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Abstract 

The group V semimetals are first introduced by comparing their particular band structure with 
the more familiar typical metals or semiconductors. Recent results on the electrical resistivity, 
thermal conductivity and thermopower of bismuth, antimony and arsenic are reviewed, with particular 
emphasis on measurements performed at low and ultralow temperatures. The data are analysed in 
terms of the peculiar features of the electron and phonon scattering, and reference is made to the 
band structure and rhombohedral symmetry. Recent improvements in the interpretation of the 
results are discussed. 

1. Introduction 

Solid state physics owes to semimetals, and especially to bismuth, many of the 
sophisticated techniques currently used nowadays to probe the Fermi surface and 
the band structure of crystalline solids. Most of the sharpest tools in the armoury 
of experimentalists, such as quantum oscillatory techniques (de Haas van Alphen, 
Shubnikov de Haas, ... ), were indeed discovered on bismuth. This is no accident, 
since its particular properties facilitate the observation of such effects. In 1821, 
Seebeck discovered his effect on a bismuth-antimony thermocouple. This was only 
the beginning of a long chain of exciting discoveries named after their authors-Hall, 
Ettingshausen and Nernst-which constitute the essentials of what we nowadays 
classify under the heading of transport effects. Despite the enormous amount of 
experimental work which was subsequently performed on bismuth, and to a lesser 
extent on antimony, however, the elementary transport properties such as the electrical 
and thermal conductivities and thermopower have not yet been correctly interpreted, 
and the scattering mechanisms in these materials still remain a challenge to our 
understanding. 

Only recently was it realized that research on semimetals held something more than 
the excitement of the discovery of spectacular effects, and that time-consuming 
systematic experimental measurements, associated with some tedious algebra, might 
prove rewarding in yielding valuable information about the band parameters and in 
uncovering the hills and dales of the Fermi surfaces. This is particularly true in the 
temperature range that cannot be explored by the more powerful quantum effects, 
i.e. above the liquid helium temperature range. 

Most of the properties that distinguish the group V semi metals from the less 
exotic isotropic metals or semiconductors are due to their particular crystallographic 

* Paper presented at the AlP Solid State Physics Meeting, Wagga Wagga, N.S.W., 7--9 February 1979. 
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structure. This structure, which is rhombohedral, may be considered as a slightly 
distorted cubic one, and this distortion is responsible for the. overlap between the 
conduction and valence bands. The overlap is, however, much smaller in semimetals 
than that which occurs in some metals. 

The Fermi surface of the group V semimetals is known with great accuracy at 
low temperatures. In bismuth and antimony, it was found to consist of sets of ellipsoids, 
whose sizes, locations and tilt angles in momentum space have been correctly 
determined. In arsenic, the Fermi surface has a whimsical shape reminiscent of a 
drawing from some schizophrenic artist. Fortunately, for the purpose of analysis 
of transport properties it can be approximated by ellipsoids. Non-parabolicity has 
been detected for some of the bands in bismuth and this has been found to affect the 
transport properties. What we do not know yet is how these Fermi surfaces are 
modified when the temperature increases above the liquid helium range. The problem 
is not critical for arsenic and antimony below room temperature, since the situation 
is comparable with that of metals, i.e. a temperature-independent Fermi surface 
and carrier popUlation may be assumed. For bismuth, however, this assumption 
is not valid and we require the transport coefficients to obtain some information 
about the temperature dependence of the Fermi energies. Unfortunately, for this 
purpose, we need to make some reasonable assumptions about the scattering processes, 
and this is not easy. 

In the study of transport properties, one is concerned with particles whose 
movement, initially isotropic, is directed in a preferred orientation under the action 
of external forces. The particles concerned here are electrons and holes, which 
are best described by their Fermi surfaces, and phonons, whose dispersion relations 
may be determined experimentally. Collisions tend to bring the particle system back 
into equilibrium and the relaxation time is the essential parameter describing the 
process. In the temperature range in which we are interested here, i.e. below room 
temperature, the charge carriers are scattered by phonons, impurities and boundaries. 
The phonons are mainly scattered by other phonons, impurities, boundaries and 
eventually by charge carriers. One particular case, which needs to be considered 
for group V semimetals, is where there is an anisotropic transfer of momentum 
between the phonon and charge carrier systems leading to the so-called phonon­
drag effects. 

We shall be mainly concerned here with three essential transport properties: 
the electrical resistivity p, the thermal conductivity K, and the thermopower (X. 

Although the effect of magnetic field will be briefly discussed, we shall mainly 
concentrate on the zero-field coefficients, since they are easier to visualize. From 
symmetry arguments, it may be shown that, for the three zero-field transport 
properties, the tensors have only two components, one along the trigonal axis that we 
shall denote PII' KII and (XII' and one in the plane perpendicular to this axis (the trigonal 
plane) that we shall denote P.1' K.1 and (X.1. For the charge carrier spectrum, two 
distinct temperature regions will be considered: one which may be described as 
fully degenerate, that we shall call the 'degenerate' region, and one for which exact 
Fermi-Dirac statistics should be used, that we shall call the 'partially degenerate' 
region. Practically, for arsenic and antimony we are in the degenerate region up 
to room temperature, while for bismuth this will only hold below '" 60 K. Above 
this temperature, we are in the partially degenerate region for bismuth and the 
situation will be far more complicated to analyse. 
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The present survey is mainly addressed to solid state physicists who are not 
familiar with semimetals. This is why, when possible, we will be comparing the 
properties discussed with those of the more familiar semiconductors or metals. 
A study of the transport properties of group V semi metals is not only interesting 
per se but also introduces some particular situations that do not occur with other 
solids. As an example, it is the only way to study a partially degenerate system, or 
a compensated material, without having dominant impurity scattering. Also, by 
comparing the properties of the three group V semimetals, one may observe how 
a given property varies in a fully degenerate system when the Fermi energies vary 
by orders of magnitude. In the particular field of thermal conductivity, one has the 
opportunity to examine different low temperature mechanisms for heat conduction 
in the same material. 

Throughout the following text, we shall lean heavily on the physics of the different 
effects under study, rather than on their formal representation. We shall thus keep 
the mathematics at the lowest possible level that is compatible with the complexity 
of the situations involved. Also in what follows, bismuth will be given particular 
attention for two reasons: The more obvious one is that it is the material which has 
been the most extensively studied because it is very easy to grow while, at the other end 
of the scale, arsenic is very difficult to obtain in the form of single crystals and is 
delicate to handle. The other reason is that bismuth is the most typical semimetal, 
or rather the most semimetallic of the group, since it has by far the lowest carrier 
densities. The other two semimetals, arsenic and antimony, behave almost like 
typical metals below room temperature, the range for which most of the experimental 
data are available. 

2. Band Structure 

The group V semimetals are mainly characterized by their rhombohedral crystal 
structure, which is responsible for the small overlap between the valence and con­
duction bands (Fig. 1). This leads to the presence of a small equal number of electrons 
and holes at all temperatures (Fig. 2). 

The band structure at 0 K and the electronic parameters of the group V semimetals 
are quite well known now and have been reviewed extensively (e.g. Boyle and Smith 
1963; Dresselhaus 1971; Edelman 1976). We wish to show here how the anisotropy 
due to the rhombohedral crystal structure, and the band structure resulting from the 
distortion from cubic symmetry, distinguish the group V semimetals from the more 
commonly known isotropic insulators or metallic conductors. 

(a) Comparison with other crystalline solids 

The difference between an insulator and a semiconductor is of a quantitative 
nature: it is only the magnitude of the energy gap which distinguishes between them. 
A particular case of semiconductors is that of the narrow-gap materials;* their 
gap is usually less than a few tenths of an electron-volt while in a typical semiconductor 
it is nearer to 1 eV. All three types of materials are insulators at 0 K. On the other 
hand, semimetals, as well as metals, are good conductors at 0 K. It is the degree of 
overlap between the valence and conduction bands that differentiates between them 

* It would be interesting to compare the properties discussed here with those of the narrow-gap 
semiconductors, since they have some common features with the group V semimetals (Zawadzki 1974). 
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Fig. 1. Comparison (a) of the band structure of semimetals with that of other crystalline 
solids at low temperatures, namely metals with a high electronic population and insulators 
with a large energy gap. The band structure of bismuth at 0 K is represented in (b); here 
GFe, GFh and GFl are the Fermi energies of electrons, heavy holes and light holes respectively, 
while e. is the direct energy gap. 

or, in other words, the density of free carriers at 0 K. While the Fermi energies are 
of the order of eV in metals, they are usually below a few tenths of an e V in semimetals 
(Table 1). The Fermi energies of electrons or holes are specified with respect to 
the energy extrema in the corresponding electron and hole carrier pockets, as indicated 
in Fig. 1. In this figure, the band structures of various kinds of crystalline solids 
are also schematically represented. It may be seen how the band structure varies 
from the typical metal, i.e. a partially filled band at 0 K which may be due to a large 
overlap, to an insulator with a large energy gap. The difference in the electronic 
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Fig. 2. Comparison of the 
temperature variation of the carrier 
density n of group V semimetals 
with that of a metal (copper) and a 
typical semiconductor (silicon, with 
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Note that below room temperature, 
arsenic (Jeavons and Saunders 1969) 
and antimony (Oktti and Saunders 
1967a) have an almost temperature­
independent carrier density like 
metals. In bismuth (Michenaud and 
Issi 1972) this is the case at very low 
temperatures but at higher 
temperatures the carrier density 
increases with temperature, as is the 
case for silicon above and below the 
exhaustion region. 

Table 1. Band parameters for carriers in semimetals at liquid helium temperatures 

589 

Of the parameters listed, tPe and tPh are the tilt angles of the electron and hole ellipsoids respectively, 
Nv is the number of valleys in the Fermi surface, and the other symbols are explained in the text 

Semimetal m1' m2' m3' tPe(2 ...... 2') tPh(3 ...... 2') 8F n =pA Nv 

carriers (mo units) (mo units) (mo units) (deg) (deg) (meV) (cm- 3 ) 

Bismuth 
electrons 0·00119 0·266 0·00228 6·0±0·2 27·2 2· 7(17) 3 
holes 0·064 0·064 0·69 0 10·8 2·7(17) 1 

Antimony 
electrons 0·093 1·14 0·088 -4 93·1 3·74(19) 3 
holes 0·068 0·92 0·050 53 84·4 3 ·74(19) 6 

Arsenic 
electrons 0·135 1·52 0·127 -4 202 2(20) 3 
0( holes 0·106 1·56 0·089 37·5 154 2(20) 6 
y holes 0·046 0·016 -1·82 -9·6 21 ~ 3(18) 6 

A Values in parentheses are the power of the 10 multiplier, i.e. 2·7(17);: 2·7x 1017• 

structure between a metal and a semi metal will have important consequences for the 
transport properties. Firstly, in comparison with metals, a smaller density of carriers 
will lead to a smaller conductivity (see Section 3a below) and eventually to relatively 
important densities of thermally excited carriers at higher temperatures, when 
compared with the density of carriers initially present at 0 K. This is particularly 
true for the case of bismuth, which is 'metallic' at low temperatures and has an 
increasing carrier population at higher temperatures, as is the case for semiconductors. 



590 

(a) 

k·'-· 
1 

(b) 

+3 
I 
I 

Fig. 3. Fermi surfaces of the group V semimetals: 

2' 
...-7 ....- . ...-r;; 

-r":'~2 
.-.-.~ 

2 

=~~l F'z, 
.-.. 

