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Abstract

We find in 2D electron layers in quantum transistors that the interplay between the electron
correlations and their interactions with defects in the semiconductor substrate generates a
continuous localisation–delocalisation transition for intermediate electron densities (5 <∼ rs <∼ 9).
We distinguish this transition from the discontinuous metal–insulator transition which is
observed at lower electron densities (rs >∼ 10). The approach we use is based on the behaviour
of electrons at low densities. We take into account the interactions between electrons and also
their interactions with disorder. We determine a zero temperature phase diagram of localised
and delocalised states as a function of electron and impurity densities. The phase boundary
of the continuous transition is determined by the localisation length of the electrons.

1. Introduction

The metal–insulator transition in 2D electron or hole layers in n–Si MOSFET,
p–SiGe, and p–GaAs–AlGaAs devices is observed only at very low densities
(Kravchenko et al . 1994, 1996; Popovic et al . 1997; Simmons et al . 1998a, 1998b;
Lam et al . 1997; Coleridge et al . 1997). Since the average energy associated
with the interaction between the electrons or holes is much larger than the
Fermi energy, the transition is probably driven by the electron interactions. This
is consistent with the prediction of Abrahams et al. (1999) that without these
interactions there can be no conducting state in 2D no matter how small the
level of defects.

There are a number of novel properties associated with the localisation–
delocalisation transition. At a critical value of the electron density ne the system
becomes metallic. However, the metallic phase only exists for a restricted range
of rs and when the disorder level is low. The magnitude of the drop in the
resistivity diminishes with decreasing sample mobility. When the disorder is high,
corresponding to a peak mobility µ <∼ 106 m2 V−1 s−1, all electronic states are
localised.

At low levels of disorder, when rs < 9 the system undergoes a second transition
into an insulating state. In contrast with the low density transition, this second
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transition is broad and gradual. There is a unique relation between correlations
and disorder at both transitions.

In the limit of extremely low electron densities Wigner solidification occurs.
The exchange-correlation hole is known to be very strong at such densities
(Tanatar and Ceperley 1989). Wigner localisation is caused by the strong density
exclusion around each electron which leads to a localisation of the density
fluctuations. The mechanism for this localisation is purely the mutual repulsion
of the electrons, so that Wigner localisation can be thought of as a complete
opposite to Anderson localisation where the interaction between the electrons is
usually neglected. Wigner localisation has close parallels with the close-packing
solidification of charged hard spheres where the dominant mechanism arises from
fluctuations in the density variable.

We have previously shown that when there are low levels of defects, electron
localisation is still driven by electron correlations at low electron densities. The
impurities act as pinning centres and facilitate the localisation. However, there
is no long-range order when there is disorder and the electron solid is a frozen
glass with liquid-like short-range order. We have found in the range of electron
densities 10 <∼ rs <∼ 25 that weak substrate disorder causes a glass transition
(Thakur and Neilson 1996).

In this paper we concentrate on intermediate electron densities, rs <∼ 9, where
there is no discontinuous transition from a fully delocalised liquid state to a
strongly localised disordered solid. Even though we have moved away from the
limit of very strong correlations, to leading order the basis set remains the
density fluctuations, ρ(q, t) =

∑
k<kF

a†k+q(t)ak(t). We incorporate scattering off
defects in such a way that the Ward identities and particle conservation are
exactly satisfied within the density basis. By restricting the basis to density
fluctuations we average over phase information of processes where the particles
and holes propagate independently (Neilson et al . 1991). We use a memory
function formalism with mode-coupling theory (Bengtzelius et al . 1984; Thakur
and Bosse 1987, 1991) generalised to the quantum case (Thakur and Neilson
1996; Neilson et al . 1991).

2. Theoretical Method

The density correlation function 〈ρ(r, t)ρ(0, 0)〉 gives the time dependence of
the decay of the density fluctuations. In the liquid phase 〈ρ(r, t)ρ(0, 0)〉 goes
to zero when t → ∞ because of the propagation of the diffusive mode. In
the glass phase the diffusion constant is zero, so if we approach the glass
transition the decay of density fluctuations becomes very slow. The local
structure and local density fluctuations no longer vanish when t → ∞, and
〈ρ(r, t)ρ(0, 0)〉 does not go to zero. A narrow quasi-elastic peak builds up in the
dynamic structure factor S(q, ω), so that S(q, ω) develops a singularity at zero
frequency.

