic two-electron Hamiltonian in
atomic units,

H =
~p2

1 + ~p2
2

2
− Z

r1

− Z

r2

+
1
r12

, (1)

where Z is the nuclear charge, rk (k = 1, 2) denote the electron–nucleus distances
and the distance between the electrons is r12. We will discuss both helium and
H−.

2. Pre-quantum Attempts to Quantise Helium and Heisenberg’s Forgotten Idea

In 1913 Bohr succeeded in explaining the energy levels of the hydrogen atom in
terms of a quantisation of the classical Kepler orbits. Numerous attempts to explain
the ground state of helium by quantising different two-electron periodic orbits in a
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similar manner failed.1 All these attempts were based on the belief that (i) the ground
state of helium is related to a single periodic orbit of the electron pair, (ii) the
electrons move on symmetric orbits with r1 = r2 for all times, (iii) orbits where
the electrons hit the nucleus (‘Pendelbahnen’, see Born 1925) are excluded and
(iv) the quantum number n in the quantisation condition is an integer.

Heisenberg’s interest in the helium problem was stimulated by Bohr in
1922. Sommerfeld and Heisenberg devised as a possible classical ground state
configuration a model where the electrons move asymmetrically on two different
Kepler ellipses of the same shape but oriented in opposite directions, sketched by
Heisenberg in a letter to Sommerfeld (Heisenberg 1922) (see Fig. 1). Heisenberg
outlined in the letter a calculation of the ground state energy based on this
electron-pair motion. As an important achievement from today’s point of view,
he introduced a second quantisation condition,

∮
pϕdϕ = nϕh, for the motion

of the angle ϕ between the major axes of the two orbits under the influence
of the mutual electron interaction (see Fig. 1). Moreover, he allowed for nϕ
to be half-integer . Including the electron repulsion in a perturbative manner,
Heisenberg arrived at an ionisation potential of 24 ·6 V, compared to the best
experimental value of 24 ·5 V at that time! Discouraged by Bohr and Pauli who
harshly criticised the concept of non-integer quantum numbers, Heisenberg never
published his calculation, although it was referred to by Sommerfeld (1923).

Fig. 1. Sketch of the periodic electron pair motion proposed by
Heisenberg in a letter to Sommerfeld in 1922 as a candidate for a
classical ground state configuration of helium.

In the meantime it has become clear that Heisenberg’s success was accidental
(Solov’ev 1985; Tanner et al. 1998). Consequently, attempts to describe (Born
and Heisenberg 1923) excited states of helium in a similar fashion failed. The
pessimistic mood in the early twenties concerning the treatment of two-electron
atoms becomes apparent in a conclusion given by van Vleck (1922): ‘The
conventional quantum theory of atomic structure does not appear to be able to
account for the properties of even such a simple element as helium, and to escape
from this dilemma some radical modification in the ordinary conceptions of the
quantum theory or of the electron may be necessary.’

History has shown that van Vleck was right. Quantum mechanics as we
know it today took off quickly once the concepts developed by Schrödinger and
Heisenberg had been proven to work, e.g. for the helium ground state which
1A summary can be found in Leopold and Percival (1980).
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Hylleraas (1929) was able to calculate accurately using variational techniques.
The singly excited states of two electron atoms were also relatively simple to
understand and with the mean field theory, i.e. the Hartree–Fock approach, the
structure of almost the entire periodic table could be explained.

Fig. 2. Two-electron density at (r2
1 + r2

2)
1
2 = 80 a.u. for a

resonant state with 1Po symmetry of H− from an adiabatic
hyperspherical calculation (Sadeghpour and Greene 1990). The
coordinates are θ12 = 6 (~r1,~r2) and tanα = r1/r2. Overlaid are
the spheroidal nodal lines λ = (r1+r2)/r12 and µ = (r1−r2)/r12

predicted by the adiabatic molecular approximation (Rost et
al. 1990).

3. Quantum Approximations for Double Rydberg Atoms

New surprises came with the first experiment on doubly-excited states of
two-electron atoms by Madden and Codling (1963). The observed resonance
spectrum looked quite different from what had been expected from a Hartree–Fock
picture: Only two instead of three Rydberg series were observed below the
second ionisation threshold of helium, N = 2. Moreover one series was very
weak, and none of the energies of the resonances agreed with the mean field
predictions. This was correctly interpreted as a signature of strong electron–
electron correlation—and the tools to understand it have been developed over the
last 30 years. The adiabatic hyperspherical, molecular and a group theoretical
approximation (for reviews see Herrick 1983; Lin 1986; Rost and Briggs 1991)
have mainly shaped today’s understanding of moderately excited double Rydberg
atoms in terms of approximate quantum numbers and propensity rules for the
decay and radiative transitions (dipole matrix elements) of the resonances. These
properties come from a well-defined nodal structure of resonant wavefunctions
near the maximum probability density exemplified in Fig. 2. These results are in
remarkable agreement with the latest photoabsorption experiments—for a review
see Rost et al. (1997).
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Fig. 3. The helium potential V (r1, r2) = −Z/r1−Z/r2 + 1/|r1± r2| in the classically allowed
regime V ≤ E together with the shortest periodic orbits: (a) the Zee configuration with both
electrons on one side of the nucleus together with the stable frozen planet orbit (FP) and
(b) the eZe configuration with electrons on different sides of the nucleus together with the
unstable asymmetric stretch orbit (AS) and the symmetric stretch orbit (r1 = r2).

