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Abstract 

The kinetic theory of charged test particles in a neutral gas, in the presence of static and uniform 
electric and magnetic fields, is reviewed. The effects of inelastic processes and reactions are included. 
The general space-time development of the swarms is considered and the relation between the non
hydrodynamic anQ hydrodynamic developments is pointed out. The transport coefficients are 
identified as statistical averages over the configuration-space and phase-space distributions. The 
evaluation of these averages by computer simulations is briefly discussed. 

The main emphasis, however, is on the Boltzmann equation treatment of the problem. Transport 
coefficients of any order are obtained as velocity moments of the solutions of the corresponding 
kinetic equations derived from the Boltzmann equation. These equations have similar structure 
and may be solved by similar methods. Methods of solution are classified and examined in detail 
for precise calculation of drift and diffusion. Illustrative examples are given. 

Several representations of the Boltzmann collision integral suitable for use in these calculations 
are examined. A discussion of the calculation of matrix elements and the relationship between 
different matrix representations is given. Complete expressions to all orders in the Fokker-Planck 
expansion and in the expansions for the operator components of the spherical harmonic decomposi
tion in the differential form are given. The advantages of using the adjoint of the collision operator 
and the cold gas collision operator in these derivations and in applications are shown and utilized. 
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Part I. General introduction 

Purpose 
and 
Scope 

Dear reader, take a long look at the table of contents and bear with us 
in pity and sympathy, for we have the task of introducing this work and 
commending it to your attention. 

Our purpose is: Firstly, to give a consolidated account of the theory 
and the scope of its applications. Secondly, and equally, to assess 
whether certain approximation schemes can produce results to the 
degree of accuracy required by present day experiments. 

The topics dealt with here are connected, from the point of view of 
physics, in that they concern systems for whose description the kinetic 
theory of dilute gases should suffice. A majority of them are also con
nected from a mathematical point of view because they are governed by 
homogeneous or inhomogeneous linear equations involving basically a 
single operator, which varies from system to system through its depen
dence on a single function, namely the scattering cross section, and a 
sm!lll number of parameters. 

tn the past [1]* these topics have been the subject of separate investi
gations, many of which have been designated as theories. The search 
for more reliable and accurate results has meant that such theories are 
increasingly seen as special methods of approximating the solutions of 
the Boltzmann equation, which embodies the relevant kinetic theory. 
Even the computer simulations [2] and the related correlation function 
methods, which have been regarded, with much justification, as indepen
dent ways of implementing kinetic theory ideas, can also be accom
modated in this point of view. The consolidation mentioned above is 
made possible by, and can be best appreciated from, the same point 
of view. 

Most of this development of theory has been stimulated by the high 
degree of accuracy of the data from experiments [3]. The theory is 
called upon not only to provide accurate and reliable values to compare 
with the data but also to account for, or predict, new phenomena that 
may be observed at these higher levels of refinement. 

The paper is a review in the sense that we go over much of the 
ground covered in previous works and follow the suggestions made by 
others in various streams of literature, to consolidate and enlarge the 
conceptual and technical resources of the theory in this field. However, 
we do not give a presentation, discussion or comparison of earlier works 
in their original form. We have often found new ways of implementing 
earlier suggestions and carrying them further. Our assessments and 
discussions are then based on these findings. In the text, mostly the 
references that we have actually used or found useful are given. In 
the Notes, we give additional references and comments to communicate 
the perspective at which we have arrived. We make the apology, 
customary at this point, for omissions and inadequacies and we invite 
correspondence regarding them from those who may be interested. 

* Italic numbers in square brackets refer to notes of a historical and supplementary 
nature which are collected at the end of the paper (p. 429). 
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Organi
zation 

Part II 

K. Kumar et al. 

We now turn to the organization of this paper. We are mainly 
concerned here with the theory of swarms, that is, the motion of very 
small numbers of charged particles through neutral gases, in the presence 
of a static uniform electric field. This is a test-particle problem, some 
aspects of which have been studied under the names of 'foreign gas', 
'weakly ionized gas' or 'thermalizer' problems. In experiments the 
space-time development of the charge number density is studied. 

