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Abstract

Parametrizations of total cross sections sufficient for all channels of the πB → Y K reactions
are completed using a resonance model. As well as discussing the πN → ΛK reactions, which
were not presented in our previous publications, we present the differential cross section for
πN → ΛK. This report also aims at presenting supplementary discussions to our previous
work.

One of the main goals of studying heavy ion collisions is to determine the
equation of state (EOS) of nuclear matter. Because positive kaons (K+) have a
long mean free path inside the nucleus they are suggested as a good probe for the
reactions occurring in the central region of the collisions [1]. Indeed, theoretical
studies show that the kaons produced in heavy ion collisions are sensitive to
the EOS [2, 3]. Although one can point out many important ingredients for
the theoretical investigations of kaon production in heavy ion collisions, the
discussions presented here are concerned with the elementary kaon production
cross sections necessary for microscopic calculations.

One of the purposes of this report is to complete the parametrizations of
total cross sections sufficient for all channels of the πB → Y K reactions by a
resonance model [7, 8] (B = N,∆ and Y = Λ,Σ). The results for the πN → ΛK
reactions which were not given in our previous publications [7, 8] are presented.
Furthermore, supplementary discussions to our previous work are presented.

The microscopic transport models [4] used for the calculations of kaon production
in heavy ion collisions contain the following processes as the main collision terms:
B1B2 → B1B2, NN → NNπ, NN ↔ N∆, πN ↔ ∆. Kaons are produced
through the B1B2 → B3Y K and πB → Y K reactions.

For a given impact parameter b, the Lorentz-invariant differential kaon
multiplicity in the microscopic calculations is given by
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E
d3N(b)

d3p
=
∑
B1B2

∫ (
E′
d3σB1B2→B3Y K(

√
sB1B2)

d3p′

/
σtotB1B2

(
√
sB1B2

)

)

× [1− f(r,p, t)]
dΩ3Y

4π

+
∑
πB

E′′
d3σπB→Y K(

√
sπB)

d3p′′

/
σtotπB(

√
sπB) . (1)

Here the primed and the double-primed quantities are in the centre-of-momentum
(c.m.) frames of the two colliding baryons (B1B2) and pion–baryon (πB),
respectively, while the unprimed quantities are those in the c.m. of the two
nuclei. Here also σtotB1B2

(
√
sB1B2

) and σtotπB(
√
sπB) are the total cross sections

as functions of the respective c.m. energies
√
sB1B2

and
√
sπB . The factor

[1− f(r,p, t)] stands for the Pauli blocking effects for the final baryon B3, and
Ω3Y is the solid angle of the relative momentum between the final baryon B3

and hyperon Y . The Lorentz-invariant double differential kaon production cross
section is obtained by integrating the kaon multiplicity Eq. (1) over the impact
parameter b multiplied by the factor 2πb. Eq. (1) shows that the elementary
kaon production cross sections are directly related to the differential kaon yields.
Thus, it is important to use correct elementary kaon production cross sections
for the microscopic investigations of kaon production in heavy ion collisions.

Fig. 1. Processes contributing to the πN → ΛK reactions. The diagrams corre-
spond to (a)N(1650) I(JP ) = 1

2 ( 1
2

−
), (b)N(1710) 1

2 ( 1
2

+
), (c)N(1720) 1

2 ( 3
2

+
) s-channels and

(d)K∗(892)-exchange, respectively.

The elementary kaon production cross sections used for the microscopic
calculations are usually taken from Randrup and Ko [5] in baryon–baryon
collisions. In pion–nucleon collisions they are usually taken from Cugnon and
Lombard [6]. Our interest at the moment is with the latter case. In the work of
Cugnon and Lombard [6] total cross sections are parametrized by introducing an
isospin-averaging procedure, and by using the limited experimental data assuming
proton and neutron number (Z = N) symmetry. This means that the differential
cross sections must be investigated using a more general procedure. Furthermore,
the reactions π∆ → Y K cannot be investigated because no experimental data
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are available. One of the motivations for this work is to study both the total
and differential cross sections πB → Y K based on a microscopic model. Below,
we give a theoretical description of the πN → ΛK reactions which will be our
main concern later.