4. Semiclassical Dynamics of Double Rydberg Atoms

In contrast to the semiclassical methods of the old quantum theory discussed in
Section 2, contemporary semiclassical theory has a sound mathematical foundation
(Gutzwiller 1990). Based on this background it is indeed possible to understand
the spectrum of double Rydberg atoms in terms of a few, more exactly three,
periodic orbits only. This is very much in the spirit of the old quantum
theory. However, the three orbits are not guessed or arbitrarily picked, rather
they represent the first order approximation in a well-defined expansion of the
semiclassical Green function in terms of periodic orbits (PO).

(4a) Three Fundamental Periodic Orbits and Their Role in Two-electron Dynamics

In Fig. 3 the three fundamental periodic two-electron orbits, which are all
collinear, are sketched. The frozen planet orbit (Fig. 3a) has the two electrons
on the same side of the nucleus. This orbit is classically stable and obtained
its name from the fact that the outer electron moves very little and represents
almost a ‘frozen planet’. The asymmetric stretch orbit has the two electrons
on opposite sides of the nucleus. The orbit is slightly unstable and exhibits an
asymmetry in the electron distances, i.e. r1(t) 6= r2(t). This is in contrast to the
third orbit, the so called symmetric stretch or Wannier orbit with r1(t) = r2(t),
also drawn in Fig. 3b.

(4b) Scaling and Rydberg Formulae

If a periodic orbit (PO) of a system with pure Coulomb forces is quantised
it produces automatically a Rydberg series. The reason lies in the scaling



346 J. S. Briggs

property of the classical Hamiltonian which can be made energy independent in
scaled coordinates ~psi = ~pi(−E)−1/2 and ~rsi = ~ri(−E). This leads to the scaled
action Ss = S(−E) 1

2 . Hence, quantisation of the (unscaled) action produces a
Rydberg series of the form En = −(Sc/2π)2/(n − µ)2, where the semiclassical
quantum defect µ consists of the stability properties of the quantised PO, i.e.
the characteristics of the dynamics in phase space orthogonal to the PO.

The frozen planet orbit is stable. Hence, one can apply torus quantisation
according to the Einstein–Brillouin–Keller (EBK)—leading to a Rydberg formula
(Richter et al. 1992),

Em,k,n̄ = − (SFP/2π)2

[(m+ 1
2 ) + 2(k + 1

2 )σ1 + (n̄+ 1
2 )σ2]2

, m, k, n̄ = 0, 1, 2, . . . . (2)

For helium the scaled action of the orbit is SFP/2π = 1 ·4915 and σ1 = 0 ·4616,
σ2 = 0 ·0677 are the winding numbers for the dynamics in the degree of freedom
perpendicular to the collinear subspace and for the dynamics in the collinear
plane of the PO respectively. The quantum number m corresponds to nodes
along the PO, and k and n̄ to nodes in the degrees of freedom perpendicular to
the PO.

The asymmetric stretch orbit on the other hand is unstable. Quantisation of
this orbit alone is in the strict sense not appropriate and may be viewed as a
first order truncation of a series expansion of the semiclassical Green function in
terms of POs (Ezra et al . 1991; see also Tanner and Wintgen 1995 and Tanner
et al . 1999),

Em,k = − (SAS/2π)2

[m+ 1
2 + 2(k + 1

2 )σAS ]2
, m, k = 0, 1, 2, . . . . (3)

For helium we have SAS/2π = 1 ·8290 and σAS = 0 ·5393 is the winding number
for the dynamics in the bending degree of freedom. The quantum numbers m
and k describe excitation along and perpendicular to the orbit which in turn
corresponds to intra-shell excitation and vibrational excitation in the bending
degree of freedom, respectively.

The energies of resonances characterised by excitation along these two orbits
follow very closely the single orbit quantisation from equations (2) and (3) as
can be seen in Fig. 4. The symmetric stretch PO (Fig. 3b) is highly unstable
(Richter and Wintgen 1990) and incapable of supporting quantum resonances.
However, this PO is the main decay path for resonances in two-electron systems.
It can be easily reached by the asymmetric stretch type resonances, but not by
the frozen planet ones. Hence, the latter ones have much longer lifetimes on
average.

In summary, the three simplest periodic orbits give an excellent qualitative and
semi-quantitative understanding of the double-Rydberg dynamics for moderate
excitation.