Part II, comprising Sections 1-7, deals with the space-time develop
ment of the (charge) number density nCr, t). Section I introduces the 
notion of swarms, points out the features of theory applicable to other 
systems, such as certain forms of plasma, and indicates the extent to 
which space-time dependent electric and magnetic fields may be 
included. The experiments can identify a state of steady or stationary 
transport, the so-called hydrodynamic regime, in which the number 
density nCr, t) satisfies a differential equation with constant coefficients. 
These coefficients are the transport coefficients. Section 2 gives a formal 
phenomenological description of this regime and identifies the transport 
coefficients as moments of the number density in the stationary state. 
Section 3 shows the relationship of the transport coefficients to the 
stationary time-correlation functions. The connection with the linear 
response theory and computer simulation is pointed out. The remaining 
sections, 4-7, give the Boltzmann equation treatment of the problem. 
In Section 4, kinetic equations for the hydrodynamic regime are derived. 
The transport coefficients are obtained as (velocity) averages of the 
solutions of these equations. These derivations are based upon the 
assumption that the solution of the Boltzmann equation has a certain 
form. We therefore collect, in Section 5, the information available about 
the solutions of the Boltzmann equation. We point out the sort of in for
mati on still needed to secure the foundations of the theory and the need 
to bring the existence theory itself into closer contact with experiment. 
This naturally leads us to the consideration of the non-hydrodynamic 
regime. We take it to be the situation that precedes the establishment 
of the hydrodynamic regime. It has been studied by computer simula
tions and in terms of the initial-value problem of the Boltzmann 
equation. Section 6 briefly touches upon this problem. 

In the vicinity of boundaries the velocity distribution is different from 
that in the bulk. Depending upon the interaction between the charged 
particles and the neutrals, the effect of boundaries can extend to large 
distances. This is also a non-hydrodynamic effect, but is usually not 
considered as such because sometimes it can be taken into account by 
using transport coefficients that depend upon the size of the apparatus 
or upon the density gradients. The theory can then be presented as a 
modification of the hydrodynamic* theory, and this is briefly dealt 
with in Section 7. The theory of phenomena close to the electrodes 

* It should be noted that the term hydrodynamic is used here in a special sense: 
the conditions it refers to could not be further removed from those obtaining in 
liquids. 
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Part III 

and boundaries (Lowke et al. 1977) and the theory of the Huxley
Townsend experiment (Huxley and Crompton 1974) are also related 
to this class of problems and require further attention, but these are 
not dealt with here. 

In Part II, the collisions are described only formally. In particular, 
they may include reactions. The difference in the equations and inter
pretation of averages with or without reactions is pointed out at 
appropriate places. 

To solve the equations developed in Part II one needs the collision 
operator in a concrete form. The demand for accurate solutions 
requires corresponding accuracy in the representation of this operator. 
This in turn requires a good understanding of the way the operator 
depends on parameters and functions. 

Part III, comprising Sections 8-14, is devoted to the collision 
operator. The presentation and some of the results are new. In 
Section 9, the basic integral operator form is introduced. Its properties 
as a function of the gas distribution are pointed out and some properties 
with respect to translations are proved. These properties are of great 
importance for the development of subsequent sections. In Section 10, 
the collision operator is expressed as a power series in the mass ratio 
110 = mo/(m + mo) with coefficients that are differential operators. In 
Section 11, the spherical harmonic components of the collision operator 
are expressed in terms of a series of differential operators. We thus 
have two ways of expressing the collision operator in differential form. 
These expressions are complete in the sense that the general terms are 
given explicitly. The expressions for adjoints of these operators are 
also given. It is shown that the use of adjoint operators leads to essential 
simplifications in calculation. These sections are presented in some 
detail since this matter is not available elsewhere in the literature. The 
situation is different with respect to matrix forms. Several different 
representations have already been used in the literature and others are 
possible. Therefore, in Section 12, we consider the general properties 
of matrix representations. This is a part of the general theory of 
three-dimensional polynomial systems and the transformation theory 
of linear operators and is well known in the abstract. Here we have 
worked out the specific consequences in relation to our particular 
problem. Thus, the polynomials based on a gaussian weight function are 
emphasized and the problems of calculating with these are discussed. 
With the exception of those in Section I2d(ii), we have stopped short 
of giving explicit expressions for the matrix elements. References to 
the literature are given where such expressions maybe found. In com
plex situations like the one under study here, models have an obvious 
attraction and utility. Section 13 exhibits some model collision 
operators. 

