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Abstract

We review several methods for calculating the time development of the internal state and
the external motion of atoms in near-resonant light fields, with emphasis on studying the
focussing of atomic beams into microscopic and potentially nanoscopic patterns. Three
different approaches are considered: two-level semiclassical, multi-level semiclassical, and
the Monte Carlo wavefunction method. The two-level semiclassical technique of McClelland
and Scheinfein (1991) and McClelland (1995) is extended to three dimensions, and used to
calculate the trajectories of atoms and the imaging properties of a simple lens formed from a
near-resonant travelling TEM01 mode laser. The model is then extended to multi-level atoms,
where we calculate the density matrix for the internal state of a sample of thermal atoms
in a standing wave, and show how cooling processes can be simulated. Finally, we use the
Monte Carlo wavefunction method to calculate the internal state of the atom, and compare
the results and required computation time to those of the multi-level semiclassical technique.

1. Introduction

The field of atom optics, in which atoms are manipulated in a similar fashion
to the way light is controlled with conventional optics, has exploded in recent
years. This development has been motivated by several advantages over classical
light optics, neutron optics, and charged-particle optics (Adams et al . 1994). For
example, atom optics is not bound by the Liouiville theorem, allowing cooling
and trapping of atoms; thermal atoms have short de Broglie wavelengths which
allows focussing to sub-nanometre scales; atoms are relatively heavy and therefore
potentially sensitive to gravitational fields, and so on.

We are exploiting the short de Broglie wavelength of thermal atoms to
manipulate them on microscopic and nanoscopic scales. In particular, we are
exploring the potential for focussing a neutral atomic beam into arbitrary patterns
only a few microns across, using near-resonant light.

The basic principle of using near-resonant laser light to focus atoms into
nanometre scale patterns has been demonstrated experimentally. Chromium atoms
have been focussed by a standing wave as they were evaporatively deposited onto
a silicon substrate, forming a closely spaced array of parallel lines approximately

∗ Refereed paper based on a contribution to the Australia–Germany Workshop on Electron
Correlations held in Fremantle, Western Australia, on 1–6 October 1998.

q CSIRO 1999 0004-9506/99/030493$10.00

Matthew J Bosworth
10.1071/PH99014



494 R. E. Scholten et al .

60 nm in width (see Fig. 1) (McClelland et al . 1993, 1996; Scholten et al . 1994;
Celotta et al . 1996). Other atoms have also been used (McGowan et al . 1995;
Timp et al . 1992), and two-dimensional focussing has been used to form spots
(Gupta et al . 1995) and hexagonal structures (Drodofsky et al . 1997a), but there
has been little progress beyond these simple patterns. To form more complex
and potentially arbitrary patterns we must create appropriate three-dimensional
light fields. In designing the required field, there are many degrees of freedom,
including the spatial distribution, intensity, frequency and polarisation of the light
field. It is therefore essential that we are able to predict the atomic trajectories
through an arbitrary field.

Fig. 1. Atoms are focussed into the nodes of a standing wave
detuned above resonance (McClelland et al . 1993).

In this paper, we explore several methods for calculating the temporal evolution
of the internal state, and the external motion, of atoms in near-resonant light fields.
Three different approaches are considered, all based on solving the fundamental
quantum master equation. They extend from a two-level semiclassical model, to
a multi-level semiclassical model based on solving the quantum master equation
written in a form similar to the optical Bloch equations, and finally to the Monte
Carlo wavefunction method.

The two-level semiclassical technique is used to calculate the trajectories of
atoms in a lens formed by two near-resonant travelling TEM01 mode laser beams.
This method has been used in two dimensions for standing waves (McClelland
et al . 1993; McClelland and Scheinfein, 1991; McClelland, 1995), but we extend
it to three dimensions so that the imaging properties of such lenses can be
evaluated.

Using the optical Bloch equations we calculate the density matrix for the
internal state of a sample of multi-level thermal atoms in a polarisation gradient
standing wave. Using the density matrix we calculate the force on the atoms
as for the two-level semiclassical method, and hence the trajectories of atoms
during one dimensional laser cooling.

Finally, we demonstrate the utility of the Monte Carlo wavefunction method for
calculating the internal state of the atom. Monte Carlo methods have been used
for calculating trajectories and simulating laser cooling, but no detailed optical
pumping calculations have been published for multi-level atoms. We compare
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the Monte Carlo and Bloch equation methods, showing that Monte Carlo is at a
significant disadvantage in computation time for problems with a small number
of basis states.

