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Summary 

When an aerial is used to survey the distribution of radio brightness over the sky, 
the observed distribution is smoother than the true distribution; the broader the 
beam of the aerial, the greater the smoothing. It is shown that the aerial does not 
register those spatial Fourier components of the true distribution having frequencies 
beyond a cut-off determined by the aerial aperture. Components of lower frequency 
are registered but their relative strengths are altered. 

Two important consequences follow. (i) There are invisible distributions which 
produce no response when scanned by the aerial. Consequently there is not a unique 
solution to the problem of correcting for aerial smoothing. The established method of 
correcting by successive smoothing, leads to the principal 8olution, in which Fourier 
components accepted by the aerial have been restored to their full values, but the 
components rejected by the aerial are still not represented. (ii) In conducting a survey 
it is sufficient to observe at discrete intervals. The measuring points must be closer 
together than half the period of the Fouri,er component at cut-off. For an aperture of 
width w, this peculiar interval is equal to fA/w (radians). 

1. INTRODUCTION 

It is the objective of much radio-astronomical work to determine the 
intensity of the radio waves arriving at the Earth from different directions. 
For anyone frequency and polarization the energy flux of this radiation field is 
conveniently specified by a distribution of brightness temperature over the 
celestial sphere. Such a description is appropriate since, in the regime where 
the Rayleigh-Jeans law holds, the brightness of a black body is directly pro
portional to the temperature. 

One may be interested in the distribution of brightness temperature over 
the whole of the celestial sphere, a small area the size of the Sun, or, in the case 
of " radio stars", over still smaller areas. In all cases, the aerials used tend to 
blur the detail of the distribution. The energy received when an aerial is 
pointed in a given direction is determined not by the brightness temperature 
in that direction alone, but by a weighted mean of the temperatures in all the 
directions contained within the aerial beam. If the aerial pattern is fine enough 
compared with the scale of the temperature distribution studied, then the 
observed distribution will approximate closely to the true distribution. Often 
this is not the case, and then the question arises whether, from an accurate 
knowledge of the aerial response, it is not possible to reconstruct the original 
distribution. 
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It is known that certain types of smoothing process are reversible. For 
example, it is possible to recover daily sunspot numbers in full detail from daily 
values of the much smoother 30-day running means. The means must, however, 
be given without approximation. Aerial smoothing is so closely allied to 
smoothing by running means that one might surmise that the limit to detail 
obtainable from a survey with a given aerial could be improved indefinitely by 
increasing the accuracy of the observations and the closeness of their spacing. 

In a number of investigations (Hey, Parsons, and Phillips 1948; Bolton 
and Westfold 1950) radio astronomers have attempted to reconstruct the original 
distribution which gave rise to their observations. A proposed restoration 
may be tested by smoothing it artificially with the known aerial directional 
diagram, and comparing the result with the observations. Good agreement is 
usually obtainable, and it has been thought that a restoration, so tested, must 
be a good approximation to the true distribution. This assumption now proves 
to be wrong, for it will be shown that there are always an infinite number of 
different restorations, all of which satisfy the test exactly. 

A clear insight into the nature of the blurring produced by the aerial is 
obtained by studying the effect of the aerial on the spatial Fourier components 
of the temperature distribution. The true temperature distribution is supposed 
analysed into Fourier components, each being a sinusoidal temperature distribu
tion of a certain strength and spatial frequency. The aerial affects these 
components by eliminating a semi-infinite band of high frequencies and altering 
the relative strengths of the lower frequency components. Thus, in the observed 
distribution the finest detail is irretrievably lost, while the less fine detail may 
be substantially modified. 

The rejection of a semi-infinite band of high frequencies by the aerial is 
responsible for the existence of invisible distributions. These are distributions 
containing only frequencies which would be rejected by the aerial. They 
produce no response when scanned by the am1.aL There is a great variety of 
such invisible distributions and consequently a great variety of distributions, 
each of which when smoothed by the aerial directional diagram reproduces the 
observed distribution. These possible solutions differ from each other only by 
the addition of invisible distributions. 

To emphasize 'the importance of this effect two examples from the literature 
are shown in Figure 1. The radial distribution of brightness across the Sun 
at 21 cm obtained by Christiansen and Warburton (1953) is shown in Figure 1 (a). 
The authors state that, on the basis of their observations, they could not dis
tinguish between the two very different distributions represented. In the 
second example (Fig. 1 (b)) the full line gives the distribution of 100 Mcjs cosmic 
noise along the galactic meridian passing through the galactic centre, as deduced 
by Bolton and Westfold (1950) from their measurements. In the same figure 
the broken line shows a (renormalized) distribution which according to Brown 
and Hazard (1953) gives the same result, when scanned with the aerial, as does 
the full curve. 

This indeterminacy in the restoration of the observations made with aerials 
of finite resolving power seriously affects several important current investiga-
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tions. One of these is the study of solar limb brightening, where there is a need 
for observations to compare with existing theories (e.g. Smerd 1950). As is 
suggested by Figure 1 (a), the peak brightness at the limb is not an appropriate 
quantity for comparison of theory and observation. Some sort of integral is 
more suitable. In another important investigation (Piddington 1951) the 
brightness of the galactic centre is taken from surveys on different frequencies 
over a 30 : 1 range, in order to ascertain a spectrum. The correction for aerial 
smoothing may here be of vital importance. The same serious problem would 
arise in determining the spectra of discrete sources from attempted measurements 
of the central brightness. 
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Fig 1 (a).-Solar distributions of brightness temperature (Christiansen and 
Warburton 1953) which could not be distinguished after subjection to aerial 

smoothing. 

Fig. 1 (b).-A pair of similarly indistinguishable galactic distributions (Brown and 
Hazard 1953). 

Given only the observations made with a finite aerial it is impossible to 
decide which of the feasible solutions is the true distribution. However, of 
those distributions which reproduce the observations when scanned by the aerial, 
the one which contains no invisible part has a certain uniqueness and is termed 
the principal solution. It is this distribution which is found when the observa
tions are corrected by the process of successive substitutions (Section VIII). 
When the true distribution is well resolved by the aerial, the principal solution 
is a good approximation. However, if the true distribution is not well resolved, 
the principal solution may be a poor approximation, and even physically 
impossible. 
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To improve on the principal solution one must take into account further 
information about the distribution which may be available in particular cases. 
How best to do this in each case is an outstanding problem. 