The collision operators treated in Sections 9--12 involve only elastic 
scattering. The corresponding treatments of the operators that include 
inelastic scattering due to structure in the gas molecules are outlined 
in Section 14. 
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Part IV 

Part V 

Cold Gas 

K. Kumar et al. 

After this preparation we turn, in Part IV, Sections 15-23, to the 
most important applications, namely the calculation of drift velocity 
(or mobility) and diffusion coefficients. In the examples considered, 
inelastic processes are excluded. In Section 16, the mobility and diffusion 
equations, taken from Section 4, are written in a more convenient form. 
Two linear operators are identified, one that occurs in the equations 
of mobility and longitudinal diffusion and another that occurs in the 
equation for transverse diffusion. These are simply related to the 
collision operator and can be constructed by the methods described in 
Part III. Now, with operators so given, in principle the whole arsenal 
of numerical methods for solving linear equations may be deployed. 
Indeed, several different methods have already been tried and these are 
surveyed. The method of most general applicability is that of moment 
equations (Section 17). In setting up procedures for solving these 
equations, information available from the solution of model problems 
(Section 18) is often useful [4]. Expansion of the distribution function 
in terms of orthogonal polynomials is a convenient way of arranging the 
moment equations. Among these polynomials, the ones orthogonal 
with respect to an isotropic gaussian weight function give rise to 
equations that are particularly rich in symmetry. There is only one 
parameter in the weight function and very good results may be obtained 
by proper choice of this parameter (Section 19). A general gaussian 
weight function can include drift as well as anisotropy. There are then 
more parameters to choose. The expansion in terms of polynomials 
orthogonal with respect to such weight functions is considered in 
Section 20. Inboth these sections (19 and 20), we investigate the best 
way of choosing the parameters that enter the solutions through the 
polynomial system. If a large enough set of polynomials is used the 
solution should not depend on the parameters at all; the problems 
implicit in this are discussed, along with the choice of basis sets in 
Sections 17, 19, 20 and 23. Brief accounts of non-polynomial methods 
(Section 21) and computer simulation studies (Section 22) are included. 
This part closes with a short discussion comparing different methods 
(Section 23). 

In the presence of reactions or inelastic collisions, drift and diffusion 
can still be calculated by the methods described above by suitable 
modifications to the collision operator and the equations. However, 
in addition there are new measurable quantities, namely the reaction 
rates and equilibrium constants. The theory of reaction rates in the 
presence of unidirectional reactions and that of transport of charge 
in systems in chemical equilibrium is discussed in Part V, Sections 24-26. 
Section 26 implicitly contains the calculation of equilibrium constants. 

The cold gas [5] occurs quite often: in Section 18(c) as part of a 
solvable model; in Section 21 to illustrate the use of non-polynomial 
expansions; and, above all, throughout Part III as an important 
auxilliary in analysing the structure of the collision operator. Various 
forms of the collision operator for this case are derived in Appendix 2. 
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Section 20. Inboth these sections (19 and 20), we investigate the best 
way of choosing the parameters that enter the solutions through the 
polynomial system. If a large enough set of polynomials is used the 
solution should not depend on the parameters at all; the problems 
implicit in this are discussed, along with the choice of basis sets in 
Sections 17, 19, 20 and 23. Brief accounts of non-polynomial methods 
(Section 21) and computer simulation studies (Section 22) are included. 
This part closes with a short discussion comparing different methods 
(Section 23). 

In the presence of reactions or inelastic collisions, drift and diffusion 
can still be calculated by the methods described above by suitable 
modifications to the collision operator and the equations. However, 
in addition there are new measurable quantities, namely the reaction 
rates and equilibrium constants. The theory of reaction rates in the 
presence of unidirectional reactions and that of transport of charge 
in systems in chemical equilibrium is discussed in Part V, Sections 24-26. 
Section 26 implicitly contains the calculation of equilibrium constants. 