2. Master Equation

The interactions between atoms and laser fields lie at the heart of problems
ranging from spectroscopy (Demtröder 1981) to the theory of the gas laser
(Lamb 1964), in addition to atom optics and laser cooling (Cohen-Tannoudji
1990; Ungar et al . 1989). For travelling waves, the calculation of the effect of
these interactions on the internal state and external motion of the atoms is
straightforward. For example, rate equations can be used (Allen and Eberly,
1975; Balykin and Letokhov 1987), or the Bloch equations (Allen and Eberly
1975), which can be extended to multi-level atoms and external motion (O’Kane
et al . 1998). The addition of a second counter-propagating laser, as used in laser
cooling or saturated absorption spectroscopy, creates a complex nonlinear system
which is more difficult to solve (O’Kane et al . 1999) (see Section 4).
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Fig. 2. Energy level diagram for the 24-level 52S1/2 and 52P2/3 states
of Rb87 and the 32S1/2, 3

2P3/2 states of Na23. The energy splittings are
shown for Rb87 on the left, and for Na23 on the right.

The alkali atoms are predominant in current atom optics research, due to their
convenient optical transitions. Fig. 2 shows the relevant energy level structure of
two important examples, rubidium (Rb87) and sodium (Na23). We describe an
ensemble of such atoms, each with N internal states, by an N ×N density matrix
ρ whose diagonals represent the populations of the respective energy levels. The
evolution of the density matrix elements is given by Liouiville’s equation (Blum
1996)
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ih̄
dρ

dt
= [H, ρ] , (1)

where H is the Hamiltonian. To properly account for spontaneous decay of the
atoms, the vacuum field must be included, so an appropriate Hamiltonian is

H = HS +HR +HSR . (2)

The three terms correspond to the atom+laser system, the vacuum reservoir,
and the interaction between them. It is convenient to reduce the problem by
explicitly including the expected spontaneous decay, leaving a modified density
matrix which depends only on the atom+laser system Hamiltonian (see Section
5):

ih̄
dρS

dt
= [HS , ρS ] + Lrelax[ρS ] . (3)

Here Lrelax[ρS ] describes the decay of the excited state populations and off-diagonal
coherences. This evolution equation is often referred to as the quantum master
equation and, with appropriate Hamiltonian and relaxation terms, is equivalent
to the optical Bloch equations (Allen and Eberly 1975).

The master equation can be solved numerically to calculate the time development
of the internal state of the atoms, and hence to find the average force on the
atoms and the atomic trajectory. Unfortunately, the large number of degrees
of freedom make solution difficult, and approximations are required, particularly
for real atoms with a rich internal structure. We first look at the very simplest
approach, where we analytically derive a light-shift potential which drives the
motion of the atoms, assuming a two-level atom, and then consider how the
evolution of multi-level internal states can be included.

3. Two-level Semiclassical Method

In the two-level semiclassical method, we describe the light–atom interaction
by a dipole potential which depends on the laser detuning, polarisation, and
intensity. The detuning and polarisation are assumed fixed, and only the intensity
varies. The atoms are taken to be point particles, with their motion controlled
by the dipole force, that is, the gradient in the dipole potential. The potential
is derived from a quantum treatment of the atom–laser interaction (Gordon and
Ashkin, 1980), and the trajectories of the atoms are calculated using simple
Newtonian mechanics (McClelland and Scheinfein 1991; McClelland 1995).

For a conservative potential we have

−mẍ =
∂U

∂x
, (4)

where U is the potential, m the atomic mass, and ẍ the acceleration along axis x.
The trajectory of the atom is then found using standard integration algorithms.
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The primary advantage of this method lies in its speed and simplicity, and
although in the first instance it treats the atoms as simple particles moving in
the potential, it nevertheless yields information about the effect of a range of
experimentally significant quantities such as the laser intensity and detuning,
the temperature of the particles and the collimation of the beam. Newtonian
modelling is thus an ideal candidate for testing experimental design and for
tuning experimental parameters.

The dipole potential can be derived via a straightforward method based
on Ehrenfest’s theorem and the optical Bloch equations in the rotating wave
approximation (Cook 1979; O’Kane et al . 1999; Cohen-Tannoudji 1990). We
begin with the Hamiltonian for a two-level atom in a classical electromagnetic
field,

HS =
p2

2m
+H0 − µ ·E(R, t) , (5)

where p is the atomic momentum, m is the mass, µ is the atomic dipole moment
operator and E(R, t) is the electromagnetic field evaluated at the centre-of-mass
position R. In the Heisenberg representation, the operators R and p satisfy the
equations of motion

Ṙ =
∂H

∂p
=

p
m
,

ṗ = mR̈ =
−∂H
∂R

= ∇µ ·E . (6)