In Section VI we discuss a by-product of this investigation, namely, an 
important theorem which arises from the rejection of high frequencies by the 
aerial. There exists a critical angle, peculiar to each aerial, and such that no 
increase in information is obtained by making observations at finer intervals. 
In fact, from observations spaced at the peculiar interval, it is possible to infer 
the intermediate observations. This theorem is expected to be valuable both 
in the making and in the reduction of observations. 

II. BASIC FORMULA 

For the present purpose of studying the effects of aerial smoothing and the 
possibilities of restoration, we shall discuss the simplest case, namely, when the 
brightness temperature T(cp) depends on a single angular coordinate cP only. 
This case includes the essential physics of aerial smoothing and in fact covers 
many of the practical applications in radio astronomy. 

It is convenient to specify the directional characteristics of the aerial by 
the power response A to a point source. Thus when the aerial beam is directed 
towards cp =CPo the response of the aerial to a point source at cp =~ is by definition 
proportional to A(cpo-~). A is normalized so that 

f A( cp )dcp =1. 

It follows that the measured temperature distribution, Ta( CPo), corresponding 
to a point source of temperature T situated at cp = ~ is given by 

Ta(CPo) =A(CPo-~)T. 

The response to a point source, A( cp), is the power directional diagram, A( cp), 
taken with cp in the opposite sense, i.e. A( cp) =A( -cp). For the development 
of the theory A proves to be more convenient than A, for reasons explained 
below. In many practical cases the directional diagram is symmetrical, so 
that the distinction need not be drawn. 

When now the true temperature distribution T(cp) is observed with the 
aerial pointed in the direction CPo, the measured temperature Ta( CPo) will be a 
weighted mean of T given by 

Ta(CPo)=f A(CPo-~)T(~)d~. 

When the aerial is reasonably directive A( cp) becomes negligible beyond a small 
range of. cp and the limits of integration may be extended to ± 00. For con
venience, we also drop the subscript" 0 ", and thus obtain the equation 

Ta(CP) = J:oo A(cp-~)T(~)d~. . ............. (1) 

This equation expresses in its simplest form the phenomenon of aerial 
smoothing and forms the basis of the present communication. In other circum
stances, the expression on the right-hand side of (1) would be known as the 
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convolution, composition product, Faltung, fold, etc. of A( <:p) and T( <:p) or as 
the (unnormalized) cross-correlation function of A( -<:p) and T(<:p). To represent 
the convolution of two functions we shall use the abbreviated notation 

A*T= f:oo A(<:p-~)T(~)d~= f:oo T(<:p-~)A(~)d~, 
and in this notation 

Ta=A*T. 
We may also write 

Ta=A¥T, 

wheret 

A¥T- I:oo A(~-<:p)T(~)d~= I:oo T(~+<:p)A(~)d~. 
In statistics A¥T would be called the (unnormalized) cross-correlation function 
of A and T. 

III. FORMAL SOLUTION BY FOURIER TRANSFORMS 

Equations of the same type as (1) arise frequently in physics (see e.g. 
Trumpler and Weaver (1953) for references). Typical instances are the instru
mental blurring of (i) optical spectra (van Cittert 1931; Burger and van Cittert 
1932; van de Hulst 1941, 1946), (ti) X-ray spectra (Stokes 1948; Paterson 
1950; Waser and Schomaker 1953), and (iii) solar limb darkening curves (Fellgett 
and Schmeidler 1952). A good survey of various methods of dealing with two
dimensional examples arising in astronomy is given by Burr (1955). 

In the present application we make use of the special properties arising 
from the restriction of A( <:p) to be the response of an aerial to a point source. 
For this class of problem the approach from Fourier theory is most enlightening. 
In this procedure the temperature distributions and the aerial pattern are 
regarded as built up of a spectrum of components harmonic in the angular 
variable <:po Thus Ta(<:P) is specified by its spectrum Ta(8) which is the (complex) 
Fourier transform of Ta(<:P) and gives the amplitude and phase of the harmonic 
component with 8 wave crests per unit of <:po 

When functions are related as in equation (1) the corresponding relation 
betweeIl. their Fourier transforms is very simple. This relation is given by the 
convolution theorem (Sneddon 1951) which can be stated in the form: 

t Because the operation of convolution (denoted by *) is commutative (f*g=g*!), associative 
(f*[g*h] = [j*g]*h), and distributive ([f+g]*h=!*h+g*h) (Doetsch 1937), it may be treated 
algebraically like ordinary multiplication and thus leads to simple mathematics (Section VIII). 
On the other hand the operation of smoothing T with A (written A*T) is perhaps more direct 
for some purposes than forming the convolution A*T of A with T. In either case it is A which 
is plotted or tabulated when the calculation is performed. And, of course, A is the customary 
quantity in aerial physics, not A. However, the smoothing process, being non-commutative 
and non-associative, proves to be not as convenient as convolution in the type of analysis occurring 
in the present paper. 

G 



620 R. N. BRACEWELL AND J. A. ROBERTS 

If Ta(s) is the Fourier transform of Ta(rp) defined by 

Ta(8) =f: 00 Ta( rp)e -121t8tpdrp, 

and, if T( 8), Ats) are similarly the transforms of T (rp) and A( rp), then, when 

Ta=A*T, 

the transforms are related by 

T;,(s)=A(s)T(s). .. ........................ (2) 

To state this theorem in words: if Ta(rp) is obtained from T(rp) by convolution 
with A(rp), then the Fourier transform of Ta(rp) is the algebraic product of the 
transforms of T(rp) and A(rp). 

Equation (2) emphasizes the importance of zeros in the Fourier transform 
of the aerial diagram. Since Ta is obtained from if by multiplication with A, 
it follows that for those frequencies Sk for which 

A(Sk) =0, 

the value of Tis lost in the smoothing process. For example, if T(s) contained 
a" spectral line " at S=Sk, Ta(s) would contain no trace of it. 