The cold gas [5] occurs quite often: in Section 18(c) as part of a 
solvable model; in Section 21 to illustrate the use of non-polynomial 
expansions; and, above all, throughout Part III as an important 
auxilliary in analysing the structure of the collision operator. Various 
forms of the collision operator for this case are derived in Appendix 2. 
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Notation Different Parts of this paper have been provided with their own 
introductory sections and can be read independently. To a lesser extent 
this is also true of the longer sections. The notation is introduced as 
the need arises. Some symbols are necessarily used with different 
meanings in different sections but this should cause no confusion unless 
one insists on hurriedly mixing up disparate sections. A general guide 
to notation and frequently used formulae is provided in Appendix 1. 
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Part II. The evolution of a swarm 
1. Introduction (II) 

For the purposes of this theory a swarm is defined as an ensemble of independent 
charged test particles moving in a neutral background gas. The motion of the 
particles is determined by the forces exerted by external electric and magnetic fields 
and collisions with the gas molecules, which may lead to reactions. The ensemble is 
to be interpreted as arising from a large number of identically prepared gas systems 
each with one test particle. The swarm is then described by the one-particle (six
dimensional) phase-space distribution function fer, c, t). 

In experiments a swarm exists as a small collection of particles in a neutral back
ground gas. The definition above is justified from a physical point of view if the 
charged particle number density and current are taken so small that both the mutual 
interactions between the charges and the influence of the swarm on the neutral gas 
distribution can be neglected. This can be tested experimentally. Mathematical 
justification is obtained by treating the whole system as a mixture and taking the 
limit of low charge densities (see also Section 5). 

Swarm experiments are a well-recognized category [6] in atomic and molecular 
physics. Their results have been analysed to yield information about the underlying 
collision process, and, in principle, the differential cross section for all relevant 
processes can be inferred. Examples of such experiments are: the drift tube measure
ments of ion and electron drift velocities and diffusion coefficients, in the presence of 
homogeneous electric fields; afterglow and diffusion cell measurements of the decay 
of charge densities, usually in the absence of fields; and ion-cyclotron resonance 
experiments performed with an AC electric field and a constant magnetic field. 

Our discussion will be mainly directed towards the analysis of drift tube experi
ments. However, the methods we discuss have wider applications. For example, 
application to some situations in discharge-and plasma-physics is possible. 
Specifically, these are the situations where the processes are dominated by collisions 
with the neutrals and the charge-charge interactions can be taken into account 
through space-charge fields acting as external fields, that is, when the fluctuating 
microfield is unimportant. A typical example is ambipolar diffusion in the positive 
column of a glow discharge (Rutscher 1977; Hirsh and Oskam 1978; Meek and 
Craggs 1978). 

Throughout this Part the electric and magnetic fields are assumed uniform in space 
and constant in time. Specialization to uniform and constant electric field and zero 
magnetic field is made only in the applications considered in Part IV. Small modifi
cations of the theory sometimes suffice to include space-time dependent fields. In 
particular, weak AC fields may be treated as perturbations. Existence theorems are 
known in the case of more general space-time dependence of fields (Section 5). 

The phase-space distribution function fer, c, t) contains all the information about 
the swarm behaviour but it is not directly measured. In the majority of experiments 
what is actually measured is a current incident upon some electrode. However, it is 
convenient to think that the charge density, that is, the distribution function in 
configuration space, defined by 

n(r,t) = f f(r,c,t)dc, (1) 

is the measured quantity. 
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The analysis of measurements of nCr, t) proceeds by first making some assumptions 
about the nature of the function nCr, t). On the basis of these assumptions, the experi
mental data are processed to yield values for other quantities such as transport coeffi
cients, which are themselves usually thought of as the measured quantities. On the 
other hand, a theoretical analysis based on the same assumptions relates these 
quantities in the first instance to the distribution function fer, c, t), typically as some 
averages over some parts of this distribution function. Then, a knowledge of the 
distribution function in terms of the cross section finally relates the cross section to 
measured quantities. . 