Applying Ehrenfest’s theorem gives

m〈R̈〉 = 〈∇(µ ·E)〉 = 〈µ∇E〉 . (7)

Assuming ∇E is uniform across the wave packet (that is, provided the wave
packet is small) the operator R can be replaced by its expectation value 〈R〉 = r.
We define our monochromatic field as E = ενE(r(t), t) for constant polarisation
εν , where E can be described by

E(r, t) = 1
2E(r) {exp(i[θ(r) + ωt]) + exp(−i[θ(r) + ωt])} (8)

for frequency ω and phase θ. Here ν = 0 for linear polarisation and ν = ±1 for
σ± circular polarisation.

Atomic motion is then determined by

F = 〈µ · ∇E〉 = 〈µ · εν〉∇E (r, t) , (9)

where the expectation of the dipole moment is found from the density matrix:

〈µ · εν〉 = tr(ρµ · εν) = µ(ρge + ρeg) . (10)
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Using the rotating wave approximation (Allen and Eberly 1975), we have

〈µ · εν〉 = µ[ρ̃ge exp i(θ + ωt) + ρ̃eg exp−i(θ + ωt)] , (11)

where ρ̃ge,eg are the matrix elements in the rotating frame. Substituting this
and equation (8) into (9) gives the equation of motion of the atom:

F = m
d2r
dt2

= 1
2µ∇E(ρ̃ge + ρ̃eg)−

i

2
µE∇θ(ρ̃ge − ρ̃eg) . (12)

The first term is the dipole force which we wish to use for atom focussing.
The second term corresponds to the force felt by the atom due to spontaneous
emission. This causes diffusion, but averages to zero and is ignored in this model.

It can be demonstrated that for most allowed atomic transitions, the electric
dipole µ has time to reach the steady state before r has changed appreciably,
and we can use the steady-state solutions (Cohen-Tannoudji 1990)

ρ̃ge + ρ̃eg = − 2∆Ω
2Ω2 + 4∆2 + Γ2 . (13)

Taking only situations of fixed σ+ polarisation, the Rabi frequency is Ω =
−µE/h̄ = Γ

√
I0/2Isat for an atomic decay rate of Γ, a travelling wave of intensity

I0, and a saturation intensity of Isat = πhcΓ/3λ3 where λ is the laser wavelength.
The rate Γ = 1/τ is determined from the lifetime of the transition, τ = 16 ·237 ns
for sodium (Oates et al . 1996) and 25 ·8 ns for rubidium (Belin 1971). The
atoms have resonant frequency ω0 and the laser detuning is ∆ = (ω − ω0). The
equation of motion is then

F = − h̄∆∇(Ω2)
2Ω2 + 4∆2 + Γ2 , (14)

which defines a dipole potential U ,

F = −∇U , (15)

where

U =
h̄∆
2

ln

(
1 +

2Ω2

4∆2 + Γ2

)
≡ h̄∆

2
ln(1 + s) . (16)

Here s is the saturation parameter, which can be written as

s =
I

Isat

Γ2

(Γ2 + 4∆2)
. (17)

We define

I = I(x, y, z) ≡ I0G(x, y, z) , (18)

where G(x, y, z) contains the spatial dependence of the laser field.
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As an example, we first consider a simple lens for a beam of atoms. Several
different lens systems have been suggested previously, including standing waves
(McClelland et al . 1993; Timp et al . 1992; Drodofsky et al . 1997a, 1997b;
McGowan et al . 1995), and TEM∗01 ‘doughnut’-mode lasers. Doughnut-mode
beams propagate similarly to standard Gaussian laser beams, but with a dark
core. If the atomic and laser beams are coaxial, for blue detuning the atoms will
be focussed towards the beam axis where the dark core minimises spontaneous
decay and diffusion. This has not yet been demonstrated experimentally, perhaps
because the coaxial arrangement is awkward. Focussing might also be achieved
with transverse atomic and laser beams, by using a TEM01 laser. This mode
propagates with a dark stripe between two bright back-to-back ‘D’-shaped lobes
(see Fig. 3). Atoms can be focussed into this dark region, and two orthogonal
TEM01 laser beams then form a lens.

Fig. 3. Schematic of a TEM01 mode laser lens. The intensity
profile for the laser beam is shown as though the beam is
propagating across a substrate and out of the page. Atoms
can be focussed into the dark region.

The transverse intensity profile for this lens is given by

G(x, y, z) = 8
[
y2

σx
2 exp

(
2(y2 + z2)

σx
2

)
+
x2

σy
2 exp

(
2(x2 + z2)

σy
2

)]
, (19)

where σx,y are the characteristic widths of the two beams. This intensity
distribution yields a dipole potential of the form shown in Fig. 4.