The experimental data [9] show that three resonancesN(1650)( 1
2

−
), N(1710)( 1

2

+
)

and N(1720)( 3
2

+
) make contributions to the πN → ΛK reactions. In addition,

K∗(892) exchange is included as an effective process which also simulates the
other heavier K∗ meson effects. The relevant processes are depicted in Fig. 1.
The interaction Lagrangians used are:

LπNN(1650) = − gπNN(1650)(N(1650)~τN · ~φ+N~τN(1650) · ~φ ) , (2)

LπNN(1710) = − igπNN(1710)(N(1710)γ5~τN · ~φ+N~τγ5N(1710) · ~φ ) , (3)

LπNN(1720) =
gπNN(1720)

mπ

(N
µ
(1720)~τN · ∂µ~φ+N~τNµ(1720) · ∂µ~φ ) , (4)

LKΛN(1650) = − gKΛN(1650)(N(1650)ΛK +KΛN(1650)) , (5)

LKΛN(1710) = − igKΛN(1710)(N(1710)γ5ΛK +KΛγ5N(1710)) , (6)

LKΛN(1720) =
gKΛN(1720)

mK

(N
µ
(1720)Λ∂µK + (∂µK)ΛNµ(1720)) , (7)

LK∗(892)ΛN = − gK∗(892)ΛN (NγµΛK∗µ(892) +K∗µ(892)ΛγµN) , (8)

LK∗(892)Kπ = ifK∗(892)Kπ(K~τK∗µ(892) · ∂µ~φ− (∂µK)~τK∗µ(892) · ~φ) + h.c . (9)

The amplitudes are given by: Mπ0p→ΛK+ = −Mπ0n→ΛK0 =
√

1
2Mπ+n→ΛK+ =√

1
2Mπ−p→ΛK0 =Ma +Mb +Mc +Md, where the amplitudes Ma, Mb, Mc

and Md correspond to the diagrams (a), (b), (c) and (d) respectively in Fig. 1.
To carry the calculations further, form factors are introduced which reflect the

finite size of the hadrons. Those form factors are carried by each vertex. For
the meson–baryon–(baryon resonance) vertex, the following form factor is used:

F (~q) =
Λ2
C

Λ2
C + ~q 2 , (10)

where ~q is the meson momentum, and ΛC is the cut-off parameter. On the other
hand, for the K∗(892)–K–π vertex, the form factor studied in Ref. [10] is used:

FK∗(892)Kπ(| 1
2 ( ~pK − ~pπ) |) = C | 1

2 ( ~pK − ~pπ) | exp(−β | 1
2 ( ~pK − ~pπ) |2) . (11)

Before discussing the results, the model parameters need to be specified.
The cut-off parameter ΛC appearing in Eq. (10) is ΛC = 0 ·8 GeV for all
meson-baryon-(baron resonance) vertices. The values obtained for the coupling
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constants with this cut-off value are given in Table 1. The fitted value for
gK∗(892)ΛN is gK∗(892)ΛN = 0 ·45. The other parameters C and β appearing in
Eq. (11) are C = 2 ·72 fm and [10].

Table 1. Calculated coupling constants and the experimental branching ratios

B∗(resonance) Γfull(MeV) ΓNπ(%) g2
πNB∗ ΓΛK(%) g2

KΛB∗

N(1650) 150 70 ·0 1 ·41 7 ·0 6 ·40 ×10−1

N(1710) 100 15 ·0 2 ·57 15 ·0 4 ·74 ×10+1

N(1720) 150 15 ·0 5 ·27 ×10−2 6 ·5 3 ·91

f2
K∗(892)Kπ g2

K∗(892)ΛN

6 ·89 ×10−1 2 ·03 ×10−1

(Γ = 50 MeV, ΓKπ = 100%)

Here, it is appropriate to discuss K∗(892) exchange. Our calculations were
also performed with the inclusion of the tensor coupling interaction. However,
it was found that the results show similar dependence on both c.m. energy and
angle (or cos θc.m.) to those results calculated with the inclusion of the vector
coupling interaction alone. Thus, for the present purposes it is enough to include
only the vector coupling interaction.