Sections 2-7 below provide the details of what has been sketched above. Another 
description of their content was given in the General Introduction (Part I). 

2. Time Development of Number Density: Hydrodynamic Regime 

The problem of a hydrodynamic description of a swarm is similar to that of a 
dilute neutral gas. The latter has been widely discussed (see e.g. Uhlenbeck and Ford 
1963; Dorfman 1974; Wood 1974). The difference between the two problems 
arises for two reasons. Firstly, because of the presence of fields, certain transport 
coefficients (e.g. the anisotropy of the diffusion coefficient and ro(3)) become important 
for the swarms, although they vanish identically for neutral gases. Secondly, whereas 
for neutral gases the effect of higher hydrodynamic coefficients is significant only at 
higher densities, where divergence difficulties arise in calculations (Dorfman 1974; 
Wood 1974), for the swarms the higher hydrodynamic coefficients, at Burnett and 
super-Burnett levels, are accessible even at very low densities (again because of fields) 
and the divergence difficulties are not encountered. Thus, the hydrodynamics in the 
present context has a different content than is normally associated with the term. 

The hydrodynamic description is a phenomenological description of the time 
development of the number density nCr, t). One does not refer here to the distribution 
functionf(r, c, t). The description is applicable in a stationary state, that is, when the 
memory of the initial state fer, c, 0) has been lost and the distribution function has 
become a functional of nCr, t) as far as its space-time dependence is concerned. 

The starting point of the hydrodynamic description is the continuity equation for 
the number density, 

(2) 

-

It describes the change in nCr, t) due to a convective particle current nu(r, t) and a 
production term (Otn(r, tneoll' One now assumes that both these quantities can be 
expressed as power series in the gradient operator \j with constant coefficients, and 
obtains the transport equation form of (2), 

(at - f ro(k) 8 ( - \j)k) nCr, t) = O. 
k=O 

(3) 

The constants ro(k) are tensorial transport coefficients of order k, and 8 indicates a 
k-fold scalar product. The ro(k) can be taken to be symmetrical under permutation 
of space indices, since their anti symmetrical parts are lost in the scalar multiplication. 

Fourier expansion of the quantities in equation (2) followed by a power series 
expansion in the wave number gives rise to the same results [7]. 
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Equation (3), truncated at k = 2, is familiar as the diffusion equation 

8t n + W. Vn -D :VVn = -cm. (4) 

We identify W = (0(1) as the drift velocity, D = (0(2) as the diffusion tensor and 
Ct. = - (0(0) as the reaction rate. This equation itself is often called the continuity 
equation. 

As the tensor D is real and symmetric, the coordinate axes can be chosen to lie 
along its principal axes. The fundamental solution per, t) of equation (4), i.e. the 
(unbounded) solution obtained with n(r,O) = b(r), is then given by 

(5a) 
with 

i = 1,2,3 ; (5b) 

or, in tensor notation, 

per, t) = {det(2n D t)} -t exp{ -(r- Wt). (4 D t)-l • (r- Wt}exp( - Ct.t). (6) 

We now exhibit the transport coefficients (O(k) as time derivatives of the moments 
of the density. Let t/J(r) be any function of rand 

<t/J(r) = N- 1 f t/J(r)n(r,t) dr, 

N==N(t)= fn(r,t) dr. 

(7a) 

(7b) 

Assuming that nCr, t) together with its derivatives vanish at the boundaries of the 
domain of integration, we obtain from equation (3) the following equations for the 
time development of the averages <t/J(r) 

dN/dt _(0(0) N = 0, (8a) 

00 

d<t/J(r)/dt - I (O(k) 8 «V)k t/J(r) = 0. (8b) 
k= 1 

If t/J(r) is a polynomial of order j in r, then in equation (8b) only the transport 
coefficients of order k ~.i occur. Taking successive moments we have, with 
r* == r-<r), 

(0(0) == -Ct. = d(logN)/dt, 

(0(1) == W = d<r)/dt, 

(0(2) == D = (1/2!) d<r* r*)/dt, 

(0(3) = (l/3 !)d<r*r*r*)/dt , 

(0(4) = (l/4!)d«r* r* r* r*)-3<r* r*)<r* r*»)/dt. 