We define the Kubo relaxation function,

Φ(q, t) ≡
(
Nq(t)

∣∣∣Nq(0)
)
, (1)
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for the normalised density dynamical variables N(q, t) ≡ ρ(q, t)/
√
χ(q), where

χ(q) is the static susceptibility. We introduce the order parameter f(q) for the
transition

f(q) = − lim
z→0

zΦ(q, z) , (2)

with

Φ(q, z) =

(
Nq

∣∣∣∣∣ 1
L − z

∣∣∣∣∣Nq
)
. (3)

In Laplace space the limit in equation (2) corresponds to the long-time limit of
Φ(q, t).

The Liouvillian L is for the system Hamiltonian

H =
∑
k

εka
†
kak + 1

2

∑
q

V (q)ρqρ−q +
∑
q

U(q)ρ−q , (4)

where εk = h̄2k2/2m? is the single-particle kinetic energy, V (q) is the Coulomb
interaction between electrons, and U(q) =

{
W (q)

∑
i exp(−iq . ri) + Usr(q)

}
is

the defect potential for the impurities plus surface roughness term Usr(q). The
impurities are randomly distributed at points ri (which may lie outside the plane).

The Kubo relaxation function is expressed in terms of force–force relaxation
functions. Using mode-coupling theory the force–force relaxation functions can be
approximated by linear and bi-linear products of the relaxation functions. This
results in a set of non-linear self-consistent equations which we use to calculate
the f(q).

We start with the exact identities (see e.g. Thakur and Pathak 1986)

P =
[
PLP − z − PLP̄ 1

P̄LP̄ − z P̄LP
]
P 1
L − zP , (5)

J =
[
J L̃J − z − J L̃J̄ 1

J̄ L̃J̄ − z
J̄ L̃J

]
J 1
L̃ − z

J (6)

for the projection operators P and J ,

P = |Nq) (Nq| , P̄ = 1− P ,

J =
∣∣LNq) 1(

LNq
∣∣LNq)(LNq∣∣, J̄ = 1− J ,

(7)

and where L̃ ≡ P̄LP̄. The P and J project dynamical variables into the subspace
spanned by density fluctuations

∣∣Nq), and current density fluctuations
∣∣LNq),

respectively.
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Taking a scalar product with density fluctuation
∣∣Nq) equation (5) becomes(

Nq

∣∣∣P∣∣∣Nq) =
(
Nq

∣∣∣Nq) = 1

=

[(
Nq

∣∣∣PLP∣∣∣Nq)− (Nq∣∣∣z∣∣∣Nq)− (Nq∣∣∣PLP̄ 1
P̄LP̄ − z

∣∣∣P̄LP∣∣∣Nq)]

×
(
Nq

∣∣∣P∣∣∣Nq)(Nq∣∣∣ 1
L − zNq

)(
Nq

∣∣∣Nq) , (8)

or, using the definition for Φ(q, z) given by equation (3),

1 =

[(
Nq

∣∣∣L∣∣∣Nq)− z − (Nq∣∣∣LP̄ 1
P̄LP̄ − z P̄L

∣∣∣Nq)]Φ(q, z) . (9)

Solving equation (9) for Φ(q, z), and using
(
Nq
∣∣L∣∣Nq) = 0 and

P̄L
∣∣Nq) =

{
L
∣∣Nq)− PL∣∣Nq)} =

{
L
∣∣Nq)− ∣∣Nq)(Nq∣∣L∣∣Nq)} =

∣∣LNq),
both of these relations coming from time reversal symmetry, we obtain

Φ(q, z) = − 1

z +
(
LNq

∣∣ 1
P̄LP̄ − z

∣∣LNq)
= − 1

z +K(q, z)
. (10)

The current relaxation function K(q, z) is given by

K(q, z) =
(
LNq

∣∣∣ 1
L̃ − z

∣∣∣LNq) . (11)

Now taking a scalar product of equation (6) with current fluctuation
∣∣LNq)

we get (
LNq

∣∣∣J ∣∣∣LNq) =
(
LNq

∣∣∣LNq)