2 

(a) Location of the Fermi surfaces of bismuth in the Brillouin zone: the holes at 
T points and the electrons at L points. Note that the volume of each ellipsoid 
is approximately 10-5 that of the Brillouin zone. 

(b) Location of the Fermi surfaces of arsenic and antimony in the Brillouin zone; 
e and h are the electron and hole pockets respectively. 

(c) Hole Fermi surface of arsenic centred at the T point of the Brillouin zone. 

In (a) and (b), rP. and rPh are the tilt angles of the electron and hole ellipsoids. 
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A smaller carrier density will also facilitate the observation of quantum oscillations 
at low temperatures and allow the transport properties to be drastically altered by 
doping. The second consequence is that a very small direct band gap, when present, 
will be responsible for non-parabolicity of interacting bands, as is the case for some 
narrow-gap semiconductors. Thirdly, a band structure that is very sensitive to 
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Fig. 3c [see caption on facing page] 

temperature (Vecchi and Dresselhaus 1974), as is the case for bismuth, can be expected 
to have important effects on the transport properties. In other solids, it is usually 
a good approximation to assume that the band structure is temperature independent. 
These considerations will now be put into a quantitative form. 

(b) Dispersion relation 

While the valence band of bismuth together with both the valence and conduction 
bands of antimony and arsenic have been up to now successfully described by a 
simple parabolic model, there have been many models proposed for the dispersion 
relation of the conduction band of bismuth. This has resulted from the experimental 
observation of an effective mass variation with energy in the conduction band (Keyes 
et al. 1956), which has been attributed to the presence of a very small energy gap Bg 

between the conduction band and a lower lying valence band at the L point of the 
Brillouin zone (Fig. 3a), which leads to a non-parabolic dispersion relation. The 
various dispersion relations proposed for these bands have been recently reviewed by 
Mc Clure and Choi (1977). We shall only retain here those relations which are 
the most commonly used, since they have a direct impact on the transport properties 
in which we are interested. 

(i) Parabolic Model 

Except for the conduction band of bismuth, the dispersion relations for the con­
duction and valence bands of the three group V semimetals are parabolic. This 
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means that the ellipsoidal isoenergetic surfaces in k space are described by the well­
known relation 

s(k) = (h2/2mo)km-1 k, (1) 

where s is the energy, mo the free electron mass and m-1 a symmetric dimensionless 
reciprocal effective mass tensor. Since the principal axes of the isoenergetic surfaces 
are usually tilted with respect to the crystallographic axes, one should specify the 
frame of reference for m -1, that is, either the crystallographic axes or the principal 
axes of the energy surfaces. In the latter case one may write 

lm1 ' 0 0 1-1 

m-1 = 0 m2 , 0 

o 0 m3' 

(2) 

where m 1" m2, and m3' are the components of the effective mass tensor expressed in 
units of mo. In Table 1, the effective masses of the group V semi metals are given 
at 0 K. A representation of the Fermi surfaces of the three group V semi metals is 
given in Fig. 3. 

(ii) Non-parabolic Models 

The infrared cyclotron resonance measurements of Keyes et al. (1956) suggested 
that the effective mass m* cannot be taken as a constant for the band, but instead is a 
function of the energy s. Thus, if m is an effective mass tensor element at the band 
extremum, then 

m*(s) = m(1 + 2s/sg). (3) 

This expression was first derived by Kane (1957) for indium antimonide and later 
applied to bismuth by Lax and Mavroides (1960) using a k.p perturbation technique. 
The dispersion relation in this case takes the more general form 

y(s) = (h2/2mo)km-1 k, (4) 

where m- 1 is now the reciprocal effective mass tensor at the band extremum. 
Equation (4) is similar to (1) except that y(s) is now a function of the energy: 

yes) = s(l + Gjeg). (5) 

This relation describes what is usually called the 'Lax model'. In this model the 
isoenergetic surfaces are still ellipsoids in k space and they may be represented 
by combining equations (4) and (5) to give 

s(k) = +l(S2 +2s h2m- 1 km- 1 k)t _ls -2 g g 0 2 g' (6) 

The Lax model is thus also called the ellipsoidal non-parabolic (ENP) model. 
Cohen (1961) developed a non-ellipsoidal non-parabolic (NENP) model which 
takes into account the experimental fact that the electron mass component m2 , is 
much larger than the other two components m1 , andm 3 ,. Since the transport properties 
are not very sensitive to the differences between the ENP and NENP models, we 
shall hereafter use the first model (ENP) which has the advantage of being relatively 
easier to handle in some instances. 
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(c) Pseudo parabolic model 

The pseudoparabolic model uses the Lax dispersion relation to consider the 
scattering of electrons in bismuth. It was recently derived by Heremans and Hansen 
(1979) and it accounts for the effect of non-parabolicity in both the density of states 
and the electron-phonon matrix element. 

In the previous section the non-parabolicity was taken into account in deriving 
the dispersion relation of the conduction band of bismuth. However, the existence 
of the L-point direct energy gap will also affect the wavefunctions of the carriers. 
These will become a linear combination of functions describing the interacting bands. 
Since the coefficients of this combination are energy dependent, so will be the 
electron-phonon matrix element, and this must be taken into account in the analysis 
of the transport effects. Ravich et al. (1971) and Zawadzki and Szymanska (1971) 
first introduced this concept and derived the relevant expressions for the case of 
narrow-gap semiconductors, namely the lead chalcogenides and indium antimonide 
respectively. This model, when applied to bismuth in the degenerate region, was 
successful in reconciling, after two decades of controversy, the theory of the diffusion 
thermopower with the experimental results around 60 K (see Section 5a). 

(d) Fermi energies 

One important thing to take into account in the study of semimetals is the relative 
magnitude of kB T with respect to eFe and eFh, the Fermi energies for electrons and 
holes respectively. This will determine the degree of degeneracy of the carrier 
statistics, and in this respect arsenic and antimony will be quite different from bismuth. 
For arsenic and antimony one may reasonably assume that eFe and eFh are much greater 
than kB T below room temperature and thus use fully degenerate statistics to describe 
the situation. This will also apply to bismuth below about 60 K, and the situation 
will not be much different from that encountered in typical metals; i.e. t4e carrier 
density will remain almost temperature independent in this range (Fig. 2). This 
will simplify the interpretation of the temperature dependence of the transport 
properties. However, for bismuth above 60 K we can no longer assume eFe. eFh ~ kB T, 
and exact Fermi-Dirac statistics must be used to describe the carrier system. Also 
the carrier density is temperature sensitive and increases by about an order of mag­
nitude from 4·2 to 300 K (Fig. 2), a situation qualitatively similar to that encountered 
in semiconductors. The origin of the increase of the carrier density with temperature 
in bismuth is not yet fully understood. 

The density of carriers (n or p) may be determined from the measurement of the 
galvanomagnetic effects (see Section 6b). From this result the Fermi energies may 
be evaluated at a given temperature provided the effective masses are known. For 
parabolic bands, the density of free carriers per valley is given by 

) 3/2 roo 
n = 81t(2~~ (detm)1/2 Jo e3/ 2(-afo/ae) de, (7) 

where 10 is the equilibrium Fermi-Dirac distribution function 

10 = (1 +exp{(e-eF)/kB Tn -1. (8) 
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For eF ~ kB T, the expression (7) reduces to (Heremans and Hansen 1979) 

n = {8n(2mo)3/2/3h3} (detm)1/2 e~/2. 
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(9) 

This relates to the Fermi energy the electron and hole density in arsenic and antimony 
below room temperature, and the hole density in bismuth below 60 K. If, however, 
we have eF ,..., kB T, the full expression (7) has to be used, and this will relate to the 
Fermi energies the hole density in bismuth above 60 K. It will also apply to electrons 
and holes in antimony above room temperature. 

For the electron band in bismuth, we must take into account the non-parabolicity. 
In this case, the expression for the carrier density per valley reads 

n = {8n(2mo)3/2/3h3}(det m)1/2 fooo y3/2(e)( - ol%e) de 

and, for eF ~ kB T, 

n = {8n(2mo)3/2/3h3}(det m)1/2 y3/2(eF)' 

This is identical with equation (9) except that e~/2 is now replaced by y3/2(eF)' 
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Fig. 4. Temperature variation of the L-point direct energy gap B. of bismuth 
(from Vecchi and Dresselhaus 1974). The gap has a value of 13·6 meV at low 
temperatures and reaches 37 meV around 300 K. 

(e) Temperature variation of band parameters 

(10) 

(11) 

The effective masses and Fermi energies may be determined accurately in the 
liquid helium range by using the sophisticated armoury of quantum oscillatory 
effects (see e.g. Dresselhaus 1971). Once this is achieved, one may reasonably assume 
that these parameters will remain unchanged up to room temperature in antimony 
and arsenic. Until 1974, this was usually accepted for bismuth too. However, by 
extending their magnetooptical measurements up to room temperature, Vecchi and 
Dresselhaus (1974) were able to observe a drastic variation of the band parameters 
with increasing temperature. In Fig. 4, the variation of eg with temperature is repre-
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sented. It may be seen that, at room temperature, 8g is about thr·ee times larger than 
at 4·2 K. The temperature variation of the gap may be expressed as 

8~ = 8110 +2·1 X 10- 3 T +2,5 X 10- 4 T2 meV, (12) 

where egO is the value of 8g at 0 K (8go = 13· 6 me V). Since this is the smallest gap 
whose temperature dependence has ever been measured in solids, one general 
conclusion may be drawn at this stage. If one refers to measurements performed on 
a large number of semiconductors (Bube 1960), the absolute variation of the energy 
gap per unit temperature (Table 2) is generally of the same order for most of the 
crystalline solids. However, the relative increase or decrease with respect to the 
OK value 8g0 may vary drastically from one solid to another. While in typical 
semiconductors, such as germanium or silicon, the relative effect is usually very 
small and may be neglected in the analysis of transport properties, in narrow-gap 
materials, and especially in bismuth, the relative effect is dramatic. Note also that 
a general trend in semiconductors is that small effective masses are associated with 
small energy gaps and bismuth is no exception to this general rule (Table 1). 

Table 2. Absolute and relative energy gap variation per unit temperature in 
some typical solids 

Material 

Si 
Ge 
PbTe 
InSb 
Bi 

Absolute Ila variation 
P (l0-4 eVK-l) 

-4 
-4·5 
+4 
-2·7 

~+lA 

Ila at 0 K 
llaO (eV) 

1·1 
0·7 
0·31 
0·18 
0·013 

Relative 118 variation 
P/Ilgo (l0-4K-l) 

-3·6 
-6·4 
+13 
-15 
+77 

A This is only a rough estimate since the variation of 118 with T in bismuth is 
not linear (equation 12). 

In bismuth, the effective masses at the band extrema are also very sensitive to 
temperature (Vecchi and Dresselhaus 1974). However, since the bisectrix mass m2 

is much larger than the two other masses (m1 and m3), it is less accessible experi­
mentally. So, in order to deduce the Fermi energies from equation (10) in the higher 
temperature range, one must speculate about the temperature variation of m2 • 

This considerably complicates the analysis of the transport properties of bismuth 
above 60 K (Heremans and Hansen 1979). It is worth noting that, while the masses 
at the bottom of the band increase with increasing temperature, the effect of the gap 
variation 8g tends to decrease the non-parabolicity of the band (equation 3) with 
increasing temperature. These combined effects should be considered when evaluating 
the variation with temperature of the effective mass at a given energy. 