(9a) 

(9b) 

(9c) 

(9d) 

(ge) 

Since the transport coefficients are constant in time, the corresponding averages 
must be linear in time. If a transport coefficient vanishes then the corresponding 
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average must be constant in time. Thus, there emerges a significant difference between 
the truncated equation (4) and the general transport equation (3). This can be illus
trated by considering the deviations from the gaussian-shaped fundamental solution 
(6) of equation (4). The first two deviations, called respectively 'skewness' and 'excess' 
or 'kurtosis' are given by the quantities <ri3)/<r~2)3/2 and {<r~4)/<r~2)2 - 3} (see e.g. 
Abramowitz and Stegun 1965, p. 92S). Equation (3), via (9d) and (ge), predicts a time 
dependence'" t -t and", t -1 respectively for these quantities, while from equation (4) 
a much faster asymptotic decay, '" t - 3/2 and", t - 2, is predicted. Measurement of such 
deviations can therefore provide information on the magnitude of related coefficients. 

It appears that oPl, which corresponds to the Burnett-level hydrodynamics, 
should be measurable in swarm experiments (Skullerud 1974; Whealton 1975). The 
coefficient 00(4), corresponding to the super-Burnett level, would require further refine
ment of technique. In the hydrodynamics of neutral gases, because of the absence of 
fields, 00(3) vanishes identically as do all oo(j) for odd j, and the calculation of 00(4) 

is beset with difficulties. 
The hydrodynamic description presupposes a stationary velocity distribution and 

small relative gradients Vn/n of density. It is therefore not expected to apply to situa
tions involving fields that vary strongly in time or space or when density gradients 
are large. At material boundaries the gradients will always be large, and proper 
boundary conditions for the transport equations should always include a kinetic 
treatment of the boundary layer. However, in practice such layers can often be 
neglected and well-behaved solutions can be obtained for the transport equations. 
Such solutions are useful in many ways but cannot always be relied upon near the 
boundaries. 

3. Transport Coefficients and Time-correlation Functions 

The averages defined by equations (7) can be formed for any nCr, t). Thus, in 
general, the right-hand sides of equations (9a)-(ge) define time-dependent quantities 
oo(k)(t). The hydrodynamic regime is expected to arise after sufficient time has elapsed. 
This expectation may be expressed in the form 

lim oo(k)(t) = oo(k) = con st. (10) 
t-+ 00 

Then, for large times the hydrodynamic equations (3), (Sa) and (Sb) are satisfied with 
constant coefficients oo(k). 

Note that by virtue of the relation (1) between nCr, t) and fer, c, t), the averages 
(7a) and (7b) are also phase-space averages: 

<1jJ(r» = N- 1 f ljJ(r)f(r,c,t)dcdr, (Ila) 

N == N(t) = f f(r,c,t)dcdr. (llb) 

We now outline methods of constructing such averages and their use. Let a particle 
be released in the gas at a point ro with velocity Co at a time to and let its position 
r and velocity c be noted at a later time t. Then by repeating the process a large 
number of times with identically prepared gas systems one can form a conditional 
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probability function II(r, c, tiro, Co, to). The distribution function I(r, c, t) arising 
from an initial distribution I(ro, Co, to) is given by 

(12) 

The probability function has the property that for to < t' < t 

II(r, c, tiro, Co, to) = J II(r, c, t I r', c', t') II(r', c', t' I ro, Co, to) dc' dr' . (13) 

In developing this point of view further one is led to examine more carefully the 
meaning of ensemble averages that define II. In particular, when models are used, 
attention has to be paid to the magnitude of the smallest subintervals into which a 
given time interval can be idivided. Formally, from here one can make contact with 
the path integral and intregal equation representations of the development of the 
distribution function (Notes [8], [9]). 