Trajectories were calculated for atoms initially in a simple 20µm square array
of positions 300µm above the surface. For each position, atoms were generated
with a narrow range of angles and velocities. The velocities were weighted with
a Maxwellian distribution, while the angular distribution of the atomic flux F (a)
in terms of angle a was of the form

F (a)da =
V 5

0z

(V 2
0x + a2V 2

0z)
5
2
, (20)
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Fig. 4. Shaded surface representation of the dipole potential
for two orthogonal TEM01 laser beams, together with (inset)
a greyscale representation of a cross section through the plane
of intersection of the two beams.

corresponding to a thermal source at temperature T with a longitudinal Maxwellian
distribution defined by

V0z =

√
kT

m
, (21)

and where V0x typically depends on the beam collimation defined by the experiment.

Fig. 5. Two-dimensional trajectories in a plane along the atomic beam axis for Rb87.
Longitudinal atomic velocity is v = 17 m s−1, peak laser intensity is I0 = 9 ·0× 108 W m−2,
and the detuning is 200 MHz.
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Fig. 6. Atomic distribution in the focal plane for Rb87 atoms focussed by
a TEM01 lens. The atoms are initially spaced on a 20µm × 20µm grid
with 1µm spacing. Longitudinal atomic velocity is v = 17 m s−1, peak
laser intensity I0 = 9 ·0× 108 Wm−2, and detuning 200 MHz.

Fig. 7. Flux in the focal plane, weighted by the Maxwellian velocity distribution
and angular distribution.

The trajectories of atoms travelling in a plane through the atomic beam axis
are shown in Fig. 5. Fig. 6 shows the atomic distribution at the focal plane,
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for a laser intensity of I0 = 9 ·0 × 108 W m−2 detuned from atomic resonance
by 200 MHz, an atomic beam temperature of 1 K corresponding to a maximum
longitudinal velocity of 17 m s−1, and a beam collimation of 1 mrad. The flux in
the focal plane z = 0, appropriately weighted as described, is shown in Fig. 7
together with a profile through the centre in Fig. 8. A focal spot of about 3µm
was achieved for these parameters.

Fig. 8. Flux profile, showing a focal spot size of approx. 3µm.

4. Optical Bloch Equations

The two-level semiclassical method is very fast numerically, but is only valid
where the excited fraction is small, such that there is minimal spontaneous
emission and consequent diffusion, and where the internal complexity of the atom
can be ignored. These approximations are valid for far off-resonance detuning, but
then the force is weak. We have developed an approach based on calculating the
evolution of the internal state of the atom by solving the master equation written
as a set of coupled differential equations, equivalent to the familiar two-level
optical Bloch equations (OBE) but incorporating the full multi-level internal
structure. They are solved using standard numerical integration techniques to
provide the density matrix for the internal state of the atom, from which we
find the force on the atom and hence the atomic trajectory.

The multi-level OBEs have been solved to calculate the internal state of
atoms for travelling wave problems, in particular for laser-excited atomic collision
studies (McClelland and Kelley 1985; Farrell et al . 1988). The simple addition
of a counter-propagating laser beam, so as to create a standing wave, makes
the solution much more difficult. However, atom interactions with a standing
wave laser field are crucial to many problems, including gas lasers (Lamb 1964),
saturation spectroscopy (Demtröder 1981) and laser cooling (Cohen-Tannoudji
1990; see also the special issue on Laser cooling and trapping of atoms 1989).

With two equal-intensity counter-propagating beams, the atoms move through
a spatially-varying field, and therefore experience a time-dependent Hamiltonian.
The strong nonlinearity of the atom–field coupling, even at the low intensities
typical of saturated absorption spectroscopy, leads to sensitive dependence on
the velocity, laser intensity, and atom trajectory. The evolution of the internal
state and external motion of the atoms has been modelled using a broad
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variety of techniques, including continued fractions (Stenholm and Lamb 1969),
perturbation theory (Haroche and Hartmann 1972), rate equations (Nakayama
1997) and Monte Carlo wavefunction methods (Dalibard et al . 1992; Mölmer
et al . 1993; Mölner 1994). These have provided valuable insight, but many of
the important physical processes, in particular nonlinear effects, have been lost
in the approximations.

We have developed a model for multi-level atoms, using optical pumping
calculations for each individual atom as it moves through a true standing wave
(O’Kane et al . 1999). This approach was used to accurately predict saturated
absorption spectra for multi-level atoms, including the basic absorption peaks,
power broadening, and merging of the hyperfine and cross-over resonances, in
addition to a wealth of nonlinear phenomena that had not been predicted (O’Kane
et al . 1999).