=
(
NqL

∣∣∣[J L̃J − z − J L̃J̄ 1
J̄ L̃J̄ − z

J̄ L̃J
]

×

∣∣∣LNq) 1(
LNq

∣∣∣JLNq)
(
LNq

∣∣∣
 1
L̃ − z

∣∣∣LNq) . (12)
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Using the definition of K(q, z) given by equation (11) and solving for K(q, z)
we obtain

K(q, z) = −
(
LNq

∣∣LNq)
z +

1
(LNq|LNq)

(
LNqL̃J̄

∣∣∣∣∣ 1
J̄ L̃J̄ − z

∣∣∣∣∣ J̄ L̃LNq
) , (13)

where we have used J
∣∣LNq) =

∣∣LNq) and(
LNq

∣∣L̃∣∣LNq) =
(
LNq

∣∣P̄LP̄∣∣LNq)
=
{(
P̄LNq

∣∣L2Nq
)
−
(
P̄LNq

∣∣Nq)(Nq∣∣LNq)} = 0 ,

both terms vanishing because of time inversion symmetry. Now(
LNq

∣∣∣LNq) = χ−1(q)
(
Lρq

∣∣∣Lρq) ≡ χ−1(q)
〈[
ρq, [ρq, H]

]〉
= χ−1(q)(q2/m) ,

the last step following from the f -sum rule. We define Ωq = q2/mχ(q). Using
P
∣∣LNq) = 0 and∣∣J̄ L̃LNq) =

{
1− Ω−1

q

∣∣∣LNq)(LNq∣∣}∣∣P̄LP̄LNq)
=
{

1− Ω−1
q

∣∣LNq)(LNq∣∣}P̄L2Nq
)

=
∣∣P̄L2Nq

)
[since by symmetry

(
LNq

∣∣P̄L2Nq
)

= 0], equation (13) becomes

K(q, z) = − Ωq

z +
m

q2

(
P̄L2ρq

∣∣∣∣∣ 1
J̄ L̃J̄ − z

∣∣∣∣∣ P̄L2ρq

)

= − Ωq
z +M(q, z)

. (14)

The force–force correlation function M(q, z) is given by

M(q, z) =
m

q2

(
P̄L2ρq

∣∣∣ 1
J̄ L̃J̄ − z

∣∣∣P̄L2ρq

)
. (15)

From equation (10) we thus obtain for Φ(q, z),

Φ(q, z) = − 1

z − Ωq
z +M(q, z)

. (16)
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From the equation of motion for the Hamiltonian H (equation 4) we have

L2ρq =
[
H, [H, ρq]

]
=

{
1

2m

∑
k

[q2 + 2q . k]a†q+kak +
1
m

∑
k

V (k)(q . k)ρkρq−k

+
1
m

∑
k

W (k)(q . k)ρq−k

}
, (17)

so equation (15) becomes

M(q, z) =
1

mq2

([∑
k

V (k)(q . k)ρkρq−k +
∑
k

W (k)(q . k)ρq−k

]
P̄
∣∣∣∣∣ 1
J̄ L̃J̄ − z

∣∣∣∣∣ P̄
×
[∑

k

V (k)(q . k)ρkρq−k +
∑
k

W (k)(q . k)ρq−k

])
. (18)

For weak scattering from defects we neglect the cross terms in equation (18)
and obtain the decoupled expression:

M(q, z) = Mee(q, z) +Mde(q, z) , (19)

where Mde(q, z) is the contribution to M(q, z) from electrons scattering from
defects. It is a two-point density relaxation function:

Mde(q, z) =
1

mq2

∑
kk′

W (k)(q.k)

(
ρq−kP̄

∣∣∣∣∣ 1
J̄ L̃J̄ − z

∣∣∣∣∣ P̄ρq−k′

)
W (k′)(q.k′) . (20)

We write

Mde(q, t) =
1

mq2

∑
kk′

〈W (k)(q.k)W (k′)(q.k′)〉
(
ρq−k(t)

∣∣∣ρq−k′(0)
)

(21)

=
∑
k

[
W 2(k)Si(k)(q.k)2

]
×
[
χ(|q− k|)Φ(|q− k|, t)

]
, (22)

where Si(k) is the impurity structure factor. This is unity for a random
distribution of uncorrelated impurities.