We now have a procedure for constructing I(r, c, t), and therefore nCr, t) and the 
averages (7) or (II) for any given system, from which an ensemble may be generated. 
This procedure can be implemented in various ways. First of all, it can be implemented 
experimentally, since the probability function has been defined operationally. 
Secondly, it can be implemented numerically once the underlying particle dynamics 
are given in a suitable form. Note that no reference has been made to Hamiltonians 
or Liouville operators, although if the dynamics are governed by them and they are 
convenient for the purpose, they may be used to construct the II function or the 
distribution function. Finally, kinetic equations, in particular the Boltzmann 
equation, may be used to obtain the distribution function and the averages formed 
from it. 

If the gas system, including external fields, is time independent then the time 
dependence of the II function is determined by the difference t - to. If in addition the 
system is also spatially uniform, the space dependence is similarly determined by the 
difference r-ro. Then there is no loss of generality in assuming that all the test 
particles are released at the origin at time zero. In other words, one takes 

at to = 0. 

The procedure may then be phrased in terms of releasing particles at the origin at 
time to = 0, with the velocities chosen stochastically to conform to an initial dis
tribution I(co), and obtaining the number nCr, t) of particles arriving at the point r 
at time t. Further, even the explicit reference to nCr, t) may be eliminated, if the 
averages are constructed from the formula 

s 

<tfJ(r)(t) = lim S-l L tfJ(ri(t)) , (14) 
s-'t-CX) i=l 

where s is the number of trials. At the ith trial a particle is released at the origin with 
the velocity chosen as above and its position r;(t) after a time t is noted. 

This last procedure is the one actually followed in experiments and in computer 
simulations. When the gas distribution is also stochastically simulated, dt) itself is 
the result of a similar averaging process and the left-hand side of equation (14) is 
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then a result of two averaging processes. By constructing ro(k)(t) from such averages 
one can study non-hydrodynamic behaviour and the approach to the hydrodynamic 
regime. In applications, reactions are frequently absent and only the drift and 
diffusion ro(1) and ro(2) are studied; references will be given in Section 22. 

The coefficients ro(k) for k ;:" 2 can be expressed as integrals over time-correlation 
functions of the velocity by noting that r is the distance travelled in time t, so that it 
can be expressed as 

r = ret) = f~ e(t) dt . (15) 

For the case of diffusion one starts with the relation 

<r* r*)(t) == f~ f~ dt' dt" <e*(t') e*(t") , (16a) 

with 
e*(t) = e(t)- W(t). (16b) 

For stationary distributions the time correlation in the integrand of equation (16a) 
can depend only on r = I t' - t"/. Accordingly, 

<r*r*)(t) = 2t f~ <e*(O)e*(r)(I-r/t) dr, (17) 

and by equations (9c) and (10), D = lim D(t), 
1-+00 

D(t) = f~ <e*(O)e*(r) dr. (18) 

For a general discussion of time-correlation functions, reference may be made, 
for example, to the texts by Egelstaff (1967) or McQuarrie (1976). Formulaesimilar 
to (18) involving higher correlation functions may be found in the articles by Dorfman 
(1974) and Wood (1974). Most commonly, the time-correlation formalism is used in 
the linear response theory of Green and Kubo, where systems only slightly perturbed 
from thermodynamic equilibrium are considered. The unperturbed distribution 
functions are then known, and given by the Hamiltonian of the system. The 
Hamiltonian also defines the time-evolution operator, i.e. the Liouville operator. 
There is considerable literature based on this theory about the conductivity of solid 
systems (see e.g. Huberman and Chester 1975). An interesting application to mobility 
in gases has been made by Braglia and Dallacasa (1978). However, in the presence of 
strong fields, which is the usual situation in swarm experiments, the simplifications 
of the linear response theory cannot be used. The stationary distribution obtained in 
these situations cannot be directly related to the Hamiltonian or to the time
evolution operator. 