For values of S such that A(s):;i:O, the Fourier transform of the true distribu
tion is given by 

T(s)= Ta(s) 
A(s)' 

But when S=Sk, making both A and Ta zero, equation (2) shows that T is 
indeterminate. Thus when S=Sk equation (2) is satisfied not only by T(s) but 
also by 

T(8) +~aka(S -Sk)' 
Ie 

where the ak are arbitrary and a(S-Sk) is unit impulse at S=Sk' It follows that 
T(rp) is not the only solution of the integral equation; it is also satisfied by 

T (rp) + ~akei21t8letp. 
* 

(If A(s) is zero, not at discrete points, but over a continuous range, the summation 
is replaced by an integration.) The additive functions ~ak exp (i21tskrp), which 
we term invisible distributions for the aerial, are obviously solutions of the 
integral equation 

J:oo A(rp-~)T(~)d~=O. 
They are of such a nature that it is impossible to detect them with the aerial in 
question whatever their magnitude (see Section VI). 

It is thus clear that the zeros of the transform of A( rp) playa vital role in 
the theory. For this reason it is now necessary to investigate the Fourier 
transforms of aerial patterns. 
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IV. AERIAL THEORY 

In considering the nature of the Fourier transforms of aerial patterns in 
this section, we first illustrate their characteristics by discussion of a common 
type of aerial, and then establish a general theorem. For this purpo!!e we regard' 
the aerial as used for transmission or reception, whichever gives the simplest 
description, since the directional diagrams are identical in the two cases. 

Thus for illustration consider an aerial consisting of a finite one-dimensional 
aperture of width w, across which is maintained a field constant in amplitude 
and phase. For this aerial the A( ~) for small ~ is approximately 

A( )=~{ sin (1t~W/"A)}2 
~ wI... 1t~ , 

the numerical factor being chosen so that J:oo A(~)d~=l. A(~) is shown in 

Figure 2 (a). The beam width of the main lobe between zeros is 2"A/w, the width 
to half power is 0 . 89"A/w. Figure 2 (b) shows A(8), the Fourier transform of 

(a) 

A 
W 

A 

." -!- 1$1 
(b) 

Fig. 2.-The response to a point source, A(q», and its Fourier transform A(8) 
for a uniformly illuminated aperture. 

A(~). Since A(8) is real and symmetrical in this case, it may conveniently be 
plotted against 1 81. (In subsequent figures illustrating transforms, we have, 
where convenient, taken them real and symmetrical.) The particular feature 
to notice is that A(8) is zero for all values of 8 greater than the limiting frequency 
8c =W/"A. We shall now show that this feature is common to all ordinary aerials 
consisting of finite plane apertures. 

It is known (Booker and Clemmow 1950) that a one-dimensional aperture 
distribution of electric field E(x/"A) and the angular spectrum P(sin ~) to which 
it gives rise are reciprocal Fourier transforms with respect to sin ~ and x/"A,. 
that is, 

P(sin ~)= S:oo E(~)el2m~JA)sInq>d(~), 
and 

E(~) = S:oo P(sin ~)e-l2m~/A)sinq>d(sin ~). 
The angular .spectrum P(sin~) is proportional to the field direotional 

diagram for real values of~. When I sin ~ I > 1, that is, for imaginary values 
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of cp, P(sin cp) represents the evanescent field of the aerial, which is normally 
small for very directive aerials. * If we assume it to be negligible the power 
directional diagram A(cp) is given by 

A(cp)=const.1 P(sin cp) 12 

=const. PtP, (3) 

where Pt is the complex conjugate of P=P(sin cp). The directional diagram 
..1( cp) =A( -cp) is used here instead of A( cp), the response to a point source, to 
obtain agreement with the usual practice in aerial theory. 

As a further consequence of the assumption of directive aerials, it is per
missible to replace sin cp by cp in the equations above, since P(sin cp) is negligible 
where this approximation is invalid. Then applying the convolution theorem 
of Section III to equation (3) we have 

A(s)=const. Pt*P, 

and with a little further reduction 

A(s)=const. E¥Et. 

Stating this important result in words, the Fourier transform of the aerial 
response pattern A(cp) is proportional to the (complex) auto-correlation function 
of the aperture distribution (see also Booker, Ratcliffe, and Shinn 1950). 

For an aperture of width w, it follows that A(s) is zero for frequencies greater 
than wiA. This result is in obvious agreement with the discussion of the 
uniformly fed aperture above, but it extends this result to more general aerials. 

We have not covered all aerials but we know from experience that the 
directivity of a broadside array cannot be exceeded very much by rearranging 
its elements within the same overall dimensions. In any particular case the 
existence of the cut-off could be verified and the value of se determined by taking 
the Fourier transform of the aerial diagram. 

The highest frequency which can be present in A( cp), the cut-off frequency 
8e, is given by 

The inverse of this frequency 

W 
8e=-=;..· 

1 
CPe=s: 

IDay be termed the cut-off period. For a uniformly illuminated aperture it is 
half the beam width between zeros or 1·12 times the beam width to half power. 

V . .AERIAL SMOOTHING 

It has been shown in Section III, equation (2), that the effect of aerial 
smoothing may be described in terms of spectra by the statement that the 
spectrum of the observed temperature distribution Ta is obtained from the 

... Very directive aerials with large evanescent fields have been mooted (see, for example, 
:Woodward and. Lawson 1948) but' are of more theoretical than practical interest. 
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spectrum of the true distribution T by multiplication with the spectrum of the 
response of the aerial to a point source. But, according to the result of Section IV, 
the spectrum of any aerial response vanishes for all frequencies s beyond a 
limiting value se' The high frequency components of T are thus entirely rejected 
by the radiometer. 

lsi 

Fig. 3.-Showing how the spectrum of a smoothed distribution, 
Ta(s), is related to the spectrum of the original distribution 1'(8). 

This is illustrated in Figure 3. T(s) is the spectrum of some T(cp) which 
includes high frequencies. In Ta(s), the spectrum of the observed distribution~ 
the whole of 1"(s) for frequencies greater than se (cross-hatched area) has been 
lost, and furthermore the lower frequency components have been reduced by 
the loss of the stippled area. 

~ 
/f(S) 

Ta("'~A("') 

~".'~ 
..... 

'fa(s) • 

'" 
lsi 1> 

Fig. 4.-The effect of scanning a point source illustrated in terms of transforms. 

Figure 4 gives the corresponding diagram for a point source scanned by an 
aerial consisting of a uniformly illuminated aperture for which 

A(ql)=Msi~ ql) 2. 

Since T(ql) is an impulse function, its spectrum T(s) is flat (see Fig. 4). Ta(s)~ 
which contains none of the higher frequencies, and in which the lower frequencies 
have been reduced, is triangular as shown. Ta(ql) has the same shape as A(ql), 
as is obvious. 