In equation (19) Mee(q, z) is the contribution from electron–electron scattering.
It is a four-point relaxation function:

Mee(q, z) =
1

mq2

∑
kk′

V (k)(q.k)

(
ρkρq−kP̄

∣∣∣∣∣ 1
J̄ L̃J̄ − z

∣∣∣∣∣ P̄ρk′ρq−k′

)
V (k′)(q.k′) .

(23)
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In order to numerically evaluate an expression like equation (23), one would
usually start by factorising four-point density correlation functions as products of
two-point correlation functions. For a classical system this means the four-point
relaxation function Mee(q, z) in equation (23) could also be factorised since the
functions are equivalent. The same approximation cannot be used for a quantum
system since the two functions are not identical except in the high temperature
limit:

〈A
∣∣B〉ω =

1− e−βh̄ω

h̄ω

(
A
∣∣B)

ω
. (24)

However, in order to identify the transition we only need ω = 0, and in this
limit the two quantum functions are identical. This permits us to factorise the
quantum four-point relaxation function. With this factorisation equation (23)
becomes

Mee(q, t) =
1

mq2

∑
kk′

V (k)(q.k)
[
〈ρk(t)ρk′(0)〉〈ρq−k(t)ρq−k′(0)〉

+ 〈ρk(t)ρq−k′(0)〉〈ρq−k(t)ρk′(0)〉
]
V (k′)(q.k′) . (25)

The glass state is identified with infinite relaxation time. We define

M(q) ≡ lim
t→∞

M(q, t) = Mee(q) +Mde(q) , (26)

obtaining for our final expressions,

Mee(q) =
1

2mq2

∑
q′

[
V (q′)(q · q′) + V (q − q′)(q·(q− q′))

]2
× χ(q′)f(q′)χ(|q− q′|)f(|q− q′|) , (27)

Mde(q) =
ni

mq2

∑
q′

[
W 2(q′)(q · q′)2

]
χ(|q− q′|)f(|q− q′|) . (28)

Using equations (2), (10) and (14), we write the order parameter f(q) in terms
of M(q),

f(q) =
1

1 + Ωq/M(q)
. (29)

Since M(q) itself depends on f(q), equation (29) when combined with equations
(26)–(28) form a closed set of non-linear equations for f(q). We numerically
solve these iteratively until the solutions are self-consistent.

The correlations between electrons are taken into account through the static
susceptibility χ(q). We have found that the key property in χ(q) determining
the transition is the area occupied by the density exclusion region in the
exchange-correlation hole. We assume in the strongly correlated region that the
overall shape of the exchange-correlation hole is not greatly affected by low levels
of disorder.
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The static susceptibility terms in equations (27) and (28) insert into the vertex
part of the memory function the information about the strong exchange-correlation
hole. The static structure factor S(q), taken from diffusion quantum Monte Carlo
numerical simulations (Tanatar and Ceperley 1989), is used to determine a static
local field factor G(q) in the expression,

S(q) =
∫ ∞

0

dω
χ0(q, iω)

1 + V (q)[1−G(q)]χ0(q, iω)
. (30)

The G(q) then determines χ(q) using

χ(q) =
χ0(q)

1 + V (q)[1−G(q)]χ0(q)
. (31)

3. Results

For a given electron density and level of defects we can solve equations (26)–(29)
for f(q). If the disorder level is sufficiently small we find there are only the
trivial solutions to the equations, that is f(q) = 0, implying a delocalised state.
By increasing the disorder, at a certain critical level of disorder the f(q) jumps
discontinuously from zero. This behaviour implies that there is a discontinuous
metal–insulator transition to a localised state. For rs > 9 the transition from
liquid to solid is discontinuous. For a lower level of disorder the transition
occurs at a smaller carrier density (that is, for stronger electron correlations). If
we continue to increase the electron density for a fixed level of disorder, then
by rs ' 8 the f(q) grows continuously from zero. This leads to a continuous
localisation transition from liquid to solid.

The Fourier transform of f(q),

F (r) =
∫

dq eiq.rf(q) , (32)

gives the probability in the infinite time limit of finding an electron at distance
r from the origin if there was an electron at the origin at t = 0. In Fig. 1 we
show rF (r) for fixed electron densities corresponding to rs = 10 and rs = 5 for a
range of impurity densities ni. We define an impurity concentration parameter
ci = ni/ne. For the lower density, rs = 10, the F (r) is everywhere zero when
ci < 0 ·085. At ci = 0 ·085 there is a discontinuous jump in F (r) corresponding to
a localisation length of the order of the inter-particle spacing. Further increasing
ni increases the degree of localisation.