Fig. 9. Two counter-propagating linearly polarised laser beams,
with orthogonal polarisations, produce a polarisation gradient field.
This schematic indicates the dipole potential for two magnetic
substates. Atoms moving along the polarisation gradient standing
wave experience dipole potential gradients which can reduce their
velocities.

Here we consider atoms in a laser-cooling arrangement (see Fig. 9), where we
calculate the internal state of a sample of thermal atoms in a standing wave and
show how cooling processes can then be simulated. Calculation of the atomic
trajectories in a laser cooling configuration is a convenient test case, since laser
cooling is well understood from analytic, experimental and Monte Carlo studies
(Lett et al . 1989). Laser cooling of atomic beams is also essential to produce
slow and collimated atomic beams which can then be focussed and patterned
with a light field (Scholten et al . 1997).

We are particularly interested in (lin × lin) polarisation gradient cooling,
where the two counter-propagating lasers are linearly polarised with orthogonal
polarisation axes. This creates a field in which the polarisation varies along the
beams, from circular to linear to reverse circular and so on. The field can be
written as the sum of two circularly polarised beams with opposite helicities.
The total field is given by E(z, t), with two components of real amplitude E0

and respective polarisations ε = εx and ε′ = εy:
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E(z, t) = E+(z) exp(−iωLt) + E−(z) exp(iωLt) , (22)

E+(z) = E0[ε exp(ikz) + ε′ exp(−ikz)] (23)

= E0

√
2

(
cos(kz)

εx + εy√
2
− i sin(kz)

εy − εx√
2

)
, (24)

where k = 2π/λ.
We recall from our discussion of the two-level semiclassical model (equations 10

to 12) that we can derive the dipole force from consideration of the internal state.
Hence we take for our Hamiltonian HS = H0 + HI where we have ignored the
kinetic energy of the atom. The interaction term of equation (5), HI = −µ ·E,
must be extended to multiple levels by summing over all ground-excited state
pairs connected by the laser field; that is, using α and β to denote ground and
excited states:

HI =
∑

Hαβ , (25)

Hαβ =
∑

ν=±1,0

Cναβ (−µ ·E) ,

where Cναβ is the Clebsch–Gordan coefficient for the α+ ν = β transition.
The time evolution of the density matrix elements is then given by equation

(3) which expands to

dραβ

dt
= −iωαβ ραβ −

i

h̄

∑
γ

(Hαγ ργβ − ραγ Hγβ) + Lrelax[ρ] . (27)

The first term comes from the internal atomic energy H0, and h̄ωαβ is the energy
difference between states α and β.

In keeping with the usual derivation of the optical Bloch equations (Allen and
Eberly 1975), we define the relaxation terms phenomenologically, but note that
a rigorous derivation from QED first principles would include additional decay
terms not considered here (Farrell et al . 1988). The decay terms are (Allen and
Enerly 1975):

− 1
2τ
ραβ for ρ̇αβ (α 6= β) , (28a)

−1
τ
ρββ for ρ̇ββ (excited states) , (28b)

+
1
τ

∑
β

(
Cναβ

)2 for ρ̇αα (ground states) . (28c)
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For Rb87, 24 internal states are involved (see Fig. 2). The time evolution equations
with decay terms (equation 27) produce 576 coupled differential equations, with
coefficients that have a cosinusoidal dependence on time due to the standing
wave field (Cohen-Tannoudji 1990). We make several approximations to reduce
the numerical task, firstly invoking the rotating wave approximation (Allen and
Eberly 1975) and thereby eliminating all terms that oscillate at twice the optical
frequency. We exclude all off-diagonal terms that do not couple an excited state
to a ground state, and ignore coupling between magnetic sublevels of the same F
level as well as off-diagonal pumping terms that couple from the F = 1 ground
state to the excited states. If the laser frequency ω0 is tuned close to the F = 2
transitions, then these terms will be significant only at very high velocities where
the effective detuning brings them into resonance, or at very high laser intensities,
where the power broadening causes significant overlap between the two hyperfine
ground states. Finally, the density matrix is Hermitian (i.e. ραβ = ρ∗αβ) and so
we are left with just 46 equations.