At this stage, one may rightly question the relevance of using the effective mass 
concept when describing the properties of electrons in bismuth. In fact, when it 
was first introduced for semiconductors, this concept had the obvious advantage of 
simplifying our understanding of the dynamic behaviour of the charge carriers by 
taking into account, using a constant parameter, all the lattice forces acting on them. 
When, as is the case now, we find that, in order to be consistent with new experimental 
observations, the effective masses must vary with energy and with temperature, 
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we should consider revising the position and treat the transport properties in a more 
formal way. 

Another consequence of the smallness of the gap Bg is that, when kB T becomes 
comparable with Bg, direct excitation is expected to occur from the light hole band 
to the electron band, thus allowing additional carriers to contribute to transport 
phenomena. This is a situation similar to that occurring in narrow-gap semiconductors 
and one could apply the same formulae to estimate the density of carriers so excited, 
provided allowance was made for the temperature variation of the energy gap. 
Up to room temperature, the density of these carriers should not exceed about 10 % 
of the total population. * The additional electrons generated will thus not affect to 
a great extent the overall qualitative behaviour of the conduction band. With regard 
to holes, since the light holes generated at the L point have different characteristics 
from those dominating the scene, namely the T holes, they may affect drastically 
some of the transport properties. A useful comparison could be made with the situation 
prevailing in p-type germanium, except that for this case the extrema of the two bands, 
namely light and heavy holes, coincide in k space. 

3. Electrical Resistivity 

The enormous magnetoresistance and Hall effect of bismuth facilitated to a 
great extent the early observations of these effects. The effects are indeed much more 
pronounced in this material than in typical metals or even in the two other group V 
semimetals, and only rather simple experimental set-ups were needed for the measure­
ments. These dramatic effects stem directly from the very high carrier mobilities, 
especially at low temperatures. Increases in resistivity in a magnetic field, exceeding 
by 106 times their zero-field value, were reported in the liquid helium range (Alers 
and Webber 1953). Less spectacular, and more tedious for the experimentalist, was 
the systematic investigation of the low-field galvanomagnetic effects, which relied 
on the measurement of minute effects. However, these studies proved very rewarding 
since the results were found to be a useful basis for determination of the temperature 
variation of the band parameters (Abeles and Meiboom 1956; Oktti and Saunders 
1967a; Jeavons and Saunders 1969; Michenaud and Issi 1972). 

In isotropic monovalent metals or extrinsic semiconductors, where only one type 
of carrier is present, the carrier density n and mobility /l may be readily determined 
experimentally by measuring the Hall coefficient 

R = +(en)-l H - , (13) 

from which n is directly available, and the electrical resistivity 

p = (en/l)-l , (14) 

from which the mobility is deduced once n is known. In group V semimetals, although 
the same types of relations are still applicable, the strong anisotropy, as well as the 
simultaneous presence of at least two types of carriers, lead to complicated relations 

* Note that the temperature variations of the carrier densities in bismuth represented in Fig. 2, 
which are the values generally accepted, were obtained by assuming only two-band conduction in 
this material (Michenaud and Issi 1972). 
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between the measured coefficients and the electronic parameters. Also, an increase 
in the number of necessary experiments will be required. 

The galvanomagnetic effects will be discussed in Section 6a below. However, 
we shall start by reviewing in more detail the zero-field resistivity, since it allows a 
better physical insight into the scattering mechanisms in the group V semimetals. 

(a) Anisotropy and temperature variation 

The results of measurements of the temperature variation of the resistivities of 
the three group V semimetals are rather puzzling and still only partially explained. 
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Fig. S. Temperature variation of the electrical resistivity p of the three group V semi­
metals. Note that the anisotropy of the ideal resistivity is not very large for group V 
semimetals around room temperature, and that it almost disappears at low temperatures. 
The insert shows the start of the decrease in resistivity of a binary arsenic sample at very 
low temperatures (from Uher 1978a). The indices 11 and 33 denote the binary and 
trigonal directions respectively. 

Because of the high anisotropy of the properties of the semimetals, which is reflected 
in the mobilities, one should expect the two resistivity components PII and Pl. to be 
quite different. However, this is not the case. At high temperatures the two components 
are not so different and, what is more striking, they become almost equal at lower 
temperatures (Fig. 5). In fact, when equation (14) is extended to two-band conduction, 
one gets 

P = {en(.u. + Jlh)} -1, (15) 

where the subscripts e and h refer to electrons and holes respectively. 
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From the data available in the literature and with the assumed validity of 
Matthiessen's rule 

Pi = P-P .. (16) 

where P is the total measured resistivity and Pr the residual resistivity, the temperature 
variation of the ideal resistivity Pi is plotted in Fig. 5. For the cases of arsenic and 
antimony, since the carrier density is assumed to be almost temperature independent 
up to 300 K, one would expect the temperature variation of the conductivity to reflect 
entirely that of the mobilities. Pure acoustic intravalley electron-phonon scattering 
predicts a linear variation with r at high temperatures and a r 5 dependence at very 
low temperatures. For arsenic, three sets of measurements are reported in the literature 
covering the temperature range from 0·05 to 305 K. Values of PII and Pl. were 
reported by Jeavons and Saunders (1969) from 77 to 305 K, while P l. was measured 
by Heremans et al. (1977) from 2·3 to 296 K and by Uher (1978a) from 0·05 to 
6 K. We may see from Fig. 5 that there is no sign of a linear temperature variation 
at high temperatures. At low temperatures, instead of a r 5 dependence, a r 3 

variation is observed below 30 K with a different coefficient according to the tem­
perature range considered. 

For antimony, PII and Pl. were reported by Oktii and Saunders (1967a) from 77 
to 273 K, by Tanaka et al. (1968) from 77 to 300 K and by Bressler and Red'ko 
(1971) from 1·9 to 300 K. The power dependence of P on r is continuously variable 
from slightly above 1 at room temperature to 2· 5 around 77 K. From the only 
low temperature data available for PII and Pl. (Bressler and Red'ko 1971), it is not 
possible to separate Pi from Pr' since at 1 ·9 K the total resistivities are still temperature 
dependent. However, measurements reported by Bansal and Duggal (1973) on P l. 
showed that the ideal resistivity of this component varies as r 3 from 4·2 to 20 K, 
confirming the early results of White and Woods (1958), who reported a r 2 ' 75 

variation for polycrystalline material. In this case the behaviour is similar to that of 
arsenic. 

For bismuth, the situation is even more surprising. We note that from 77 to 
300 K the resistivities PII and P l. vary almost linearly with temperature (Gallo et al. 
1963; Michenaud and Issi 1972). This behaviour, which was interpreted by earlier 
workers as a sign of metallic conduction, is totally misleading. While in metals, and 
probably in the two other semimetals, only the relaxation time T varies with 
temperature, in bismuth, as we have already seen (Section 2) not only the carrier 
densities vary dramatically with temperature but also their effective masses. Thus 
the temperature variation of the mobility will depend on that of the two parameters 
m and T: 

11 = eTjm. (17) 

In this semimetal, where we certainly would not have expected a linear variation of 
the resistivity, we find it. At lower temperatures, there is the r 2 variation first 
reported by White and Woods (1958) for polycrystalline material and further con­
firmed by many investigators on single crystal samples (Bhagat and Manchon 1967; 
Friedman 1967; Fenton et al. 1969; Hartman 1969; Chopra et al. 1971; Kopylov 
and Mezhov-Deglin 1974; Kukkonen and Sohn 1977; Uher and Pratt 1977). But 
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this variation still remains a matter for conjecture (Anagnostopoulos and Aubrey 
1976; Kukkonen and Maldague 1976). 

Apart from the temperature dependence, there are other observations for the 
electrical resistivities which need to be considered. The relatively small number of 
free carriers in group V semimetals leads one to expect correspondingly small electrical 
conductivities. In bismuth, for example, n at room temperature is more than four 
orders of magnitude smaller than in typical metals (see Fig. 2), but the conductivity 
is only two orders of magnitude smaller. This, we know, is related to the very high 
mobilities of the carriers in the group V semimetals as compared with that of typical 
metals. When we look at the expression (17) for the mobility and at Table 1 we note 
that the very small effective masses will obviously lead to high mobilities in some 
directions. However, this is not the only reason. The relaxation times of the charge 
carriers will also be relatively large in semi metals compared with those of metals, for a 
reason which is not fundamentally different from the one invoked for semiconductors. 
In fact, it was realized early by Sondheimer (1952) that intravalley electron-phonon 
interactions in semimetals should be different from those in ordinary metals. Energy 
and momentum conservation require that electrons interact with phonons of wave 
number q < 2kF, where kF is the Fermi wave number. Since in momentum space 
the Debye sphere is much larger than the Fermi surface at high temperatures 
(T> eD' where eD is the Debye temperature), the electrons will interact with low 
energy phonons, as opposed to the thermal phonons of energy kB eD which dominate 
the scene above eD • In fact, the important parameter here is not the Debye sphere, or 
the corresponding temperature eo, but instead an effective temperature for carrier­
phonon interaction e*, which is given by 

e* = 2kF vJl/kB , (18) 

where Vs is the velocity of sound. 
Now, because the Fermi surfaces are highly anisotropic in the degenerate region 

so will be e*, and the interacting phonons will be entirely confined in an ellipsoid in 
momentum space, with semi-axes of twice the length of the semi-axes of the Fermi 
ellipsoid of the charge carriers with which they interact. Since below eD the energy of 
the dominating phonons is proportional to kB T, only at very low temperatures 
will the dominant phonons have wave vectors of the order of the Fermi wave vectors. 
These considerations will also apply when we discuss the phonon-drag effects (Section 
5b). 

(b) Effect of non-parabolicity 

It is worth asking now whether the non-parabolicity will affect the scattering 
mechanism of electrons in bismuth. The answer is given by Heremans and Hansen 
(1979) in the framework of their pseudoparabolic model. In the fully degenerate 
region, in the case of pure acoustic phonon intravalley scattering, the energy 
dependence of the relaxation time 'r for a parabolic band is given by 

'r = 'rO(e/kB T)-t. (19) 

In the pseudoparabolic model, where the effect of non-parabolicity is taken into 
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account in both the density of states and the electron-phonon matrix element 
(Here mans and Hansen 1979), 

T = To(y/kB T)-t y', (20) 
where 

y' = 8y/8B = 1 + 2B/Bg • (21) 

Heremans and Hansen have shown that both the parabolic and pseudoparabolic 
models lead to the same expression for the mobility when it is expressed as a function 
of the electron wave number k: 

f.l = eTo(2kBT/m)t(hk)-1, 

and so the non-parabolicity will not affect the dependence of the mobilities on k . 
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(c) Size effects 
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• Fig. 6. Typical size effect in the 

electrical conductivity of binary 
bismuth samples at 4·2 K (from 
Garcia and Kao 1968). The 
electrical conductivity decreases 
first with thickness W, levels off, 
and then decreases again with 
further decrease in thickness. 