In contrast at rs = 5, the F (r) increases continuously from zero with impurity
concentration. Note that the vertical scales of both parts of Fig. 1 are different.
The overall localisation at rs = 5 is much weaker than at rs = 10 and corresponds
to a significantly longer localisation length.

We associate this evolution of F (r) at rs = 5 with a continuous localisation–
delocalisation transition as a function of ci. We use the Ioffe–Regel criterion that
localisation occurs when the electron localisation length drops below rkF ' 1 (see
Mott 1974). We determine a localisation length from the integrated probability
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Fig. 1. Infinite time limit probability F (r) of finding an electron at
distance r from the origin for electron densities rs = 10 and rs = 5.
Labels are the impurity concentration ci = ni/ne.

∫
d2r F (r) out to the nearest neighbour distance. Fig. 2 shows the boundary

between the localised and delocalised states as a function of impurity and electron
density. This phase boundary merges around rs = 9 with the boundary for the
discontinuous transition we have previously reported (Thakur and Neilson 1996).

We conclude that at low electron densities corresponding to rs > 10 the electron
correlations are strong enough to drive the system through a discontinuous
localisation transition to the strongly localised disordered electron glass we have
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5 6 7
rs

0

50

100

150

n i (
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m

2 )

Delocalized

Localized

Fig. 2. Phase boundary for continuous localisation to delocalisation
transition as a function of impurity density ni and electron density
parameter rs.

previously discussed (Thakur and Neilson 1994, 1999). We now report that
there is a range of intermediate electron densities above rs <∼ 9, down to at least
rs ' 5, where the electron correlations remain strong enough for a continuous
delocalisation–localisation transition to occur when the density of impurities is
increased.
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Bengtzelius, U., Götze, W., and Sjölander, A. (1984). J. Phys. C 17, 5915.
Coleridge, P. T., Williams, R. L., Feng, Y., and Zawadzki, P. (1997). Phys. Rev. B 56, R12764.
Kravchenko, S. V., Kravchenko, G. V., and Furneaux, J. E. (1994). Phys. Rev. B 50, 8039.
Kravchenko, S. V., Simonian, D., Sarachik, M. P., Mason, W., and Furneaux, J. E. (1996).

Phys. Rev. Lett. 77, 4938.
Lam, J., D’Iorio, M., Brown, D., and Lafontaine, H. (1997). Phys. Rev. B 56, R12741.
Mott, N. F. (1974). ‘Metal–Insulator Transition’ (Taylor and Francis: London).
Neilson, D., Swierkowski, L., Sjölander, A., and Szymański, J. (1991). Phys. Rev. B 44, 6291.
Popovic, D., Fowler, A. B., and Washburn, S. (1997). Phys. Rev. Lett. 79, 1543.
Simmons, M. Y., Hamilton, A. R., Pepper, M., Linfield, E. H., Rose, P. D., Ritchie, D. A.,

Savchenko, A. K., and Griffiths, T. G. (1998a). Phys. Rev. Lett. 80, 1292
Simmons, M. Y., Hamilton, A. R., Griffiths, T. G., Savchenko, A. K., Pepper, M., and Ritchie,

D. A. (1998b). Physica B 249, 705.
Tanatar, B., and Ceperley, D. M. (1989). Phys. Rev. B 39, 5005.



Continuous Localisation–Delocalisation Transition 789

Thakur, J. S., and Bosse, J. (1987). Phys. Rev. Lett. 59, 998.
Thakur, J. S., and Bosse, J. (1991). Phys. Rev. A 43, 4378.
Thakur, J. S., and Neilson, D. (1996). Phys. Rev. B 54, 7674.
Thakur, J. S., and Neilson, D. (1999). Phys. Rev. (Rapid Commun.) B 59, R5280.
Thakur, J. S., and Pathak, K. N. (1986). International Centre for Theoretical Physics

Publication IC/82/2 (Trieste).

Manuscript received 11 June, accepted 16 July 1999