We first define the driving rate

Ωij = Ω
(
ε+1 sin(kz)C+1

ij + ε−1 cos(kz)C−1
ij

)
. (29)

We then have the following sets of coupled equations:
F = 1 ground state diagonals:

dραα

dt
=

1
τ

∑
ν=0,±1

17∑
β=9

(Cναβ)2ρββ . (30)

F = 2 ground state diagonals:

dραα

dt
= −2

√
2

24∑
β=9

Ωαβ Im(ρ̃αβ) +
1
τ

∑
ν=0,±1

24∑
β=9

(Cναβ)2ρββ . (31)

Excited state diagonals:

dρββ

dt
= 2
√

2
8∑

α=4

Ωβα Im(ρ̃βα)− 1
τ
ρββ . (32)

Off diagonals:

dρ̃αβ

dt
= i
√

2Ωαβ (ραα − ρββ) + i(ωαβ − ω0)ρ̃αβ −
1
2τ
ρ̃αβ . (33)

We have solved these equations for a simple circularly polarised standing
wave to calculate saturated absorption spectra for multi-level atoms (O’Kane
et al . 1999). The density matrix was calculated for many random trajectories,
corresponding to the Maxwellian distribution appropriate for a vapour cell
absorption experiment, and averaged. This was repeated for a large number of
laser detunings to produce an absorption spectrum. Excellent agreement with
experimental saturated absorption spectra was obtained, including hyperfine and
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cross-over resonances and saturation broadening. Thus the model accurately
predicts the internal state of the atom, and we can apply the method to its
external motion with some confidence.

Following the treatment of equations (10)–(12), we calculate the dipole force
directly from the atomic density matrix and the field due to the laser:

〈F (t)〉 = −
√

2h̄kΩ
∑
α,β

(
cos(kz)C+1

αβ + sin(kz)C−1
αβ

)
Re(ρ̃αβ) . (34)

Fig. 10. Acceleration on Rb87 atoms as they are dragged through
a one-dimensional polarisation gradient cooling standing wave at
various velocities. The peak laser intensity is I0 = 1 ·65 mW cm−2

and the detuning is −10 MHz. Note the F = 1, 2 hyperfine resonances
at about ±200 and ±300 m s−1.

We can then solve the equations of motion for the atoms exactly as in
Section 3, but now following the evolution of each atom’s full multi-level internal
state. Fig. 10 shows the average acceleration of a Rb87 atom as it is artificially
dragged along the counter-propagating field at varying velocities. It maps out the
dispersive force curve expected from a simple analytical two-level atom treatment
(see Lett et al . 1989), but also shows additional force peaks due to other hyperfine
levels. In Fig. 11 the force curve shows evidence of Dopplerons, a multi-photon
effect due to absorption of photons from both laser components (Kyrölä and
Stenholm 1977; Berman and Ziegler 1977). Finally, in Fig. 12 we plot the velocity
of a single atom, initially travelling with a velocity of 0 ·5 m s−1 along the cooling
lasers, as it is slowed and eventually trapped within a single potential well. Note
that the density matrix approach gives an ensemble average for a ‘single atom’
calculation.

This technique is much more powerful than the two-level semiclassical method,
since it includes the full multi-level internal structure of the atoms and multi-photon
processes. Unfortunately, it is comparatively time consuming. The calculation in
Fig. 12 required solution with the Runge–Kutta technique over approximately
one million integration intervals for a single spatial dimension. Extension of
the calculation to complex three-dimensional light fields is impractical, and we
investigate Monte Carlo integration as an alternative which can also directly
simulate diffusion.
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Fig. 11. Acceleration on Rb87 atoms as they are dragged through a one-dimensional
polarisation gradient cooling standing wave at various velocities. The detuning is −10 MHz,
and the peak laser intensity is I0 = 16 ·5 mW cm−2 (top) and I0 = 165 mW cm−2 (bottom).
Note the ‘Doppleron’ resonances.

Fig. 12. Atomic trajectory for one-dimensional polarisation gradient cooling of a Rb87 atom.
The velocity along the cooling laser beam axis is shown as the atom begins at position z = 0
and velocity v = 0 ·5 m s−1 and slows as it travels through the cooling region, eventually
becoming trapped in a single potential well at z ≈ 15µm.
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5. Monte Carlo Wavefunction Method

The optical Bloch method has several significant limitations. It is semiclassical
in that it treats the atoms as point particles, which is inappropriate at the low
temperatures that can be achieved with laser cooling. It is inherently averaging,
calculating the density matrix for an ensemble of atoms for a given laser field
and atomic velocity. Spontaneous decay effects, in particular recoil of the atom,
are averaged to zero, and hence diffusion is not calculated. In addition, when
calculating the internal density matrix, symmetries reduce the integration task
(e.g. from 576 to just 46 equations for Rb87), but a similar reduction is generally
not possible for momentum states added to describe the external motion. A large
set of states is required to adequately describe the motion in three dimensions,
and the computation time becomes exorbitant.