Further illustrations of the spectral aspect of smoothing are given in Figure 5t 

which shows two cases of T( ql), a rectangular distribution and a Gau~sian error 
curve. Both true distributions are sufficiently broad, compared with the aerial 
beam, to be fairly well resolved. 
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In all cases Ta(rp) is a distribution which contains no frequencies greater 
than a certain limit. This feature has important repercussions on the possi
bilities of restoration on the one hand and on the other hand has a practical 
bearing on the conduct of surveys. In the following section we discuss the 
properties of such "band-limited" functions. 

VI. A THEOREM CONCERNING OBSERVED DISTRIBUTIONS 

Observed distribution functions Ta( rp), by virtue of containing no frequencies 
greater than a limiting value se' have a property which is of great practical 

(a) 

T(4)) 

IA-"" 

~) 

Ji~ 
.p 

(b) 

; l!l 
lsi 4> 

T(S) 

Ta (s) ~ 
.p 1 _I 

Fig. 5.-The effect of scanning (a) a rectangular and (b) a Gaussian source with the aerial 
pattern A(Ijl). 

significance. An observed distribution is completely determined by measurements 
:spaced at equal discrete intervals which are at least as narrow as t rp c = ts C -1. The 
interval trpe is peculiar to the aerial used for the observations. For example, 
an aerial consisting of an aperture of overall width w has a peculiar interval of 
tAw-I, which in the case of a uniformly fed aperture is numerically equal to 0 ·56 
times the beam width to half power. In this latter case also it is worth men
tioning that the peculiar interval is just half the Rayleigh limit of resolution. 

The peculiar interval theorem is analogous to one now well known in 
communication theory (see e.g. Shannon 1949). The proof given below is novel. 

For the discussion of functions sampled at equal intervals of rp, it is con
venient to define the improper function III( rp) which consists of an infinite 
sequence of unit impulse functions at unit separation, that is, 

00 

III(rp)= ~ a(rp-n). 
n=-oo 
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This useful function is the same as the" row of impulses" of Heaviside (1922), 
who expressed it as the limit of a Fourier series. We find the symbol III con
venient and pronounce it shah after the Cyrillic character. The function III 
has the simple and important property that its Fourier transform is also III. 
This is easily found by taking the limit of the Fourier series for a rectangular 
waveform. The transform of IIl(tpjb) is bIll (bs). .A further notation 
which is convenient when dealing with cut-off functions is TI(s) for the even 
rectangle function of unit height and base; TI(s) is unity for -t <s < f, zero for 
/ s/ > i, and TI( ±t) =i. The function TI(sjb) is a rectangle of unit height and 
base b and its Fourier transform is (7ttp)-l sin 7tbrp. 

LL(~~ 
• ~~sc------------------~Isl 

I III ($) 

IIIIIIIIII~ 1-7 
(b) 

Till (TS) 

l- t l 
• lsi 

III (*) Ta (+) TlIl (75) * fa (s) 

I-~ --l 
(c) 

ill....... L...L..L--'--'-.I..-,' 
(d) 

Fig. 6.-Several functions and their spectra, (a) an observed distribution, 
(b) a special sampling function, (c) sampling the distribution at discrete 
intervals is equivalent to multiplication by the sampling function, 

(d) sampling at the peculiar interval. 

Samples taken at intervals 't' from a function Ta( rp) contain the same informa
tion as III(rp/'t')Ta(rp). This function, which is a sequence of impulses at intervals 
't' and of strength proportional to T a( rp), is illustrated on the left in Figure 6 (c), 
impulse functions being shown as finite spikes of height proportional to their 
integral. 

The Fourier transform of III(rp/'t')Ta(rp) is 't'III('t's)*Ta(s), that is, a function 
formed by repeating Ta(s) at intervals 't'-l. This follows from the convolution 
theorem, or it may be verified directly by calculating the Fourier coefficients 
of the periodic function III('t's)*Ta(s). If Ta is sampled at sufficiently small 
intervals ('t' sufficiently small) the spectrum of III(tp/'t')Ta(rp) will consist of 
well-separated parts as shown on the right of Figure 6 (c). It is evident that, 
as long as 't'-l is greater than 2sc' that is, while the sampling interval 't' is less than 
ftpc' the separate parts will not overlap. Hence, when 't' < !rpc, the exact spectrum 
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of Ta is deducible from the spectrum of III(cp/ .. )Ta(cp), and therefore, finally, Ta 
itself is deducible from the values of T a at intervals 1". 

To recover Ta from III(CP/1")Ta(CP), it is merely necessary to remove all the 
Fourier components with frequencies beyond sc' that is, to multiply the spectrum 
of III(cp/1")Ta(cp) by n(s/2sc)' By the convolution theorem this is equivalent to 
smoothing III(cp/1")Ta(cp) with (7tcp)-1 sin 27tsccp, Since III(CP/1")Ta(CP) is a sequence 
of impulse functions, the smoothing integral reduces, without approximation, 
to a summation. 

In practice, interpolation midway between values of Ta given at the peculiar 
interval iCPc is the most frequently needed process. To do this, first prepare 
a table in which T a appears in a column at unit intervals of <I> -cp/tCPc=2sccp. 
Then tabulate (7t<I> )-1 sin 7t<I> for ± t, ±1 i, ±2 t, etc. in a strip thus: 

1273 

2122 

6366 
--+ 
6366 
2122 

1273 

the spacing being the same as in the table of T a' The decimal points are omitted 
and negative values are indicated by bars. Table 1 gives further values. Place 
the strip alongside the T a column, and the sum of the products of the adjacent 
numbers then gives the interpolated value of Ta opposite the arrow. To establish 
this procedure, put <I> =integer + i and 1" = isc -1 in the general equation for 
recovery of T a' Thus 

T '= sin 27ts/p *III(.r£)T ( ) 
a 7tcp 1" a cP 

sin 27tsccp 
= _ *2scIII(2s ccp)Ta(cp) 

7tScCP 

sin 7t<l> 1 
_ I: ~Ta(-2CPc<l> -cp). 

±<I>-t.1! •... 