(22) 

In bismuth, one other puzzling observation, which is now well established 
experimentally, is the variation of the electrical conductivity (J with sample size in the 
liquid helium range (Friedman and Koenig 1960; Friedman 1967; Garcia and Kao 
1968; Aubrey and Creasey 1969; Issi and Mangez 1972; Kopylov and Mezhov-Deglin 
1974). In ordinary metals, and even in antimony (Aleksandrov et al. 1972), when 
the mean free path is of the order of a dimension of the sample, there is a steady 
decrease of conductivity with this dimension at a given temperature. This is due to the 
scattering of electrons at the boundaries of the sample. In bismuth, however, after 
a first decrease with thickness, the conductivity levels off, followed by a further 
decrease (Fig. 6). It is interesting to note that, because of size effects, in the liquid 
helium range, no measurements have ever been reported on a bismuth bulk specimen. 
These size effects are even more dramatic in the thermopower, as will be seen in 
Section 5. Many explanations have been proposed invoking the complexity of the 
Fermi surface, specular and diffuse contributions, phonon-drag effects or intervalley 
and surface effects. The definite answer is still not obvious and probably there is more 
than one simple mechanism that is responsible for this peculiar behaviour. We shall 
discuss one of these aspects while considering phonon-drag effects (Section 5b). 

(d) Superconductivity at ultralow temperatures 

One of the most exciting possibilities in the field of ultralow temperature transport 
in semimetals is the possible occurrence of superconductivity in the pure crystalline 
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material. Tin-doped bismuth samples were found by Uher and Opsal (1978) to be 
superconducting with a vanishing resistance around 0·03 K (Fig. 7). The transition 
temperature increased with the concentration of the dopant. A reasonable extrapo­
lation of the transition temperature curve versus tin content suggests that pure 
bismuth might also be superconducting at around 10- 2 K. In the same way, the 
resistivity of a tellurium-doped sample was found to start to drop rapidly. In both 
cases the critical fields were very low. Uher (l978a) has reported also that the 
resistivity of a binary arsenic sample started to drop rapidly at around 0·05 K, the 
lowest temperature attained (Fig. 5). This behaviour suggests that there might be 
the beginning of a superconducting transition and, if confirmed by extending the 
measurement to lower temperatures, it would be the first experimental observation of 
superconductivity in a pure crystalline semimetal, if we exclude high pressure 
measurements. 

l' 0,... x (XXXXXXX 
·0 ~ ......... ~ ~ ~"o. 

... .08 
... 0 

0.81- x :'b0 • x ... 8 
x ... 0 

~ (t: r: fj} Bi with Sn (%) 

x 0'02 
... 0,08 

U 
0 0·12 

Itt • 0'16 

0·2 

0·2 0'4 0'6 l' 0 

T (K) 

Fig. 7. Superconducting results in tin-doped polycrystalline samples of 
bismuth with the indicated different tin concentrations (from Uher and 
Opsal 1978). 

(e) Some practical points 

One particular problem, to which the experimentalist should be attentive, is the 
fact that it is difficult to realize isothermal conditions when measuring the DC electrical 
resistivity of semimetals, and especially of bismuth in certain temperature ranges. 
From a macroscopic viewpoint, when an electric current I flows in a conductor of 
resistance R, the resulting e.m.f. V is, generally speaking, the sum of two terms: 

V= RI+rJ.AT. (23) 

The first term, RI, is the ohmic term, in which we are interested, and the second, 
rJ. AT, is a thermoelectric voltage caused by the Peltier effect, where rJ. is the thermo­
power. Usually, when we are dealing with metals or semiconductors, this thermo­
electric term is neglected since, to develop a detectable temperature gradient AT 
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across its extremities, the sample should have a low thermal conductivity K and a high 
Peltier coefficient. Also, in order that the thermoelectric term be comparable with 
the ohmic term, the electrical resistance, and thus the resistivity p, should be small. 
In other words the thermoelectric figure of merit (see Goldsmid 1964) 

z = rx,2/Kp (24) 

should be high in order to have a significant contribution from the thermoelectric 
term. It was found that in bismuth this is the case (Issi et al. 1971) and the effect is 
rather large. Even in the cases of arsenic (Jeavons and Saunders 1969; Heremans 
et al. 1977) and antimony (Oktii and Saunders 1967a) special care was needed to 
perform electrical measurements under strict isothermal conditions in certain 
temperature ranges. 
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Fig. 8. Typical behaviour of the thermal conductivity K of the group V semimetals 
as a function of temperature. The three maxima, which are those of KL, lie 
around 3·5, 8 and 30 K for bismuth, antimony and arsenic respectively, the 
Debye temperatures being 120, 200 and 282 K. Note that in the higher temperature 
range where KE dominates in antimony and arsenic, and is important in bismuth, 
the thermal conductivity increases with increasing density of carriers as expected. 
The dashed part of the arsenic curve represents the recent ultralow temperature 
results of Uher (1978b), shifted upwards (cf. Fig. 11). 

It is worth noting also that the residual resistivity ratio (RRR), which is used as a 
criterion of sample purity and crystalline perfection, must be modified for the case 
of bismuth. In metals and also in arsenic and antimony an RRR measurement 
reflects directly the mobility ratio for the two temperatures considered, generally 
4·2 and 300 K. For bismuth, we have already seen that the size of the sample has a 
large influence on the RRR (Section 3c). In addition, the carrier density increases 
by about an order of magnitude from the liquid helium range up to room temperature. 
Thus, even in an infinite sample, if one wants to give the same meaning to the RRR 
as for metals, one should multiply this ratio by a factor of nearly 8. 
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4. Thermal Conductivity 

Results for the thermal conductivity of bismuth single crystals in the liquid helium 
range were obtained by Shalyt (1944), while Rosenberg (1955) investigated a wider 
temperature range for polycrystalline antimony. The first comprehensive analysis 
was performed by White and Woods (1958) on their data for polycrystalline bismuth 
and antimony from 2 to 150 K. Although the essentials of our present understanding 
of the thermal conductivity of these materials is contained in the paper by White 
and Woods, there has been more work performed since then on well-characterized 
single crystal material. For bismuth, both components of the zero-field thermal 
conductivity KII and K.1 have been reported for a wide temperature range (Gallo 
et al. 1963; Kuznetsov et al. 1970; Pratt and Uher 1978) while, for antimony, only 
KII has been measured from 2 to 100 K (Red'ko et al. 1970) and from 0·05 to 5 K 
(Pratt and Uher, personal communication). For arsenic, the first measurements were 
reported for K.1 by Heremans et al. (1977) from 2 to 300 K, although Little (1926) 
had given the room temperature value for po1ycrystalline material. Uher (1978b) 
recently extended these measurements to ultralow temperatures. 

Table 3. Heat transport mechanisms in materials below 300 K 

Material Lattice Electrons, holes Bipolar 

Insulator All temperatures 
Semiconductor All temperatures Usually weak 
Metal All temperatures 
Bismuth 2-20K Below 1 K, above 20 K Above 50 K 
Antimony Low temperatures All temperatures Weak 
Arsenic Low temperatures All temperatures 

A typical behaviour of the thermal conductivity of the group V semimetals below 
room temperature is represented in Fig. 8, while Table 3 shows how most of the 
known low temperature heat transport mechanisms compete to yield the total 
thermal conductivity of these materials. Indeed, we are in a unique situation here to 
review these various mechanisms since in other materials, like pure metals and 
insulators, there is usually only one type of conductivity that is predominant. 

Generally speaking, in a given direction, the total thermal conductivity K is the 
sum of the electronic KE and lattice KL contributions: 

K = KE+KL' (25) 

Only at temperatures higher than room temperature do other processes start to 
contribute significantly. In bismuth (Korenblit et al. 1970; Uher and Goldsmid 
1974b) and antimony single crystals (Red'ko et al. 1970), the total thermal conductivity 
has been separated into its electronic and lattice components by applying a magnetic 
field at intermediate temperatures. This was also done recently for arsenic (Uher 
1978b), antimony (Pratt and Uher, personal communication) and bismuth (Pratt 
and Uher 1978) at ultralow temperatures. In contrast to metals, the magneto­
resistances of these semimetals, and especially bismuth, are very large, and so will 
be their magneto thermal resistance. Thus only relatively moderate magnetic fields 
are needed to reduce the electronic component to insignificance, provided the 
temperature is not too high. 
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Fig. 9. Temperature variation of the thermal conductivity of bismuth: 

(a) Results from Issi and Mangez (1972) and Boxus and Issi (1977) for three 
binary samples of different cross sections cut from the same ingot: sample 1, 
8·8x8·6mm2 ; sample 2, 3x2·8mm2 ; sample 3, 3xl·2mm2 • In the 
range from 2 to 20 K the lattice thermal conductivity is the sole mechanism 
and the dielectric size effect is clearly demonstrated. The curve representing 
the total electronic thermal conductivity KE at higher temperatures, as 
determined by Uher and Goldsmid (1974b), shows that KE amounts to 14% 
of the total thermal conductivity at 35 K and 43 % at 150 K. 

(b) Ultralow temperature measurements from Pratt and Uher (1978) for four 
samples: sample 2, a cylindrical bisectrix sample of 0·23 cm diameter; 
sample 4, a polycrystal of 0·44 cm diameter; sample 5, a cylindrical sample 
of 0·43 cm diameter with its axis inclined by 79° to the trigonal axis; sample 
6, a trigonal sample of 0 . 2 x 0·4 cm 2 cross section. The dashed line represents 
T3 behaviour. The solid curve is explained in the paper by Pratt and Uher. 

I-P. Issi 

The results for bismuth confirmed the findings of White and Woods (1958), 
showing that, in the range 2-20 K, the thermal conductivity is purely lattice and 
that the relative contribution of KE increases with increasing temperature. The data 
for single crystals shown in Fig. 9 indicate that KE amounts to 14 % of the total 
thermal conductivity at 35 K and 43 % at 150 K. For antimony, the carrier density 
is sufficiently high at all temperatures to maintain KE comparable with KL (Fig. 10). 
Also, it is usually assumed that the high carrier density is mainly responsible for 
phonon scattering. In arsenic, the two contributions have been tentatively computed 
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(Fig. 11) and it seems that the behaviour is quite similar to that of antimony. 
Because the magnetoresistance of arsenic is much smaller than for bismuth, "E and 
"L have only been experimentally separated at very low temperatures (Uher 1978b). 
At intermediate temperatures very high magnetic fields would be needed to do this. 
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(a) Electronic thermal conductivity 

Fig. 10. Temperature variation of 
the thermal conductivity of antimony 
(from Red'ko et al. 1970). The 
plotted points represent the total 
measured conductivity, while KE and 
KL are the electronic and lattice 
contributions respectively, separated 
by means of a magnetic field. 

The Wiedemann-Franz law states that the electronic thermal conductivity "i 
due to a group of charge carriers i, where i refers to electrons or holes, is proportional 
to the electrical conductivity u i at a given temperature, that is, 

". = L, Tu" (26) 

where Li is the Lorenz number, which for a free electron system takes the value 

Lo = ln2(kB/e)2 = 2·44x 10- 8 V2 K- 2 • (27) 

This law supposes that the charge carriers are highly degenerate and that the same 
relaxation time may be ascribed to both the electrical and electronic thermal 
conductivities. The first condition is naturally satisfied in metals, and should hold 

Fig. 11. Temperature variation of the thermal conductivity of arsenic: 
(a) Results from Heremans et al. (1977) for a binary sample. The plotted points represent the 

measured data. The electronic thermal conductivity KE was computed from electrical conductivity 
data by means of the Wiedemann-Franz law. At higher temperatures a small correction was 
made to account for the slight departure of the charge carrier system from total degeneracy. 
The lattice thermal conductivity KL was obtained by subtracting KE from the measured total 
conductivity; KL has a maximum around 30 K. ' 

(b) Ultralow temperature measurements from Uher (1978b) performed on a sample of different 
residual resistivity ratio from that of (a). 