Fig. 2. Total cross sections π−p → ΛK0. The experimental data are taken from Ref. [11].
The results are (a) without and (b) with the inclusion of interference terms.
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The energy dependence of the total cross sections π−p → ΛK0 is shown in
Fig. 2, where (a) and (b) correspond to cases without and with the inclusion
of interference terms. The sign combination among the interference terms in
calculation (b) is selected in such a way that both total and differential cross
sections are reproduced simultaneously. Mere inclusion of the single resonance
or the K∗ exchange alone cannot reproduce the energy dependence of the total
cross section data.

Next, the differential cross sections π−p→ ΛK0 are shown in Fig. 3, where (a),
(b) and (c) correspond to the pion beam momenta 0 ·980, 1 ·13 and 1 ·455 GeV/c,
respectively. The general trends are reproduced, but the details are not yet
satisfactory.

In Fig. 4 we give the energy dependence of the total cross sections πN → ΣK.
In Ref. [7], the ∆(1920) resonance was treated as an effective resonance which
simulates other ∆ resonance effects around the mass region 1 ·9 GeV. The two
coupling constants gKΣ∆(1920) and gπN∆(1920) were scaled in Ref. [7]. The results
obtained by using these scaled coupling constants are denoted by set 1 . A more
quantitative discussion of this scaling will be made below.

The experimental data [14] show that there are six ∆ resonances which make
contributions to the πN → ΣK reactions around the mass region 1 ·9 GeV (see
Table 2). In order to understand the scaling factor quantitatively, we compare:

the contribution of ∆(1920) to πN → ΣK

all ∆s′(masses around 1 ·9 GeV) contribution to πN→ ΣK
=

10 ·4
37 ·37

= 0 ·278 ,

√√√√g2
KΣ∆(1920)g

2
πN∆(1920)(from branching ratio)

g2
KΣ∆(1920)g

2
πN∆(1920)(scaled)

=

√
1 ·11× 0 ·417

3 ·83× 1 ·44
= 0 ·289 .

This comparison shows that the scaling factor (=1 ·861) for each coupling constant
gKΣ∆(1920) and gπN∆(1920) is consistent with the total branching ratio obtained
by summing these ∆ resonance contributions. However, because of this effective
description, the differential cross sections cannot be reproduced well. A more
accurate determination of the branching ratios for these ∆ resonances is necessary.

Here the π∆→ Y K reactions should also be mentioned. The parametrizations
and figures given in Ref. [8] were obtained by using the lower values of the
branching ratios for the resonances to decay to π∆. The parametrizations
obtained by using the averaged values as given in Tables 1 and 2 of Ref. [8] will
be given later. The difference between the previous parametrizations and those
to be given later is that in the latter the change in the multiplication factor is
large. However, the second term of the parametrization for the π+∆0 → Σ0K+

total cross section remains the same as before. As for the differential cross
sections π∆→ Y K, they are almost constant as a function of cosθ in the c.m.
frame for the beam energies for which calculations were made.

Finally, the parametrizations of the total cross sections sufficient for all channels
of the πB → Y K reactions in units of mb are given by:
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Fig. 3. Differential cross sections π−p→ ΛK0 in the c.m. frame: (a), (b) and (c) correspond
to the pion beam momenta 0 ·980 GeV/c (