This property of the observed distributions, that they are sufficiently 
specified by spot values at intervals, is a direct consequence of the nature of 
aerial diagrams, and is obviously of great importance. For the observational 
programme it implies that (apart from the reduction of errors) nothing is gained 
by taking readings at intervals closer than tcpc = isc-1 = i:AW-1• 

For comput!1tional work the property is equally important as it permits a 
band-limited function to be represented exactly by a set of discrete values. To 
ensure that data used in numerical work are in fact free from high frequencies, 
the data may be first " filtered" by smoothing with 

sin 7t<l> 
~ .. 
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TABLE I 

INTERPOLATING FUNCTION 
---------- ---_._---

I <l) I sin 7t<l) sin 7t<D 
I <l) I 

sin 7t<D I <l) I sin 7t<D I <l) I sin 7t<D 

7t<D 
I <l) I 

7t<D 7t<D 7t<D 7t<D 
-------------1---------------1-------------

! 0·6366 7t -0·0424 I4! 0·0220 2It -0·0148 28! 0·01I2 
It -0·2122 8t 0·0374 15t -0·0205 22i 0·0141 29i -0·0108 
2i 0·1273 9t -0·0335 16t 0·0193 23t -0·0135 30i 0·0104 
3! -0·0909 10i 0·0303 17t -0·0182 24t 0·0130 31i -0·0101 
4t 0·0707 lIt -0·0277 18t 0·0172 25t -0·0125 32t 0·0098 
5i -0·0579 12t 0·0255 I9t -0·0163 26t 0·0120 33t -0·0095 
6! 0·0490 13t -0·0236 20t 0·0155 27i -0·01I6 34t 0·0092 

---_ .. _------ ---

VII. POSSIBILITIES OF RESTORATION 

Having studied the nature of Ais) for practical aerials we are now in a position 
to consider the solution of the integral equation (1). It follows immediately 
from the general discussions of Section III that there is no unique solution. 
From any known solution an infinite set of further solutions can be 
found by adding one of the invisible distributions. These are of the form 
Jf(s) exp (i27trps)ds, where f(s) is arbitrary and the integration extends over any 
values of s for which A(s) is zero. These distributions produce no output when 
scanned by the aerial. 

.An infinite variety of such invisible distributions can be constructed. Those 
illustrated in Figure 7 are as follows: a harmonic distribution with spatial 
frequency beyond the cut-off frequency se; a" wave packet" containing only 
spectral components beyond cut-off; an impulse function from which the low 
frequencies have been removed; and a step distribution from which low fre
quencies have been removed. 

In Figure 8 we have several solutions to a particular problem obtained by 
adding some of these distributions to an already known solution. 

Since the invisible distributions contain no zero frequency component, 
they must all contain negative as well as positive values. In fact, to ensure 
that the aerial receives nothing, they must oscillate from positive to negative 
within the apace of about one beam width. .At first sight it would seem that 
distributions of this type could be disregarded as being physically implausible. 
However, when they are added to other particular solutions the result can be 
acceptable. In particular, the true distribution will contain some such invisible 
distribution whenever its spectrum extends to high frequencies. 

In view of the lack of a unique solution to o_ur problem, it may be asked 
whether any solution can be regarded as the most acceptable representation of 
the true distribution on the basis of the information available. In the past 
solutions ha~Te been obtained by methods of trial or iteration, using as a criterion 
of their approximation to the true distribution only that scanning them with the 
aerial should satisfactorily reproduce the observed curve. If there were only 
one solution, these methods would lead to it, but we now realize that in radio 
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3.stronomy there are many solutions. Unawareness of this fact has led to false 
conclusions about the distribution of solar and galactic radiation. 

If there is no knowledge of T( qJ) other than that contained in T a( qJ), the 
most that can be done is to restore to their full value those (low frequency) 

TI.J 
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T(S) 
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l~ 
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I I 
Sc lsi 

-s, 
Sc 

Fig. 7.-Some invisible distributions (left) and their spectra (right). 

components of T which, while present in T a, have been reduced in amplitude. 
This gives a unique result which we shall call the principal solution, S ( qJ)":' We 
may define it as that solution whose spectrum is the same as the spectrum of 
the true distribution at all values of s for wbich'A(s) #0, that is, 

'Ta(s) 
8(s)= A(s)' 

=0, 

O'(s) #0) ; 

(A(s)=O). 

Figure 9 illustrates this for a typical aerial. 

} ( 4) 
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When there are no errors, the information contained inS is exactly the 
same as that given by an interferometer consisting of two aerials used at all 
spacings from zero up to the aerial width. However, the interferometer gives 

Fig. 8.-A variety of distributions which when scanned with the same aerial all give the 
same result. 

the Fourier components of T directly at their full value, whereas the aerial reduces 
the components so that they must subsequently be restored. As components 

I s I 
Fig. 9.-The relation between S(8) and T(8) for an aerial consisting 

of a uniform aperture. 

near the cut-off frequency are very considerably reduced, the corresponding 
restored values in S are subject to very large errors. With this proviso the 
discussion below of solutions derived from S applies equally to the cases of an 
aerial and of an interferometer with variable spacing. 

The degree of approximation of the principal solution to the true distribution 
depends markedly on the form of T. Thus when T contains no spectral com
ponents at those frequencies for which A is zero, S is identical with T. However, 
when the spectrum of T is still appreciable at the cut-off frequency 8e, the 
resulting discontinuity in the spectrum of the principal solution can cause 
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spurious oscillations in S. The effect of such a discontinuity is illustrated in 
Figure 10 where the principal solution is shown for two examples of T(cp), an 
impulse function and a rectangular distribution. In both cases the principal 
solution has implausible oscillations, and indeed negative values which, in radio 
astronomy, are not physically possible. 

When the principal solution is not a good approximation to the true 
distribution, three general methods are available for deriving a physically 
acceptable distribution which is an approximation to T. In the first approach 
the discontinuity in S, which is responsible for the spurious oscillations in the 

T(4)) 

5(4)) 

T.(4)) 

Fig. lO.-Cases whe>:e the principal solution S(tp) is physically impossible. 

solution, is changed to a smooth transition by reducing all the components below 
8 e by some suitable weighting function. This procedure yields a less oscillatory 
distribution, but at the expense of sharpness. It is commonly used in crystal
lography (Waser and Schomaker 1953) where the advantage of removing spurious 
maxima is considered to outweigh the disadvantage of loss of detail. (The 
information obtained from X-ray or electron diffraction is analogous to that 
obtained in radio astronomy with a two-aerial interferometer of variable spacing.) 
In radio astronomy the observed distribution Ta may be regarded as the result of 
applying such a weighting function, as is illustrated in Figure 9; the method of 
restoring by successive substitutions discussed in Section VIn is a method of 
successively reducing the severity of the weighting factor (Fig. 11). 