Note the different scales on the K axes in (a) and (b). 



Properties of Group V Semimetals 

I 
:L 
'I 
E 
u 

~ 

--l 

'" 

10 
(a) 

0·1' 1111 1111 

120 

lOa 

~ 80 , 
:L 

'E 
~ 60 

'" 

40 

20 

a 

I 

/ 
/ 

10 

T (K) 

(b) 

Fig. 11 [see caption on facing page] 

607 



608 J-P. Issi 

reasonably for arsenic and antimony, provided small corrections are applied. However, 
for bismuth this condition is expected to hold only at lower temperatures, while at 
higher temperatures the Lorenz number should be expressed differently, in a way 
analogous to semiconductors, to account for the fact that the charge carriers are not 
totally degenerate. The second condition is fulfilled in metals only for some temperature 
ranges. The reason is that, while electron-phonon large angle scattering is as effective 
in reducing both conductivities, small angle scattering is much more effective in 
reducing the electronic thermal conductivity than the electrical conductivity. This 
is a consequence of the well-known fact that a thermal gradient affects the Fermi 
distribution in a different way from an electric field. Thus, for metals below the 
Debye temperature, when large angle scattering begins to be less probable than 
low angle scattering, the Wiedemann-Franz law is no longer valid. At sufficiently 
low temperatures where impurity scattering, which is essentially elastic, dominates, 
the law holds again. Fortunately, this complication is expected to occur in semimetals 
only at very low temperatures. Because of their small Fermi surfaces, the charge 
carriers suffer large angle scattering until the effective temperature 8* (equation 18) 
is reached, and above 8* the Wiedemann-Franz law should hold provided the charge 
carriers are fully degenerate and intra valley scattering dominates. 

Further, in semimetals, as is the case for intrinsic semiconductors, electrons and 
holes may participate independently in heat transport as two monopolar contributions 
Ke and Kh from electrons and holes, or in pairs as a bipolar contribution Keh. For 
partial Lorenz numbers Le and L h , the Wiedemann-Franz law takes the form (26) 
with (Harman and Honig 1967; Blatt 1968) 

Li = (kB/e)2{I1(YfFJI3(YfF;) -n(YfFi)}/!i(I1Fi) , (28) 
where 

YfFi = BFdkB T (29) 

is the reduced Fermi energy and 

f/YfF) = LX) Yfi(-8fo/8Yf)dYf, (30) 

fo being the Fermi-Dirac distribution function. The bipolar term is given by 

Keh = T {O'e O'h/(O'e + O'h)} (och - OCe)2 , (31) 

where O'e and O'h are the partial electrical conductivities of electrons and holes, and 
oceand OCh are the partial thermopowers, which will be defined in Section 5a(i). The 
total electronic conductivity is then 

KE = Ke +Kh +Keh' (32) 

In the case of partially degenerate systems, when the carriers have a parabolic 
dispersion, if it is assumed that the relaxation time is expressed as in equation (19) 
(pure acoustic intravalley phonon scattering), the relation (28) reduces to (Heremans 
et al. 1977) 

Li = t(kB/e)2{n2 -tn4 (kB T/BFi)2}. (33) 
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Equation (33) was used by Heremans et al. for arsenic and is applicable in principle 
to antimony, though there has not yet been a detailed analysis carried out for the 
thermal conductivity of this material. The relation (33) is also expected to hold for 
holes in bismuth at intermediate temperatures. Note that (kB T jSFi)2 is a correction 
term, which takes into account the departure from full degeneracy at higher 
temperatures. For arsenic, this term will be negligible at low temperatures and will 
reach a few per cent at room temperature, while for antimony it is expected to be 
larger. The bipolar term of the electronic thermal conductivity may also be neglected 
at low temperatures, and it amounts to a few per cent of the total electronic thermal 
conductivity around room temperature for arsenic (Heremans et al. 1977) and should 

. be larger in antimony (Red'ko et al. 1970). 
In bismuth at low temperatures, an expression for the Lorenz number of electrons 

may be derived, taking into account the non-parabolicity in the framework of the 
Heremans and Hansen (1979) pseudoparabolic model. However, at higher 
temperatures, even when the valence band is assumed to be rigid and parabolic, 
we cannot make the second-order approximation as in equation (33) but must use 
instead the complete analytical formulae (Gallo et al. 1963). In the case of the 
conduction band of bismuth, the situation is even worse, as could be expected, since 
we must take into account not only the non-parabolicity but also the temperature 
variation of the band parameters. 

If we look now at the experimental results, we may see that for arsenic, in the 
range where impurity scattering predominates and the carrier system is fully degener­
ate, one might have expected to find the Sommerfeld value for the Lorenz number Lo. 
However, Heremans et al. (1977) found a value ofO' 75Lo. This is not in contradiction 
with the recent findings of Uher (1 978b), who reports a constant Lorenz number 
below 2 K which is equal within 4~;'; to Lo. Above 2 K, however, L decreases contin­
uously to reach a value of about O' 75 Lo at 7 K. For bismuth at ultralow 
temperatures, the total thermal conductivity tends towards a linear temperature 
dependence (Fig. 9b). This shows that, as expected, the electronic thermal con­
ductivity should predominate at sufficiently low temperatures. The Lorenz number 
was found to be almost equal to the Sommerfeld value Lo (Pratt and Uher 1978). 
Above the dielectric maximum the Lorenz numbers for bismuth (Uher and Goldsmid 
1974b) and antimony (Red'ko et al. 1970) have been found to deviate appreciably 
from Lo. 

At higher temperatures, because of the probable onset of intervalley scattering, 
which is essentially inelastic, a deviation from Lo is expected to be found in all three 
semimetals. However, this has not yet been verified experimentally. Because of the 
decreasing magnetoresistance with increasing temperature, very high magnetic fields 
are needed at high temperatures to separate the electronic and lattice components 
of the observed total thermal conductivity. 

We note that, roughly speaking, the results for the electronic thermal conductivity 
of the group V semimetals are consistent with the main features of their electronic 
properties. Arsenic, which has the highest electronic population at all temperatures, 
exhibits an almost metallic behaviour with the highest K E• At the other end of the 
scale, because of the low carrier density in bismuth, its KE is only significant in the 
lowest and highest temper\iture ranges and is smaller than in arsenic. For antimony, 
KE is situated between these two extremes. 
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(b) Lattice thermal conductivity 

The Debye relation is widely used in the discussion of the lattice thermal con­
ductivity of electrical insulators. If Cy is the lattice specific heat at constant volume, 
I the phonon mean free path and Vs the velocity of sound in the solid, then 

KL = 1;cyvsl. (34) 

In the case of bismuth from 2 to 20 K, we are in the most spectacular range of 
the Debye relation in which both Cy and I vary drastically with temperature 
(Figs 8 and 9). Below the dielectric maximum, an almost T3 dependence is observed, 
which reflects that of the lattice specific heat in this temperature range. The mean 
free path is constant and equal, within a numerical factor of the order of unity, to 
a transverse dimension of the sample. The velocity of sound is almost independent 
of temperature. Above the dielectric maximum the lattice thermal conductivity 
first decreases very rapidly with increasing temperature and then starts an almost 
linear decrease with temperature, which is characteristic of the high temperature 
phonon-phonon umklapp processes. 

For antimony, there is no temperature region where KL is the sole mechanism. 
However, its contribution has been experimentally estimated. The high carrier 
density, which is responsible for the important electronic contribution K E, also 
reduces KL via phonon-electron scattering, which becomes the predominant scattering 
mechanism below the dielectric maximum and leads to the observed T2 variation 
(Fig. 10). * This was shown by White and Woods (1958) and further extended to lower 
temperature on single crystals by Blewer and Zebouni (1966), who found that this 
T2 law holds down to 0·4 K. The maximum is also less pronounced than in the 
case of bismuth and the higher temperature T -1 variation characteristic of phonon­
phonon umklapp processes was observed by White and Woods (1958). 

For arsenic, we may tentatively say that KL has a similar behaviour to that in 
antimony, with a dielectric maximum around 30 K (Fig. 11). Below this maximum, 
phonons are probably mainly scattered by the charge carriers and, above, by other 
phonons. Note that Uher (1978b) was able to detect a small lattice contribution 
below 5 K, which was found to be proportional to T2. 

It is interesting to note that the lattice contributions have a maximum around 
3·5 K for bismuth, 8 K for antimony and 30 K for arsenic, while the Debye 
temperatures for these materials are 120, 200 and 282 K respectively. This is in 
qualitative agreement with the predictions of the Debye theory. 

(i) Low Temperature Size Effects 

Since below about 20 K the thermal conductivity of bismuth exhibits the typical 
dielectric behaviour, one would expect that, around and below the dielectric maximum, 
the magnitude of the thermal conductivity would be very sensitive to the size of the 
specimen. The range of temperatures where this is likely to occur is known as the 
Casimir range (Casimir 1938; Herring 1954a). When the temperature decreases, 
the mean free path of the thermal phonons for umklapp processes increases 
exponentially. At low temperatures, it will eventually become comparable with the 
geometrical dimensions of the sample, which usually has typical transverse dimensions 
of a few millimetres. 
* See, however, note added in proof (at end of paper). 
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It was already apparent in the work of White and Woods (1958), performed on 
bismuth polycrystals, that single crystal samples with cross sections of a few square 
millimetres would show size effects in the liquid helium range. Issi and Mangez 
(1972) and Kopylov and Mezhov-Deglin (1974) showed that in single crystal material 
the thermal conductivity in the T3 regime was indeed proportional to the transverse 
dimensions of the specimen. The samples compared by Issi and Mangez (1972) 
consisted of two legs of different thicknesses of a tuning fork. This enabled a 
comparison of two specimens of the same purity, crystal perfection and thermal and 
mechanical history. Further, it appeared from their results that the size effect would 
probably persist above the Casimir range. This would be consistent with Herring's 
(1954a) prediction that lower energy phonons than the thermal ones might contribute 
significantly to the thermal conductivity, especially in rhombohedral crystals. 
Recently, this prediction was experimentally confirmed for bismuth on two tuning 
fork samples by Issi et al. (1976). 

(ii) Intermediate Temperature Size Effects 

In order to understand the contribution of low energy phonons to the lattice 
thermal conductivity one should artificially divide the phonons into two classes 
(Herring 1954a): 

Class 1. The low energy subthermal phonons with wave numbers q < qc' where 
the energy corresponding to qc is approximately equal to 0·1 kB T at temperatures 
below the Debye temperature (in bismuth ()D = 120 K). To these phonons, we 
associate a single-mode relaxation time (Klemens 1951) given by the asymptotic 
relation (Herring 1954a) 

r-- 1(q) = AqPT5 -P. (35) 

Class 2. The higher energy phonons which are those with wave number q > qc 
and thermal conductivity K(q>qJ. Thus the total lattice thermal conductivity will 
be given by 

f, QC 

K = K(q>qJ+(kB v;/6nZ) 0 r(q)qZdq, (36) 

where Vs is the velocity of sound, which we suppose to be independent of energy. 
According to Herring (1954a), p = 3 for longitudinal phonons in a rhombohedral 

material. Using this value and introducing r(q) from equation (35) into (36), we 
find for two arms of thicknesses Wi and Wz of the tuning fork (Wi> Wz) 

/),x = K 1 -Kz = (kB v;/18nZATZ)ln(Wt/Wz), (37) 

where we have assumed K(q> qJ to be unaffected by size (Issi et al. 1976). Thus, 
if the detected size effect were to be ascribed to the subthermallow energy phonons, 
one should find a T- z variation of !:iK. This is what was observed in the intermediate 
temperature range for two tuning fork samples by Issi et al. (1976). Also, from 
the observed T - Z curves, and taking Vs = 2·55 X 105 cm s -1 in the binary direction, 
they found an experimental value for A of 39 x 10-17 cm3 S-1 K -z for both samples. 