The Monte Carlo wavefunction method (MCWF), developed for laser cooling
by Dalibard et al . (1992), can provide improved integration times, implicitly
treats the atoms as wavepackets, and directly shows the effects of diffusion.
Instead of calculating an ensemble average, the MCWF calculates what might
happen to an individual atom, and averages over many such atoms.

Here we use the MCWF method for optical pumping calculations, i.e. to
calculate the evolution of the internal state of the atoms, and compare the results
with those obtained from the Bloch method. The MCWF treatment does not
provide any advantages if only the internal state is required. Nevertheless, the
internal state must be calculated before attempting to calculate trajectories, and the
results also provide a useful test to ensure proper implementation of the formalism.

The essence of the method is based on the repetition of two simple processes.
Firstly we evolve the atomic wavefunction using an approximate (non-hermitian)
Hamiltonian, for a short time dt. Then we randomly decide whether the atom
spontaneously decays, in which case we collapse the atomic state back to the
ground state; if not, we renormalise the wavefunction. Of course, the random
collapse must occur with a probability such that the atom decays at the proper
transition rate.

(5a) Two-level Monte Carlo

It is very useful to first consider the two-level model, which includes all the
essential elements of the MCWF method, and then add the additional terms
for treating multi-level atoms. The formalism of the two-level problem is well
described, for example by Dum et al . (1992), in the lecture notes of Mölmer
(1994), and more recently by Mölmer and Castin (1996).

The problem is the same as that of the OBE treatment: we wish to solve the
master equation (equation 3)

ih̄
dρS

dt
= [HS , ρS ] + Lrelax[ρS ] , (35)

where, in the rotating wave approximation, the two-level system Hamiltonian HS

is given by (Dum et al . 1992)

HS =
h̄

2
∆(|g〉〈g| − |e〉〈e|)− h̄Ω

2
(|e〉〈g|+ |g〉〈e|) (36)
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and the relaxation terms are

Lrelax[ρS ] = −Γ
2
{|e〉〈e|ρS + ρS |e〉〈e|}+ Γ|g〉〈e|ρS |e〉〈g| . (37)

The relaxation terms describe decay from the excited state population at rate
Γ, decay of the coherences ρge and ρeg at rate Γ/2, and an increase in the
population of the ground state at rate Γ.

In the Monte Carlo approach, instead of calculating the evolution of the full
density matrix, we instead evolve the system wavefunction from some initial
state, i.e.

|ψ(0)〉 = cg(0)|g〉+ ce(0)|e〉 , (38)

and we keep only the wavefunction amplitudes without coherences. We introduce
an effective Hamiltonian which adds decay from the excited state population that
mimics some of the relaxation effects:

HS → Heff ≡ HS −
ih̄Γ
2
|e〉〈e| . (39)

Note that Heff is non-hermitian: while it reduces the excited state amplitude, it
also reduces the total norm of the wavefunction.

Starting with the initial state, the wavefunction amplitudes (in this case a
two-component vector representing cg and ce) are propagated in time for small
time increments δt, where δt should be smaller than any time scale of physical
significance, i.e. δt¿ Γ−1,Ω−1,∆−1. After each time step, we decide randomly
(but weighted according to the known atomic lifetime) if the system should
collapse to the ground state |g〉. We approximate the Heisenberg evolution to
first order:

∣∣∣ψ(1)(t+ δt)
〉

=

(
1− iHeff

h̄
δt

)
|ψ(t)〉 , (40)

where 〈ψ(1)(t + δt) | ψ(1)(t + δt)〉 = 1 − δp, and the jump probability δp is
determined by the atomic lifetime and the excited state population:

δp = Γ|ce|2δt . (41)

This probability is compared to a random number ε ∈ [0, 1] and if ε < δp the
collapse occurs, otherwise the state function |ψ(t+ δt)〉 is renormalised because
the approximation equation (40) is non-Hermitian.

Fig. 13 shows the excited state population |ce|2 as it evolves in time, showing
absorption and the beginnings of stimulated emission broken by collapse to the
ground state through spontaneous decay. Calculating many such evolutions and
averaging, we find the expected ensemble average which might be measured
experimentally, as shown for 10 000 atoms in Fig. 14 (see also Dum et al . 1992).
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Fig. 13. Monte Carlo wavefunction results for the excited state
population in a two-level atom. The laser is σ+ circularly polarised,
with intensity such that the Rabi frequency is Ω = 3Γ, with zero
detuning.