A second approach, also sometimes used in crystallography, is to extrapolate 
the restored spectrum § to frequencies beyond the cut-off. The method has 
the advantage that no detail present in § is discarded. However, detail put in by 
extrapolation must be treated with due caution. In radio astronomy this 
method has been used to some extent with variable spacing interferometers 
(O'Brien 1953). 
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A further method is to construct families of physically plausible'distributions 
and to match their spectra to 8(8). The form of the trial distributions can be 
chosen so that the number of parameters to be fitted is as great as the knowledge 
of 8(8) allows. This method has the advantage of using not only all the informa
tion available in 8(8), but also any circumstantial knowledge of the true distribu
tion. In practice one may fit either the spectra, or the values obtained at the 
sampling points when the trial solutions are scanned by the aerial. 

The former case arises when variable spacing interferometers are used. An 
example is furnished by the attempts to find the diameter of the radio stars. 
Thus Smith (1952) measured 8(8) for Cassiopeia and Cygnus and expressed his 
results in terms of the uniform disk whose spectrum agreed best with the observa
tions. This unexceptionable procedure has much to recommend it, especially 
when, as in this case, a small number of parameters is deemed adequate to 
describe the measurements. The statement of the result contains a clear 
indication of the uncertainty. 

VIII. RESTORATION BY SUCCESSIVE SUBSTITUTIONS 

One of the restoration procedures which has already been used in radio 
astronomy is equivalent to solving the integral equation of Section III by the 
method of successive substitutions (see e.g. Lovitt 1950). We study it here for 
its interest as a current procedure and its importance as a way of finding the 
principal solution. The process can be understood as follows. Suppose Tapp 
is some approximation to T. Then it can be tested by scanning it with the aerial 
and comparing the result with Ta. The discrepancy (Ta-A*Tapp ) is taken as a 
first estimate of the difference between Tapp and T. This leads to a further 
approximation 

Tapp+(Ta-A*Tapp)' .................. (5) 

If Ta itself is taken as the initial approximation to T one obtains as the first 
approximate restoration 

T1 =Ta+(Ta-A*Ta)· 

By applying the same procedure to T1 we have a second restoration 

T2=T1 +(Ta--A*T1), 

and the nth restoration is derived from the (n-1)th by the formula 

Tn=Tn-1 +(Ta-A*Tn- 1)· 

In practice the iteration is halted when smoothing the trial distribution with the 
aerial gives a result agreeing with Ta within the experimental error. 

The approximate solution (5) can be written in two alternative useful 
forms. In the first form 

where 

Tn=Ta+ E1 +E2+' .. +En, 

E1 =Ta-A*Ta=(a-A)*Ta, 

<:2=(a-A)*EH 

_ ........ _ .... (6) 
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etc., the successive correction terms being obtained by convolution of the 
preceding correction with 0 -A. In practice, operation on the correction term 
obviates the necessity for comparison with Ta as required in the form (5). In 
the second alternative form the relation is expressed in terms of successive 
smoothings of the observed distribution: 

Tl =2Ta-A*Ta, 

T 2 =3T a-3A*T a +A*A*Ta , 

Tn- 1 =nTa-(~)A*Ta+(~)A*A*Ta+ . .. +A*<n-l)*Ta, . ... (7) 

where A*n=A*A* ... *A, the A appearing n times. van Cittert (1931) obtained 
the formula in essentially this form. 

This elegant procedure, by which one restores smoothed out detail by further 
smoothing, appears to have been introduced into astronomy by van Cittert 
(1931) in connexion with the instrumental broadening of spectra. Bolton and 
Westfold (1950), and (in less explicit form) Hey, Parsons, and Phillips (1948), 
applied it in radio astronomy to correct their surveys of galactic radiation. It 
has since been used in other radio-astronomical applications. 

Bolton and Westfold thought they had proved that the sequence of successive 
distributions converged to the true distribution. But, as we have shown, it is 
in general not possible to recover the true distribution from the observed one. 
We have therefore studied the process and find (i) that the sequence of distribu
tions does not always converge to a limit and (ii) that when it does the limit is 
the principal solution defined in Section VII. Whilst developing the proof which 
follows we had the benefit of a discussion with E. J. Burr. 

The Fourier transform of the nth restoration is, by equation (6), 

1'n(s) ={1 + [l-A(s)] + [l-A(s)J2 + ... + [l-A(s)]n}1'a(s). (8) 

The series enclosed in braces may be recognized as the first n + 1 terms of the 
binomial expansion of {1- [l-A(s)J}-l. Hence, provided that 11-A(s) 1<1, 

li T- ( )_ Ta(s) m s---
n--+oo n A(s) . 

This condition for the convergence of the binomial expansion is not met when 
8=Sk since A(Sk) =0; hut in that case Tn(s) is zero for all n since Ta(s) is itself 
zero (equation (8)). Therefore, when 11-A(s) I <1 for all 8=F8k' Tn(s) tends 
to the spectrum of the principal solution (equation (4)), and Tn tends to the 
principal solution. 

This sufficient condition is met by many aerials. For example, in the case 
of symmetrical aerials, for which A(s) is real, the condition amounts to requiring 
A(s) to be non-negative and <2. Now A(s) cannot exceed 1 on account of the 
normalization of A(<:p). Hence it is sufficient that a symmetrical aerial have 
A(s) non-negative in order that restoration by successive substitutions should 
converge to the principal solution whatever the form of T a. 

It ShOllld be noted, however, that 11-A(s) I <1 for s =FSk is a sufficient 
condition. It is not a necessary condition; consequently convergent results 



AERIAL SMOOTIDNG IN RADIO ASTRONOMY 633 

may be obtained in cases where aerials do not obey it for all values of 8, namely, 
where T~(s) is zero at those values. Should cases of this sort become important, 
each T a would have to be examined individually for convergence. The possibility 

T(S) 

Ta(s) 

T,(s) 

T2(s) 

s(s) 

...... 
............ 

T(1)) 

lsi 

A\ 

........................ 

. Fig. ll.-Successive restorations (right) of It point source, and their 
spectra (left). 

1> 

of Tn approaching S asymptotically, even though ultimately divergent, wouid 
also become important. 