√
s = 1 ·66 GeV), 1 ·13 GeV/c (

√
s = 1 ·742 GeV)

and 1 ·455 GeV/c (
√
s = 1 ·908 GeV), respectively. For (a) and (b), the experimental data

are taken from Ref. [12], while for (c) they are taken from Ref. [13].
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Fig. 4. Total sections for the reactions (a) π+p → Σ+K+, (b) π−p → Σ−K+ and (c)
π+n→ Σ0K+ and π0n→ Σ−K+, respectively. The notation set 1 in these figures indicates
the results obtained by using the scaled values for gKΣ∆(1920) and gπN∆(1920). For further
explanation, see Ref. [7].
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Table 2. Contribution of ∆(1920) to the π N→ Σ K reactions compared with other possible
∆ resonances between 1900 and 1940 MeV [14]

The values in column four are all upper values

∆∗(resonance) Γtotal (MeV) (ΓπN∆∗ΓKΣ∆∗)
1
2 /Γtotal (ΓπN∆∗ΓKΣ∆∗)

1
2 (MeV)

∆(1900) 200 <0 ·03 6 ·00
∆(1905) 350 |0 ·015 | 5 ·25
∆(1910) 250 <0 ·03 7 ·50
∆(1920) 200 |0 ·052 | 10 ·4
∆(1930) 350 <0 ·015 5 ·25
∆(1940) 198 ·4 <0 ·015 2 ·98

σ(π−p→ ΛK0) =
0 ·007665(

√
s− 1 ·613)0 ·1341

(
√
s− 1 ·720)2 + 0 ·007826

,

σ(π+p→ Σ+K+) =
0 ·03591(

√
s− 1 ·688)0 ·9541

(
√
s− 1 ·890)2 + 0 ·01548

+
0 ·1594(

√
s− 1 ·688)0 ·01056

(
√
s− 3 ·000)2 + 0 ·9412

,

σ(π−p→ Σ−K+) =
0 ·009803(

√
s− 1 ·688)0 ·6021

(
√
s− 1 ·742)2 + 0 ·006583

+
0 ·006521(

√
s− 1 ·688)1 ·4728

(
√
s− 1 ·940)2 + 0 ·006248

,

σ(π+n→ Σ0K+) = σ(π0n→ Σ−K+)

+
0 ·05014(

√
s− 1 ·688)1 ·2878

(
√
s− 1 ·730)2 + 0 ·006455

,

σ(π0p→ Σ0K+) =
0 ·003978(

√
s− 1 ·688)0 ·5848

(
√
s− 1 ·740)2 + 0 ·006670

+
0 ·04709(

√
s− 1 ·688)2 ·1650

(
√
s− 1 ·905)2 + 0 ·006358

,

σ(π−∆++ → ΛK+) =
0 ·009883(

√
s− 1 ·613)0 ·7866

(
√
s− 1 ·720)2 + 0 ·004852

,

σ(π−∆++ → Σ0K+) =
0 ·007448(

√
s− 1 ·688)0 ·7785

(
√
s− 1 ·725)2 + 0 ·008147

,

σ(π0∆0 → Σ−K+) =
0 ·01052(

√
s− 1 ·688)0 ·8140

(
√
s− 1 ·725)2 + 0 ·007713

,

σ(π+∆0 → Σ0K+) =
0 ·003100(

√
s− 1 ·688)0 ·9853

(
√
s− 1 ·725)2 + 0 ·005414

+
0 ·3179(

√
s− 1 ·688)0 ·9025

(
√
s− 2 ·675)2 + 44 ·88

,

σ(π+∆− → Σ−K+) =
0 ·02629(

√
s− 1 ·688)1 ·2078

(
√
s− 1 ·725)2 + 0 ·003777

,
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where all the parametrizations given above should be understood to be zero below
threshold. Furthermore, the parametrizations for the π∆ → Y K reactions are
obtained without the inclusion of interference terms. The above are the completion
of the parametrizations for the total cross sections πB → Y K. Parametrizations
for the other channels can be obtained by multiplying the relevant constant
factors arising from isospin space [7, 8].

The next task is to investigate the B1B2 → B3Y K reactions by using the
same resonance model, where most of the model parameters have already been
fixed by this investigation. This program is now in progress.
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