Note that the relatively large contribution of low energy phonons to the total 
lattice thermal conductivity is due to the q-3 dependence of the relaxation time of 
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Fig. 12. Temperature dependence of the thermopower (X of the three group V semimetals. 
The indices 11 and 33 denote the binary CU and trigonal (II) directions respectively. The 
sources of the data and the corresponding temperature ranges are set out below. 

Semimetal (X Trange (K) Reference 

As (X11 2·6-300 Heremans et al. (1977) 
(X11 0·3-7·6 Uher (1978b) 
(X33 80-300 Jeavons and Saunders (1970) 

Sb (X11 80-300 Saunders and Oktti (1968) 
(X11 3·3-300 Red'ko and Shalyt (1968) 
(X33 80-300 Saunders et al. (1965) 

Bi (X11 80-300 Gallo et al. (1963) 
(X11 1·8-100 Boxus and Issi (1977) 
(X11 0·04--3 Uher and Pratt (1978) 
(X33 80-300 Gallo et at. (1963) 
(X33 0·04--3 Uher and Pratt (1978) 
(X33 2·5-80 Korenblit et al. (1969) 

these phonons. This q - 3 dependence, which is a characteristic of rhombohedral struc­
ture, has important consequences when compared with the less pronounced q - 2 depen­
dence expected for cubic materials. It should explain too the large phonon-drag 
effects found in the group V semimetals and especially in bismuth (see Section 5b). 
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Also the experimental determination of the coefficient A enables us to compute 
the mean free path of the phonons interacting with electrons, provided that the 
dimensions of the Fermi surface in k space are known. 

5. Thermopower 

In Fig. 12 the thermopowers IXII and IX-L of the three group V semimetals are shown 
as functions of temperature. In the lowest and highest temperature ranges there are 
regions where the thermopowers vary almost linearly with temperature, while in the 
intermediate region there are pronounced extrema. Usually in metals a linear 
behaviour is indicative of diffusion mechanisms, while low temperature humps are 
attributed to phonon-drag effects. 

The first comprehensive analysis of the diffusion thermopower of a group V 
semi metal was performed by Gallo et at. (1963), on the experimental data they 
obtained for bismuth. This was followed by the extensive work of Saunders and 
Oktli (1968) on antimony and Jeavons and Saunders (1970) on arsenic. Low 
temperature phonon-drag humps were first observed by Kuznetsov and Shalyt (1967) 
in bismuth, Red'ko and Shalyt (1968) in antimony and Heremans et at. (1977) in arsenic. 

We shall review successively the diffusion and the phonon-drag effects. For this 
latter mechanism, its effect on the electrical conductivity will also be briefly discussed. 

(a) Diffusion thermopower 

The diffusion thermopower is caused by the difference in the broadening of the 
region around SF in the Fermi distribution between different regions of the sample 
due to the thermal gradient. Diffusion usually takes place from hot to cold regions 
and is counterbalanced by the thermoelectric e.m.f. Fig. 13 gives a schematic represen­
tation of the difference between the thermal smearing in the semimetals and that 
which occurs in ordinary metals and semiconductors. It may be easily seen from this 
figure why the thermopower is so high in semiconductors (~1 0 - 3 V K -1), so small 
in pure metals (~1O - 6 V K -1) and takes an intermediate value in semimetals 
(10- 5-10- 4 VK- 1). 

Before we derive quantitative expressions for the diffusion thermopower of group V 
semimetals it is worth briefly sketching the situation qualitatively. Firstly, as for the 
electrical and thermal conductivities one would expect to have anisotropic thermo­
powers. Then, as for the case of intrinsic semiconductors, at least two types of carriers 
should be taken into account. For arsenic and antimony, up to room temperature, 
since the carrier statistics are totally degenerate, one could predict a behaviour 
similar to that of ordinary metals. For bismuth, the non-parabolicity of the conduction 
band, effective at all temperatures, as well as the partial degeneracy of the carriers 
above say 60 K should give rise to a more complicated behaviour. In fact, the history 
of the analysis of the temperature dependence of the diffusion thermopower for 
bismuth is a long and tricky story. The first analysis of measurements made on good 
single crystals was carried out by Gallo et at. (1963) in the temperature range 80-300 K. 
Assuming parabolic rigid bands, and starting from their experimental values of IXII 

and IX-L and those of the mobility ratios, they were able to compute the partial thermo­
powers of electrons and holes (see equations (47) below). Then, assuming pure 
acoustic phonon scattering, and using equation (46), they were able to compute the 
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Fig. 13. Schematic representation of the principle of thermopower generation in different kinds of 
solids. For metals and totally degenerate semimetals, the thermoelectric voltage is due to the 
broadening of the Fermi-Dirac distribution with an almost constant Fermi level. However, since 
8F is much larger in a metal, for a given temperature the relative effect is much larger in a semimetal, 
and the thermopower is expected to be consequently larger in the latter. In a partially degenerate 
semimetal or semiconductor, or in a nondegenerate extrinsic semiconductor, there is a difference in 
8F between the cold and hot ends. Here also it may be seen that the relative effect is expected to be 
largest in a nondegenerate extrinsic semiconductor. The shift of the Fermi levels and the broadening 
of the distributions are both exaggerated for the sake of clarity. 
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Fermi energies for electrons and holes. Oddly enough, the agreement was quite 
good when these energies were compared with those obtained at 4·2 K by means of 
oscillatory quantum techniques. When the magnetoreflection measurements of 
Brown et al. (1963) clearly established the non-parabolicity of the electron band, the 
thermopower of bismuth was recalculated by Issi and Streydio (1967), using a non­
parabolic dispersion for the conduction band. The results turned out to be incon­
sistent with the experimental findings. Later Hansen et al. (1978) analysed the thermo­
magnetic coefficients (including the zero-field ones) in terms of intravalley acoustic 
phonon scattering. They were able to obtain consistent results when all carriers were 
assumed to have a simple parabolic dispersion. Although this then confirmed and 
generalized the results of Gallo et al. (1963), the results could not be accepted since 
the analysis was based on a wrong assumption. For almost a decade, attempts to 
include the non-parabolicity via the density of states proved unsuccessful. However, 
very recently Heremans and Hansen (1979) were able to obtain good agreement 
below 80 K, by using their pseudoparabolic model (see Section 2c). The expressions 
describing their model were very like those used in the parabolic case. 

(i) Partial Diffusion Thermopowers 

Now let us compute the partial diffusion thermopowers for electrons and holes. 
By solving the Boltzmann equation (Harman and Honig 1967; Blatt 1968) we 
obtain the following expression for the partial thermoelectric power of electrons or 
holes: 

(Xi = ±(kB!e){IzCrtFi)!I1(rtFi) -rtFi}, (38) 

where the minus or plus signs refer to electrons or holes respectively. The transport 
integrals IirtF;) were recently derived by Heremans and Hansen (1979) in the most 
general case, i.e. in the framework of their pseudoparabolic model, and were expressed 
as 

Ii (rtFi) = FO(rtFi) + 2 Fl (rtFi)!rtg , (39a) 

I2 (rtFi) = 2 Fl (rtFi) + 3 FzCrtFi)/rtg , (39b) 

where the quantities Fo(rtd, F[ (rtFi) and F2(rtFi) are the Fermi-Dirac integrals 
for the energy BFi and 

rtg = Bg/kB T (40) 

is the reduced direct energy gap between the band under consideration and any 
interacting band that may cause the non-parabolic dispersion. 

It was also shown by Heremans and Hansen (1979) that for the pseudoparabolic 
model the relaxation time may be expressed as 

r = 'rO(y/kB T)-ty' (41) 

and, in the degenerate case, the partial diffusion thermopower is given by 

(Xi = ±1n2(kB/e)kB TY'F/YF' (42) 



616 J-P. Issi 

For degenerate parabolic bands, one may expand the transport integrals in series 
(Heremans et al. 1977) and obtain 

11('1Fi) :::::; '1Fi within 1 % for '1Fi > 3·5 (43a) 
and 

IzC'1Fi) :::::; '1~i+1n2 within 1 % for '1Fi> 3·0. (43b) 

Equation (38) then reduces to 

ai = ±1n2(kB/e)'1F/ (44) 

and we obtain, as expected, the expression used for ordinary metals (cf. Blatt 1968). 
Since the Fermi energies in group V semi metals are much smaller than those of 
ordinary metals, the partial thermopowers should be larger by roughly two orders 
of magnitude. For partially degenerate parabolic bands, the relaxation time for 
pure acoustic scattering is given by equation (19) and the transport integrals take 
the form 

11 ('1F;) = Fo('1Fi) , 12 ('1Fi) = 2FJ ('1Fi) , (45) 

which are the asymptotic forms of the integrals (39a) and (39b) for '1g ~ 00. The 
partial diffusion thermopower is then 

ai = ± (kB/e) (2Fl ('1Fi)/Fo('1F;) - '1Fi) . (46) 

The expression (46) describes the thermopower of the holes in bismuth above 
60 K and of the electrons and holes in antimony around and above room temperature. 
For the holes in bismuth below 60 K and the electrons and holes in antimony and 
arsenic below room temperature, equation (44) is a good approximation. For the 
electrons in bismuth, it was found that around 60 K equation (42) is applicable, 
and the main success of the Heremans and Hansen (1979) model was that, when this 
partial thermopower was combined with that of holes through equation (46), excellent 
agreement was obtained with the experimental results. At higher temperatures, 
the variation of the band parameters with temperature, which is not yet known 
precisely, renders the analysis of the results more speculative for bismuth. 

(ii) Total Diffusion Thermopower 

When more than one type of carrier is acting simultaneously, the total thermo­
powers all and fi-L may be computed on the assumption that the partial contributions 
act as e.m.f.'s in parallel: 

( alliai ) 
all = f Ialli ' 

i 

( a-Liai) 
a -L = ~ L a -Li ' 

i 

(47) 

where all i and a -Li are the partial contributions of a band to the total electrical 
conductivity in the direction considered. It is worth noting that even in anisotropic 
crystals the a;'s for the diffusion thermopower are scalars, provided that the dependence 
of the relaxation time on momentum is assumed to be isotropic, while the a;'s are 
not, and thus it is the partial conductivities that determine the anisotropy of the 
total diffusion thermopower. 
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(b) Phonon-drag effects 

The principle of phonon-drag effects may be understood from simple arguments. 
Most of the transport theory is derived assuming Bloch conditions, i.e. that the 
phonon system is in equilibrium and that the electron system may be treated 
independently. This is certainly not rigorously the case when thermoelectric effects 
are considered, since a nonzero temperature gradient is assumed and lattice thermal 
conductivity takes place. However, in most cases when there is no strong coupling 
between the electron and phonon systems, the approximation is fair. This is not 
applicable at low temperatures, where there might be a significant coupling between 
these two systems and, as a consequence, an anisotropic transfer of momentum from 
one system to the other is likely to occur, resulting in a drag on the electrons. This 
extra electronic motion, which should be distinguished from the spontaneous diffusion 
discussed in the case of the diffusion thermopower, requires an additional thermo­
electric field to counterbalance it, giving rise to the phonon-drag or lattice thermo­
power Ct:g• Conversely, when an electrical current flows in a solid, the electrons may 
drag along the phonons under certain conditions. This might result in an enhancement 
of the electrical conductivity. 