To summarize, the necessary and sufficient condition for convergence is 
that 11-A(s) I <1 for aIls such that 1\(s) *0. 
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The convergence of T n( cp) to the principal solution is illustrated in Figure 11 
for the case of a point source scanned by an aerial consisting of a uniformly 
illuminated aperture. It is seen that the restorations tend towards a distribu
tion of the form cp-l sin cp, which was shown above (Fig. 10) to be the principal 
solution for this case. 

For any T(cp) the spectra on the left may be interpreted as factors which, 
when multiplied into T(8), give T, Ta, TH T2, ••• , §; the distributions on the 
right, on convolution with T(cp), give T, T a, Tl) T 2, . .. , S. The distributions on 
the left may be regarded as weighting functions, in the sense of Section VII; 
the graphs of T a, T)) and T2 show that the reduction of the spurious oscillations 
by drastic weighting is offset by broadening and lowering of the central peak. 
The distributions on the right may be interpreted as the point source responses 
of hypothetical aerials, which, if used to survey a temperature distribution, 
would yield T, T a' Tl) etc. as the observed distribution. 

Several stages of restoration may be performed in a single smoothing 
operation. It is evident from the forms (6) and (7) that we may write 

Tn=Rn*Ta, 

where the n-fold restoring distribution Rn is given by 

Rn =~ +(~ -A) +(~_A)*2 + ... +(~ -A)*n, 

or by 

Rn=(n+l)~-(nt1 )A+(nt1 )A*2_ ... ( _)nA*n. 

For theoretical purposes Rn may be usefully expressed in the closed form 

Rn =Ai*[~ -(~ -A)*(n+1)] , 

where Ai) the inverse of A, is defined by Ai*A=~. Notice that Rn does not in 
general approach a limit as n tends to infinity. When it is known how many 
stages of restoration are likely to be justified, it is possible to go direct to the nth 
restoration by using this formula. However, one should guard against over
restoration which leads simply to an enhancement of errors. In Table 2 we 
give the restoring distributions R2 and R3 for a uniform aperture. 

In this case 

A (<I» ~A(<I» = 1(Sin tn<l»\ 2 
2 tn<l> 

{
2n- 2<1>-2 

_ 1 ' 
- 2' 

0, 

<I> odd, 
<I> zero, 
other integral <1>. 

The normalizing factor makes ~A=l. Table 2 also contains A, A*2; and A*3. 

If for any reason T a contains frequencies beyond the cut-off these will be 
enhanced n+1 times in the nth stage of restoration, as can be shown from the 
form (7). Ta may contain high frequencies due to errors, or high frequencies 
may be introduced by initiating the restoration process with a trial solution 
which contains high frequencies. To avoid the enhancement of such spurious 
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TABLE 2 

THE RESTORlNG FUNCTJONS R2 AND Ra FOR A PLANE APERTURE FED UNIFORMLY AND IN PHASE. 

THE RESPONSE TO A POINT SOURCE A AND ITS SUCCESSIVE SELF-CONVOLUTJONS A*2 AND AU ARE 

ALSO TABULATED 

I <I> I A A*2 A*a R2 Ra 

0 0·5000 0·3333 0·2500 1·8333 2·0833 
I 0·2026 0·2026 0·1808 -0·4053 -,--0-5861 
2 0·0000 0·0507 0·0760 0·0507 0-1267 
3 0·0225 0-0225 0-0323 -0-0450 -0-0773 
4 0·0000 0·0127 0-0190 0-0127 0-0317 
5 0·0081 0·0081 0·0120 -0-0162 -0-0282 
6 0-0000 0-0056 0-(1085 0-0056 0-0141 
7 0·0041 0-0041 0-0062 -0·0083 -0·0144 
8 0·0000 0-0032 0-0048 0-0032 0·0079 
9 0·0025 0-0025 ()-OO37 -0-0050 -0-0087 

10 0·0000 0-0020 0-0030 0·0020 0·0051 
II 0·0017 0·0017 0·0025 -0-0033 -0-0058 
12 0·0000 0-0014 0·0021 0-0014 0-0035 
13 0·0012 0·0012 

I 
0·0018 -0·0024 -0·0042 

14 0·0000 0·0010 0·0016 0-0010 0-0026 
15 0·0009 0·0009 0-0014 -0-0018 -0·0032 
16 0·0000 0·0008 0-0012 0-0008 0-0020 
17 0-0007 0-0007 0-001l -0-0014 -0·0025 
18 0·0000 0-0006 0·0009 0-0006 0-0016 
19 0·0006 0·0006 0·0008 -0-001l -0,0020 
20 0·0000 0-0005 0-0008 0-0005 0·0013 
21 0·0005 0·0005 

i 
0·0007 -0-0009 -0,0016 

22 0-0000 0-0004 0-0006 0-0004 0-001l 
23 0·0004 0-0004 0-0006 -0-0008 -0-0014 
24 0·0000 0-0004 0-0005 0-0004 0·0009 
25 0·0003 0·0003 0·0005 -0,0006 -0'001l 
26 0·0000 0·0003 0·0005 0-0003 0·0008 
27 0·0003 0·0003 0·0004 -0-0006 -0·0010 
28 0-0000 0·0003 0·0004 0-0003 0·0007 
29 0·0002 0-0002 0-0004 -0·0005 -0-0008 
30 0·0000 0·0002 0-0003 0·0002 0·0006 

--

components, it is therefore necessary to filter the initial data as outlined in 
Section VI. Then the numencal work should be carried out at the critical 
interval to prevent the introduction of further high frequencies drning the 
calculations. 

IX. APPLICATION TO THE QUIET SUN 
(a) Data 

In this section the foregoing theory is illustrated for a practical case. The 
A( rp) is that of the central beam of the high -resolution aerial developed by 
Ohristiansen (1953) and is closely of the form rp-2 sin2rp. It has a beam width 
to half power of 3 min of arc and a beam width between zeros of 6·50 min. 
The peculiar interval trpc is therefore 1·62 min~ The angle rp measured in units 
of this peculiar interval is denoted as before by <p, Integral values of <P are 

H 
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then sufficiently closely spaced to define the band-limited functions. In terms 
of this normalized angle the aerial response is that given in the second column 
of Table 2. 

For the observed distribution Ta we are indebted to Dr. Christiansen for 
providing a graph representing the quiet Sun (see the thin curve of Fig. 13). 
From this graph we have read off Ta at intervals to obtain Table 3. Ta is 
symmetrical, and zero outside the range given. The limits of error quoted 
were ±0·020 (.x> <10) and ±0·030 (.x> >12) whilst, on the steep portion 
10<.x><12,.x> was subject to error up to ±0·2. 