Fig. 14. Two-level MCWF results averaged for 10 000 atoms. The
expected Rabi oscillation damping and steady-state population are
observed.

(5b) Multi-level Monte Carlo

Extension of the MCWF method to multi-level atoms is straightforward. The
effective Hamiltonian of equation (39) is modified to include all allowed decay
channels:

Heff ≡ HS −
ih̄

2

∑
α,β

|α〉〈β| . (42)

In evaluating the jump probabilities (equation 41), δp must now be summed
over all possible decays, i.e.

δp =
∑
i

δpi , (43)
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Fig. 15. Monte Carlo wavefunction results for the F = 2 magnetic
substate populations of a 17-state F = 2 → F = 2, 3 sodium atom.
The atomic state is initially set to a superposition of all five ground
states. The atom is progressively pumped to the mf = +2 substate,
but note that at 30 lifetimes, the atom collapses to the mf = 0
substate, skipping the mf = −1 substate.

Fig. 16. Three-level MCWF results for ground states (top) and
excited states (bottom), for a peak laser intensity of I0 = 6 mW cm−2,
averaged for 1000 atoms. The behaviour is as expected, but significant
noise is apparent.
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δpi = δt〈ψ(t)|(Cναβ)2|ψ(t)〉 , (44)

where i describes all the allowed α+ ν = β decay transitions. If the jump occurs,
then the final collapsed state will be decided by comparing a second random
number to the relative probabilities δpi/δp.

We have applied this method to 17-level Na23, including only the F = 2
and F = 2, 3 hyperfine levels. Fig. 15 shows the evolution of a single atom,
and Fig. 16 shows the average of 1000 atoms. We have also used the optical
Bloch equations (as detailed in McClelland and Kelley 1985), and quantitative
agreement is obtained for 10 000 atoms, as shown in Fig. 17.

Fig. 17. Comparison of results from MCWF and optical Bloch
methods, for optical pumping of the 17-level sodium system, showing
quantitative agreement. The MCWF results are an average of 10 000
atoms.

The MCWF results for 10 000 atoms required approximately 400 times longer
than the equivalent Bloch equation solution, and so the Bloch method is clearly
preferable for optical pumping calculations. It is important to note however that
the inclusion of external momentum states results in a product wavefunction
|αmα p〉, where α denotes both ground and excited states, mα the magnetic
substructure and |p〉 the momentum eigenfunctions for atomic motion in the
direction of laser propagation. Solving these requires a large number of differential
equations. For example a basis set of 40 momentum states coupled with a
minimal 12 internal (5 ground, 7 excited) basis states, for the F = 2 → F = 3
transition in sodium, results in a set of 360 coupled differential equations using
MCWF, and 3602 = 129 600 for the OBEs. The latter can be reduced somewhat
as described above, using internal symmetries, but the number will remain large.

A similar system was considered by Hoogerland et al . (1990) where the
MCWF method was applied to the calculation of photon statistics and resonance
fluorescence in a supersonic beam of metastable neon (J = 2 → J = 3). In
a calculation of the final momentum distributions of the wavefunctions good
agreement with experiment was found after only 1000 realisations, an order of
magnitude reduction compared to that needed for the associated optical pumping
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calculation (see Fig. 17). Thus for calculating external motion, the Monte Carlo
method is well worth pursuing.

6. Summary and Conclusions

The development of atom optical devices is of considerable interest to a large
component of the physics community. Even simple devices such as lenses offer
challenging problems, and realistic calculation of their behaviour is essential
before committing to experimental verification. We have pursued several alternate
techniques, including two-level and multi-level semiclassical trajectory calculations
and Monte Carlo simulations.

The two-level semiclassical approach is intuitive and fast, allowing rapid testing
of ideas. However, it neglects changes in the internal state of the atom, assuming
minimal excitation. It also provides no measure of the important diffusion
processes, and will not predict any effects due to atomic interference. The
multi-level density matrix formalism fully accounts for the dynamics due to the
evolution of the internal state of the atom, at some cost in terms of computation
time. The semiclassical models neither incorporate the de Broglie wave nature
of the atoms nor include diffusion, although the latter might be incorporated
(Berg-Sörensen et al . 1992; Ungar et al . 1989 Nienhuis et al . 1991). The Monte
Carlo wavefunction method allows realistic prediction of all these physical effects,
but at considerable cost computationally.

The appropriate model for any given problem in laser–atom interactions depends
on the outcomes sought. For many questions facing us in our exploration of
atom optical systems, the two-level semiclassical method is very valuable, but
the multi-level Bloch equations and Monte Carlo methods have provided us with
rich insight into the complexity of the laser–atom system.
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