We have already seen, while discussing the electrical conductivity (Section 3a), 
that in semimetals not all the phonons are likely to interact with the charge carriers. 
Energy and momentum conservation restrict the interactions to those with the low 
energy phonons. These interacting phonons are, in momentum space, confined in 
ellipsoids with semi-axes of twice the length of the semi-axes of the Fermi ellipsoids. 
This should apply in both senses: for phonons dragging electrons and vice versa. 

(i) Phonon-drag Thermopower 

Along the lines developed by Herring (1954b), Korenblit (1969) worked out a 
theory to explain the phonon-drag effects observed in the thermopower of bismuth. 
For kB T ~ BF, he derived the following expression for the partial phonon-drag 
thermopower matrix element (k I) experienced by carriers of group i: 

1 3 r d3q exp(hw:/kB T)hw: rO(q) ° 
Ct:g,i = ei n;(kB T)2 Jl J [J, (2nh)3 {exp(hw~/kB T) _1}2 rf(q) VI qk' 

(48) 

where ei and ni are the charge and concentration of the ith carrier group,a is the 
phonon acoustic branch polarization number, vf is the Ith component of the group 
velocity of these phonons, rf(q) is the relaxation time of these phonons with carriers of 
group i, and rO(q) is the total relaxation time of these phonons, including that for 
boundary scattering. The integration is carried out for the phonon ellipsoid interacting 
with carriers of group i. 

In contrast to the case of diffusion, the phonon-drag partial thermopowers are 
anisotropic and may be expressed by tensors. For bismuth, in terms of the crystallo­
graphic axes, these tensors for electrons and holes take the form (we shall omit hereafter 
the subscript g) 

l"~' 
o 

Ct::J, 

Ct:e33 J 
lCt:hll 0 0 ~ 

o Ct:h 22 0 . 

o 0 Ct:h 33 

(49) Ct:e22 

Ct:e32 



618 J-P. Issi 

These partial thermopowers should, as for the diffusion case, be weighted with the 
partial electrical conductivities 

(O"e+O"h)1X = O"elXe + O"hlXh· (50) 

For each valley of the Fermi surface, the temperature dependence of the effect may 
be imagined as follows. For temperatures below 8*, only the phonon modes which 
may interact with the carriers will be populated, and strong phonon drag is expected 
to occur. The thermopower should then be proportional to T3 like the lattice specific 
heat. For temperatures above 8*, higher energy phonon modes will also be excited, 
and these phonons are not allowed to interact with electrons. However, these higher 
energy modes will effectively scatter the lower energy phonon modes, and we shall 
represent this scattering probability by the relaxation time T~p(q). The ratio TO(q)jTf(q) 
is a weighting factor which represents the probability of a low energy phonon 
interacting with the electron as compared with that of all scattering processes. 
For an ideally perfect and infinite crystal, we have 

{TO(q)}-l = {T~p(q)}-l+{Tf(q)}-l. (51) 

Impurities and grain or crystal boundaries may also scatter the low energy phonons 
in a real crystal, and to each scattering mechanism m a corresponding relaxation time 
T':,.(q) may be associated. Thus we may more generally write 

{TO(q)}-l = L{T~(q)}-l. (52) 
m 

A quantitative comparison between theory and experiment in the case of bismuth 
is, for the time being, almost impossible because of all the adjustable parameters, 
of which little is known. For example, the only method at hand now to discriminate 
between electrons and holes in dragging effects is to carry out experiments on doped 
samples (Korenblit et aT. 1969). However, these experiments have serious drawbacks 
if we want to reach quantitative conclusions. Doping introduces new scatterers to 
low energy phonons, as well as to electrons and holes. Besides the main effect of 
doping being to alter the Fermi energies of the carriers, it also leads to interaction 
with phonon modes quite different from the drag phonons in intrinsic material. 
So the analysis of results on doped material might prove even more complicated. 

However, some of the observed effects may be qualitatively interpreted. The 
extreme sensitivity of phonon drag to size in bismuth binary single crystals has been 
recently demonstrated by Boxus and Issi (1977). They found that the magnitude of 
the peak of the phonon-drag thermopower can be swept from almost _10- 4 to 
+ 10- 5 V K -1 by reducing a transverse dimension from 9 to 1· 2 mm (Fig. 14). 
This means that decreasing the thickness enhances the relative contribution of the 
positive partial thermopower to the total one at the expense of the negative con­
tribution. Their measurements suggested also that the phonon-drag hump is negative 
for an infinite binary sample, in contrast to the interpretation of all previous results. 
The data of Uher and Pratt (1978), which confirmed that this was true in the trigonal 
plane, were in good qualitative agreement with the experiments of Boxus and Issi 
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(1977). Since the measurements of Uher and Pratt (1978) were extended to ultralow 
temperatures they were able to observe two other peaks: a positive one around 
1 K and a negative one around 0·4 K for (X-L. Oddly enough, Kopylov and 
Mezhov-Deglin (1974) found an increase in the magnitude of the positive phonon-drag 
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Fig. 14. Temperature variation of the thermoelectric power 0( of pure bismuth. 
Curve 1 shows the results from a sample with a rectangular cross section of 
8·8 x 8·6 mm2 (Boxus and Issi 1977), while curves 2 and 3 are from samples of 
rectangular cross sections 2·8><3·0 and 1·2x3·0mm2 respectively (Issi and 
Mangez 1972). Comparing these three samples (1-3) we see that the negative 
contribution to the total thermopower increases with increasing thickness at low 
temperatures. Curve 4 gives the results of Korenblit et at. (1969) from a 
cylindrical sample of diameter 2·0-3·0 mm.For curves 1-4, the sample axes 
are in the binary direction. Curves 5 and 6 show results from samples whose 
directions do not coincide with a principal crystallographic direction and which 
have almost circular cross sections of diameters 4·8 mm (5) and 7·5 mm (6) 
(Kopylov and Mezhov-Deglin 1974). 

thermopower with increasing thickness on samples which were inclined by nearly 
45° to the trigonal axis (Fig. 14). Preliminary measurements on trigonal samples 
(J. Boxus, unpublished data) indicate that size effects in this direction are probably not 
so important. 
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(ii) Phonon Drag in Electrical Conductivity 

The occurrence of a possible enhancement of the electrical conductivity of metals 
at low temperatures due to phonon drag was foreseen by Klemens (1951), and later 
on worked out theoretically for the case of semiconductors by Goodman (1954) and 
Parrott (1957). Nowadays, there is a renewed interest in the subject and some authors 
have pointed to a possible effect of phonon drag on the electrical conductivity of 
metals at low temperatures (see e.g. Leavens and Laubitz 1975). 

In the case of semiconductors, the effect expected ideally should be large at low 
temperatures. However, it is not possible to detect it experimentally, since in order 
to observe a significant effect the electron system must be degenerate (Goodman 1954). 
A degenerate semiconductor generally means a highly doped material, and thus 
dominant impurity scattering. Practically, this means that the probability for an 
electron to be scattered by a phonon is small compared with that of being scattered 
by an ionized impurity. For this reason semimetals, and particularly bismuth, are 
expected to be choice materials to observe such effects, since they are degenerate in 
their purest form and the phonons interacting with electrons have very large mean 
free paths (Section 4b (ii». 

Issi and Mangez (1972) showed that the size effects in the thermopower and the 
electrical conductivity, measured on the same samples, occur in the same temperature 
range, namely that in which the phonon-drag thermopower exhibits its maximum. 
One plausible explanation was to ascribe both size effects to the same mechanism. 
In the case of the electrical conductivity, the electrons dragging the phonons would 
cause a departure from equilibrium of the phonon system, resulting in an enhancement 
of the electrical conductivity. In the limit of strong phonon drag, the effective electron 
mean free path would become equal to that of the much larger low energy phonon 
mean free paths. The size effect observed in the electrical conductivity could then 
be an indirect observation of a phonon size effect. Although these observations are 
not conclusive, they suggest that the mean free path of the low energy phonons 
concerned should be considered in explaining the kind of size effects illustrated in 
Fig. 6. It might also explain the peculiar T - 2 variation in certain temperature ranges. 

6. Galvanomagnetic and Thermomagnetic Effects 

We have already seen in Section 3 how pronounced are the galvanomagnetic 
effects in the group V semi metals and especially in bismuth. The same applies for their 
thermal equivalent, the thermomagnetic effects, which were discovered in bismuth 
by Ettingshausen and Nernst in 1886. However, in contrast to the case of galvano­
magnetic properties, little was done on the thermomagnetic effects in the group V 
semimetals. Until this last decade, only a few scattered data existed in the literature. 
This was probably due in part to the fact that the thermal effects are more difficult 
to measure correctly than the electrical ones, and further that the low field thermo­
magnetic coefficients are more numerous than the galvanomagnetic ones. Thermo­
magnetic effects are also more difficult to interpret than the galvanomagnetic effects 
since, as is the case for the zero-field thermopower, there are two mechanisms which 
may contribute. 

(a) Galvanomagnetic effects 

For the A7 rhombohedral structure the generalized form of Ohm's law, which 
takes into account the anisotropy of the system and the presence of the magnetic 
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induction B, should be considered. The theory of such effects has been reported 
with full details by many authors (Juretschke 1955; Abeles and Meiboom 1956; 
Drabble and Wolfe 1956; Okada 1957; Hartman 1969), and we shall only point 
out here the essential features. If Ei is the electric field and J i the current density, 
the resistivity Pi/B) is given by 

Ei = Pi/B) Jj • (53) 

The Resistivity Tensor Pij(B) 

Generalized Ohm's law: E; = Pij(B) I j 

For fLB..::g 1 (low-field approximation) 

pij(B) p;Jo) + R;jk B" + AijhlBh B/ 

I ______ , ___ ...J 

12 conductivity coefficients 

Band parameters 

Mobilities, Carrier densities, 

Tilt angles 

Fig. 15. Schematic representation of band parameter calculations from low-field galvanomagnetic 
measurements for a rhombohedral semimetal. (Note that 'magnetor' is used here as an abbreviation 
for magnetoresistance.) 

In the limit of weak fields (fiB ~ 1, where f1 is a carrier mobility), only the terms in 
Band B2 need be retained in the expansion of this tensor as a power series. Experi­
mentally, 12 coefficients should be measured: 2 zero-field resistivities, 2 Hall 
coefficients and 8 magnetoresistance coefficients. Fig. 15 shows schematically how 
the band parameters are deduced from these coefficients. 
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Experimentally one has to turn to low-field measurements where the effects are 
very small. For bismuth, Zitter (1962) was the first to study rigorously this low-field 
condition in his investigation of the galvanomagnetic tensor of bismuth at 4·2 K. 
Hartman (1969) extended this work by carefully exploring the range 4·2-15·7 K. 
His results were consistent with the known Fermi surface. Abeles and Meiboom 
(1956) and Okada (1957) explored a higher temperature range. However, the data 
of Abeles and Meiboom were taken only at two fixed temperatures, 80 and 300 K, 
and those of Okada were taken at four temperatures from 113 to 318 K and all 
data were for fields above 2000e. More recently Michenaud and Issi (1972) in­
vestigated the temperature range from 77 to 300 K under strict isothermal conditions, 
rigorously satisfying the low-field condition. They were able to determine the 
temperature variation of the carrier density (Fig. 2), the tilt angle of the electron 
ellipsoids and the mobilities. 