1Sl/18Se Ta 5 IsI/18Se Ta 5 J 
0 35'544 35·544 10 -0·'06 -0·2381 

1 16'134 17·083 11 0"363 0'934 

2 -5·559 -6·254 12 -0·082 -0,245 

3 -2·'87 -2·624 13 -0·'52 -0'547 

20 
4 2·987 3·841 14 0·085 0·383 

5 -0·116 -0'161 15 0·028 0'170 

6 -1·517 -2·276 16 -0·036 -0·322 

7 0·659 1·079 17 0·000 -0·006 
10 

8 0-590 1'062 18 0·000 -
9 -0·594 -1'188 

Se 

,....-.......,~~ I ~ '. -=-~ ~ " 

Fig. 12.-Distribution across the quiet Sun (Christiansen and Warburton 1953). The spectra 
of the observed distribution Ta and the principal solution If (above) and the difference 

between them (below). 

The data Ta should be free from Fourier components of period shorter than 
CPc' but the reduction processes intervening between the actual records and the 
adopted T a , especially the subtraction of sunspot effects, might well introduce 
high frequencies. In the present case it was found that no correction for high 
frequencies needed to be made. In the following work we therefore adopt 
for our observed distribution the band-limited function defined by Ta(.x» , with 
.x> integral. 

(b) Restoration and the Spectrum 
We now attempt restoration by using the Fourier transforms of the two 

functions A and Ta. The Fourier transform of A(cp) is the triangular function 

A(s) =1-1 sfsc I, 
=0, 

lsi <s<) 
Isl>sc· 
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The transform of Ta must be computed numerically. By our previous results, 
we may compute instead the transform of III(<D)Ta' and the Fourier integral 
then reduces without approximation to a summation of products. For each value 
of s there are 18 products as only 18 of the sequence of numbers defining Ta 
are non-zero. The transform of T a , shown by the heavy curve in Figure 12, is 
oscillatory and decays to zero amplitude at the cut-off frequency se' (For 
reference the calculated values have been tabulated on the figure.) 

TABLE 3 

THE BRIGHTNESS DISTRIBUTION ACROSS THE QUIET SUN AT 21 CM (CHRISTIANSEN AND WARBURTON 

1953). THE OBSERVED DISTRIBUTION Ta AND THE PRINCIPAL SOLUTION S 

<I> 
I T" I 

S <I> Ta S <I> Ta S 
-. ---

0 1·000 1·018 1·005 13 0·115 0·084 
1·000 7 1·005 1·024 0·087 

1 1·001 1·019 1·005 14 0·064 

I 

0·027 
1·001 8 1·004 1·036 0·047 

2 1·001 1·020 1·004 15 0·034 I 0·012' 
1·002 9 1·002 1·089 0·024 

3 1·002 1·022 0·966 16 0·015 -0·007 
1·003 10 0·854 0·995 0·008 

4 1·003 1·024 0·680 17 0·004 -0,013. 
1·003 11 0·490 0·440 0·000 

5 1·004 1·029 0·324 18 0·000 -0'014 
1·004 12 0·212 0·120 0·000 

6 1·004 1·028 0·153 19 0·000 -0· on 
I 

]'rom 'fa and A, j§ may be calculated by division. It is shown as the light 
curve in Figlll'e 12. The difference curve § -Ta shows the spectral distribution 
of the correction applied. The amplitudes of the Fourier components near the· 
cut-off frequency are small, even after restoration. 

To obtain the principal solution S it is now necessary to transform 8. 
Unfortunately the distribution S is not of finite extent, so that values of Ii at 
discrete intervals do not fully define S. It is therefore necessary to know S· 
at sufficiently small intervals of s to permit evaluation of the transform of § by 
numerical integration. On the other hand the Fourier integral need be 
evaluated at discrete intervals only. However, the labour involved in estab
lishing 8 and transforming it is formidable. For interest we show by the heavy 
line in Figure 13 the result of transforming III(18s/se )S(s), that is, substituting: 
for the Fourier integral of S a summation based on the 18 spot values of j§ given 
on Figure 12. The oscillations A, B, 0 prove to be spurious and arise from thee 
use of too coarse an interval of s. 

(c) Successive Substitutions 

Restoration of Ta by the method of successive substitutions is illustrated 
in Figure 14. The figlll'e shows T a, with the limits of uncertainty indicated by 
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shading; A*Ta ; the successive corrections <:1' <:2' <:3; and the corresponding 
restorations TH T 2, Ta. All the smoothing processes were computed using 
discrete values of the variables. From the three successive stages of restoration 
which are illustrated it may be seen that the corrections rapidly drop below the 
significant level. If Ta is tested by forming A*T, it is found to differ from Ta 
by <:4 which is so small that A*Ta, if plotted to the scale of Figure 14, would 
bal'ely be distinguishable fromTa • 

A B c 

o 9 18 <!> 

Fig. l3.-The observation distribution Ta (thin curve). the 
principal solution S (dotted curve), and an approximation to 
the principal solution obtained by restoring the transform of 

Ta (heavy curve). 

It is not necessary in practice to obtain all the curves plotted in Figure 14, 
which was constructed simply to illustrate the process. Using the method 
outlined in Section VIII, Ta may be obtained directly from Ta in one step. 

In order to ascertain the principal solution with some accuracy, for the 
purpose of checking different proposals for approximating to it, we have carried 
the process to the 11th stage. The distribution so obtained is labelled S in 
'Table 3 and is plotted as a dotted curve in Figure 13. One may verify that it 
is in fact the principal solution by scanning it with the aerial pattern. The 
result agrees with Ta to within one unit in the last decimal place at all integral 
-values of <D. The values of S between the tabulated values are to be understood 
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as those given by the method of interpolation described in Section VI; conse
quently S is free from frequencies beyond 8e• The order of accuracy of this 
determination of S is of course much better than the 20 or 30 units in the last 
decimal which the accuracy of the observations would justify. 

,.oooks??????~@~ 

Ta 

0·800 

0·600 

0·400 

0'200 

I -~ ~ 
o 5 ~15A 

Fig. l4.-The observed distribution Ta' the successive corrections E1, E2• E3' and the 
successive restorations T 1, T 2, T •. 
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