(4c) Scaled Periodic Orbit Spectroscopy

When infinitely many, partially overlapping resonances occur in the spectrum
as the double ionisation threshold is approached, a description of the spectrum
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Fig. 4. Energies of quantum resonances of asymmetric stretch
(circles) and frozen planet (triangles) character. The lines are the
semiclassical energies predicted from equation (3) (solid) and equation
(2) (dashed) respectively. Open circles indicate states which are
are not observable in the experiment due to strong interaction with
an entire Rydberg series. In the quantum simulation they can be
calculated by discarding the Hilbert space representing the Rydberg
series—see Bürgers et al. (1995).

in terms of these resonances becomes meaningless. The previous paragraph gives
already a hint of an alternative: Each of the periodic orbits gives rise to an
infinite series of resonances. Hence, the question arises if there is a way to
describe the spectrum directly in terms of the properties (stability and length,
i.e. period or action) of the periodic orbits. This is indeed the case and the
tool which has been developed is scaled periodic orbit spectroscopy (Friedrich
and Wintgen 1989). It makes heavy use of the classical scaling property of the
Hamiltonian, in particular that the action Sj(E) of the periodic orbit j can be
written as Sj(E) = Sj(E = −1)|E|−1/2 ≡ sjz. In a conventional way we can
express the density of resonant states with position En and widths Γn as

d(E) =
1
π

∑
n

Γn/2
(E − En)2 − (Γn/2)2 .

As a function of z = |E−1/2| instead of E we can define the Fourier transform
with respect to the scaled action space s, f(s) =

∫
dze−iszd(z). This finally

transforms the density of states d(E) into the power spectrum of the periodic
orbits, where a peak appears at each action s which corresponds to a periodic
orbit (Qiu et al. 1996),

F (s) = |f(s)|2 ≈
∑
jk

|ajk|2δ(sjk − s). (4)

An actual action sjk belongs to the kth repetition of the jth periodic orbit. For
helium resonances the impressive simplification of the spectrum going from the
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energy to the action domain is demonstrated by Qiu et al. (1996) and by Grémaud
and Gaspard (1998). This relatively new tool can be used either to construct
semiclassical spectra directly from periodic orbits, or to interpret experimentally
or numerically obtained quantum spectra by merely Fourier transforming them
after proper scaling.

5. Summary and Outlook

We have given a very brief overview of the research on double Rydberg
atoms, covering the time since 1920. The astonishing order in the non-separable
two-electron dynamics for moderate double-excitation energies is well understood
in terms of quasi-separable approximations leading to approximate quantum
numbers and propensity rules for autoionisation and radiative transitions. The
agreement of theoretical predictions with recent high resolution experiments is
very good (Rost et al. 1997).

In the extreme excitation regime (N ≈ n ≥ 10) the order in the resonance
spectrum begins to dissolve (Bürgers et al. 1995) and the increasing density of
resonances calls for new concepts to describe two-electron spectra in this energy
regime. Periodic orbit spectroscopy provides such a tool. In the future, enhanced
experimental as well as numerical capabilities will permit the study of the limit of
double excitation, i.e. E → 0, towards the double ionisation threshold. This limit
is a very interesting singular point in the two-electron spectrum and connects
extreme excitation (E < 0) with threshold double-ionisation (E > 0) (Rost and
Tanner 1997).
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Grémaud, B., and Gaspard, P. (1998). J. Phys. B 31, 1671.
Gutzwiller, M. (1990). ‘Chaos in Classical and Quantum Mechanics’ (Springer: Berlin).
Heisenberg, W. (1922). Archive of the Deutsches Museum, Munich.
Herrick, D. R. (1983). Adv. Chem. Phys. 52, 1.
Hylleraas, E. A. (1929). Z. Phys. 54, 347.
Leopold, J. G., and Percival, I. C. (1980). J. Phys. B 13, 1037.
Lin, C. D. (1986). Adv. At. Mol. Phys. 22, 77.
Madden, R. P., and Codling, K. (1963). Phys. Rev. Lett. 10, 516.
Qiu, Y., Müller, J., and Burgdörfer, J. (1996). Phys. Rev. A 54, 1922.
Richter, K., and Wintgen, D. (1990). J. Phys. B 23, L197.
Richter, K., Briggs, J. S., Wintgen, D., and Solov’ev, E. A. (1992). J. Phys. B 25, 3929.
Rost, J. M., and Briggs, J. S. (1991). J. Phys. B 24, 4293.
Rost, J. M., and Tanner, G. (1997). In ‘Classical, Semiclassical and Quantum Dynamics in

Atoms’, Lecture Notes in Physics 485 (Eds H. Friedrich and B. Eckhardt), p. 274 (Springer:
Berlin).



Dynamics of Two-electron Atoms 349

Rost, J. M., Schulz, K., Domke, M., and Kaindl, G. (1997). J. Phys. B 30, 4663.
Sadeghpour, H. R., and Greene, C. H. (1990). Phys. Rev. Lett. 65, 313.
Solov’ev, E. A. (1985). Sov. Phys. JETP 62, 1148.
Sommerfeld, A. (1923). J. Opt. Soc. Am. 7, 509.
Tanner, G., and Wintgen, D. (1995). Phys. Rev. Lett. 75, 2928.
Tanner, G., Richter, K., and Rost, J. M. (1999). Rev. Mod. Phys., to be published.
van Vleck, J. H. (1922). Philos. Mag. 44, 842.

Manuscript received 21 December 1998, accepted 30 March 1999