The two other group V semimetals were studied by the Durham group: antimony 
by Oktii and Saunders (1967a) and arsenic by Jeavons and Saunders (1969). They 
found interesting features of the Fermi surface and showed that carrier degeneracy 
was high and that its density remained almost independent of temperature up to 
300 K; the carrier densities in antimony were found to vary from 3·9 x 1019 cm - 3 

at 77 K to 4·2 X 1019 cm - 3 at 273 K, and in arsenic from 1·9 X 1020 cm - 3 at 77 K to 
2·1 X 1020 cm- 3 at 305 K. For both semimetals an anomalous temperature variation 
of the mobilities was observed: T- 1 ·4 for antimony and T- 1 .7 for arsenic instead 
of the expected T -1 variation. 

Aubrey (1971) has expressed in a tractable form the conductivity tensor components 
as functions of band parameters, for an arbitrary value and a given direction of the 
magnetic induction. These relations, when used to determine band parameters, 
should in principle save a lot of experimental time since, at a given temperature, only 
one coefficient has to be measured as a function of magnetic field, and the problems 
associated with low-field measurements are almost eliminated. These expressions 
have been shown experimentally to describe certain components of the magneto­
resistivity tensor of bismuth (Saunders and Siimengen 1972). Note also that 
Siimengen et al. (1974) were able to explain, at intermediate fields, the polar diagrams 
measured by Mase et al. (1962) at 20·4 K. In these measurements the magnitude of 
the intermediate magnetic field remains constant and the galvanomagnetic effects 
are measured as a function of its direction. 

Galvanomagnetic measurements have also been used as a means of discrimination 
between the charge carriers. This has been the case for arsenic and antimony, where 
it was not known till recently which were the electron and hole pockets. Galvano­
magnetic measurements on pure and tin-doped antimony led to the conclusion that in 
both cases holes were situated in the pockets with the larger tilt angle, which then 
allowed them to be located (Oktii and Saunders 1967b). 

Using space-time symmetry restrictions for field-dependent tensors, Akgoz 
and Saunders (1975a, 1975b) were able to predict the measurable component for the 
transport effect of the group V semimetals and thus form the bases of the general 
description of the effects of a magnetic field on the transport properties. The field­
dependent tensor method provides the theoretical basis for the description of transport 
properties ina magnetic field; it explains, for example, why the Umkehr effect 
occurs in those tensor components which have both odd and even contributions 
(see subsection (b) below). 
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(b) Thermomagnetic effects 

If VT is the applied temperature gradient and E the resulting Seebeck field, the 
magneto thermopower tensor a(B) is defined by 

E = a(B)VT. (54) 

Griineisen and Gielessen (1936) found that, for certain directions, when the magnetic 
field is reversed (a 1800 rotation) the e.m.f. is not the same for both senses of the 
magnetic field. This effect, called the 'Umkehr' effect, was later remeasured by other 
authors for various configurations of E, VT and B (Steele and Babiskin 1955; Smith 
and Wolfe 1966; Michenaud et al. 1970; Uher and Goldsmid 1974a). More recently 
Akgoz and Saunders (1975b), using field-dependent tensors, established the form of 
the thermomagnetic transport tensors and indicated for each crystallographic class, 
including the 1m, the components which contain an odd contribution. 

If we expand in series the components rxij(B) up to terms of second order in B, 
we obtain 16 independent coefficients (Slimengen and Saunders 1972a) instead of 
the 12 found in galvanomagnetic effects. These 16 coefficients consist of the 2 zero-field 
coefficients rx~1 = rx~z and rx~3' which were considered in Section 5 above and denoted 
for convenience by rx.L and rxll respectively; 4 coefficients for the linear terms, the 
so-called 'Nernst coefficients' rx111, rx 1Z3 , rxZ3 1 and rx 321 ; and 10 coefficients for the 
quadratic terms, the so-called 'magneto-Seebeck coefficients'. The indices 1, 2 and 3 
indicate the binary, bisectrix and trigonal directions respectively. 

Michenaud et al. (1971) have measured three of the low-field coefficients, namely 
rxZ31 , rx3311 and rx33ZZ, from 77 to 300 K and have shown that rxz3(B1) changes sign 
when going from low to intermediate fields. The same coefficients were measured by 
Hansen (1977) from 10 to 67 K and a change of sign was also observed for rxz3(B1). 
These observations were in disagreement with the expressions derived by Slimengen 
and Saunders (1972b) 

rxij(B) = P ik(B) {rx. (J~iB) + rxh (JZ/B)} , (55) 

where rx. and rxh are the scalar partial diffusion thermopowers of electrons and holes 
respectively, Pik is the total resistivity tensor component and (J~j and (J~j are the 
partial conductivity tensor components for electrons and holes respectively. Cheruvier 
and Hansen (1975) have shown that the partial thermopowers rx. and rxh, which are 
scalars at zero field (see Section 5a (i)), become tensors in a magnetic field if the 
Fermi surface is smeared and the relaxation time is energy dependent. 

At low temperatures the thermomagnetic effects are very large (Korenblit et al. 
1969; Tanuma et al. 1969) and cannot be explained in terms of a simple diffusion 
mechanism. Taking into account the anisotropy of bismuth, Korenblit (1969) 
developed a theory for the phonon-drag thermomagnetic effects which allowed 
the various components to be computed. This was based essentially· on arguments 
developed earlier by Herring (1954b). However, the Korenblit theory does not 
explain all the low temperature experimental results. This is apparent from the 
work ofUher and Goldsmid (l974a), who showed also that a phonon-drag mechanism 
could persist up to the liquid nitrogen range. On the other hand, Jacobson and 
Ert! (1972) demonstrated that, if the electron density n. is not rigorously equal to the 
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hole density nh , one could observe relatively large discrepancies with the Korenblit 
theory. Also, in the temperature range where phonon-drag effects are predominant 
the size effects described in Section 5b might have a drastic influence on the thermo­
magnetic coefficients. 

Analytical expressions for the 16 low-field phonon-drag thermomagnetic coefficients 
were systematically derived by Uher (1975). His formulae remain valid for the low-field 
diffusion thermomagnetic coefficients, provided the partial phonon-drag thermopower 
tensors are replaced by the scalar diffusion thermopowers (i.e. if the dispersion is 
assumed to be parabolic and the relaxation time to be energy independent). 
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Fig. 16. Status of knowledge of the transport properties of the group V semimetals. The thick 
lines (solid and shaded) indicate the temperature ranges that have been fully investigated experimentally. 
This means that, for the magnetoresistivity tensor pCB) and the thermomagnetic tensor a(B), all 
the components have been measured on single crystals and analysed in terms of band parameters. 
For the zero-field resistivity p, thermal conductivity K and thermopower a, it means that measurements 
have been performed on single crystals in at least one principal crystallographic direction. The 
thick solid lines show the situation prevailing until two years ago, while the thick shaded lines 
indicate the results published during the last two years. 

The particular coefficient ()(lll in the expansion 

()(ll (Bl ) = ()(~ 1 + ()(111 Bl + Dll Bi (56) 

should be equal to zero in the case of diffusion. Since this coefficient was found by 
Slimengen and Saunders (1972b) to be nonzero at 77 and 196 K it might prove that 
phonon drag exists at higher temperatures than expected. O. P. Hansen (personal 
communication) has recently found ()(lll to be nonzero at lower temperature. 
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7. Concluding Remarks 

Great strides have been made these last few years in our understanding of the 
transport properties of the group V semimetals. From an experimental viewpoint, 
results are now available on well-characterized single crystals, and there is generally 
good agreement between results published by various groups. Fig. 16 shows that 
the last two years have seen the extension of the data to ultralow temperatures for 
the three semimetals. This has brought some new information as well as promises of 
superconducting behaviour. It may be set<n also from Fig. 16 that we now know 
much more about arsenic, which was the poor relative of the series a couple of years ago. 

Thanks to the introduction of new techniques such as dilution refrigeration 
and squids, careful experiments have led to the separation of the ideal part of the 
electrical resistivity from the much larger residual component at ultralow temperatures. 
This has enabled an investigation of the region where small angle electron-phonon 
scattering was expected to occur. 

Thermal conductivity measurements revealed the various mechanisms contributing 
to heat transport, and eventually regions where one mechanism predominates, thus 
allowing theoretical predictions to be checked. The knowledge of the electronic 
component of the thermal conductivity in conjunction with that of the electrical 
resistivity gave access to the Lorenz number, which was found to be close to the 
Sommerfeld value at ultralow temperatures, and to deviate appreciably from this 
value at higher temperatures. In bismuth, high dielectric maxima reaching 
100 W cm -1 K -1 were observed in large samples, suggesting that this material con­
stitutes the best heat conductor in the liquid helium range. Also, because of the 
dramatic q-dependence of the relaxation times of the low energy phonons, their 
contribution to heat transport could be observed at relatively high temperatures. 
In addition to their fundamental interest, these observations may contribute to a 
new approach to low temperature thermoelectric refrigeration, since the lattice 
thermal conductivity is the sole parameter on which the thermoelectric figure of 
merit (24) depends, and which can be controlled independently. 

Concerning the thermopower, phonon-drag effects have been observed now in 
the three semimetals, and these have been found to be very sensitive to the size of 
the samples. The effect of phonon drag on· the electrical conductivity might be 
important in bismuth and to a lesser extent in the two other semimetals. Despite 
the complexity of electron-phonon interactions in these materials, the group V 
semimetals are the choice materials for such studies, since they have small densities 
of degenerate carriers without predominant impurity scattering. 

As regards the interpretation of the results, some progress may be noted in the 
understanding of the scattering mechanisms at low temperatures. Although the odd 
low temperature variation of the ideal resistivity of the three group V semimetals, 
as well as the peculiar size effects observed in bismuth, are not yet explained, some 
models have been proposed and seem to favour the hypothesis of a dominant highly 
anisotropic electron-phonon scattering. 

The diffusion thermopower is quite well understood in arsenic and antimony 
and thepseudoparabolic model might be the clue to the interpretation of the bismuth 
data. Although the theory of phonon-drag effects has been extended to the group V 
semimetals, this theory still needs to be refined and many parameters are still lacking 
in order to explain the experimental results. 
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The experimental determination of the drastic temperature variation of the band 
parameters in bismuth up to room temperature is a fundamental ingredient in the 
analysis of the higher temperature data. However, quantitative data for one of the 
masses are still urgently needed. Also the effective mass approximation needs to be 
questioned when applied to the conduction band of bismuth. 
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Note added in proof 

The scattering of phonons by electrons in metals at low temperatures leads to a 
r2 variation of the lattice thermal conductivity. This has often been extrapolated to 
the case of semimetals. However, we (J. Boxus, unpublished data) have recently 
reexamined the situation and found that it is not obvious at all that the arguments 
invoked for metals would also apply to the group V semimetals. Thus the discussion 
in Section 4b concerning the r2 law will probably not be valid when the subject is 
studied further theoretically. 
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