To make some further points about the nature of the time-correlation functions 
and to give an instance of the linear response argument, we derive now a correlation
function expression for the differential mobility tensor 

K(t) = iJW(t)/iJE, (19) 
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where E is the electric field. The acceleration a suffered by a particle of charge q and 
mass m in the electric field E is given by 

a = (qjm)E. (20) 

We use the definition (14) and write 

s 

W(t) = lim 8- 1 L c;(t). (21) 
8-+00 i=l 

Now, for any I', with 0 < t' < t, 

c;(t) = c;{c;(t'), t-t'). (22) 

If a small change ba is made in the acceleration at time t' and it persists for a small 
duration dt', then the change in c;(t) due tothis perturbation is obtained from equation 
(22) by replacing c;(t') by c;(t') +badt'. To first order 

s 

bt , W(t) = badt' lim 8- 1 L {oc;(t)joc;(t')}. (23) 
8--+00 i=l 

The meaning of the average (23) is as follows. The velocity of the particle, 
released at the origin at time zero with a velocity chosen to conform to some initial 
distribution, is measured at t' and an infinitesimal change bC;(t') is made. The change 
bC;(t), caused by this in the velocity ci(t) at a subsequent timet, is then measured and 
the ratios are formed. In terms of the phase-space average this means that 

(oc(t)joc(t') = J {oc(t)joc(t')}j(r',c', t') dr' dc' . (24) 

A similar interpretation is needed for the averages in equations (16)-{18), connected 
with the diffusion tensor. Indeed, for any many-time correlation function, the earliest 
time has a special significance. 

Using the stationarity property, the space-averllged distribution 

j(c) = N-1 J j(r,c,t)dr 

and -r = t- t', we can write the average (24) as 

g(-r) = (oc(-r)joc) = J {oc(-r)joc}j(c)dc. 

(25) 

(26) 

Using partial integration, and assuming that the boundary terms vanish, we have 

g(-r) = -({d(1ogj(c)jdc}c(-r). (27) 

Returning now to equation (23), one argues that if the infinitesimal force m fJa acts 
during the whole interval 0 to t, the resulting change in W(t) will be obtained by 
adding all the contributions arising from the infinitesimal intervals dt'. This is the 
linear response argument, but note that the change fJa is imposed on an ensemble 
already subject to an acceleration field a. We thus have 

tlW(t) = fJa.J: d-rg(-r). (28) 
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Hence from equations (2S) and (19) and (20), 

K(t) = (q/m) f~ ger) dT, (29) 

where g( T) is given by equations (26) and (27). 
Note that when the distribution function f(c) of equation (25) has the form of a 

distorted Maxwellian, 
f(c) '" exp{ -(m/2k)c*. T -1 .c*}, 

with T the temperature tensor and c* = c- W, as defined above, equations (IS) and 
(27) give the result 

DCt) = (k/q)T.K(t). (30) 

In the limit t ~ 00 this becomes a set of relations between the appropriate hydro
dynamic coefficients. These are known as the generalized Einstein relations and have 
been widely discussed in the literature [10]. The Einstein relation itself is the limit 
E ~ 0 of equation (30) and it holds exactly since the distribution is then in fact 
Maxwellian. The generalized relations cannot be exact but they hold remarkably 
well [10]. Why they should be as good as they are, is to some extent understood but 
perhaps a better explanation should be given. However, in view of the above deriva
tion, explanations starting from distribution functions of nearly Maxwellian form 
cannot be very illuminating. It should be noted that the differential mobility is not 
particularly easy to measure or calculate. Although the generalized Einstein relations 
are interesting and useful in making estimates, they are not important at the level of 
accuracy aimed for in this paper. 

4. Boltzmann Equation: Kinetic Equations for Transport Coefficients 

The Boltzmann equation for our problem has the form 

{at +c.ar +a.oJ f(r,c, t) = -Jf(r,c, t), 

a = (q/m)(E +cxB), Jf = - (aflat)coll· 

(3Ia) 

(3Ib,c) 

It is a continuity equation for the six-dimensional phase-space distribution function 
fer, c, t). The electric field E and the magnetic field B are both independent of rand 
t. The particles have charge q and mass m. The collision operator J is treated in 
detail in Part III. It is a linear operator which acts onf only through its c dependence; 
that is, it is a local operator in rand t corresponding to the assumption that both the 
range and the duration of collisions are negligible. The operator J depends functionally 
on the neutral distribution and the scattering and reaction cross sections. When the 
neutral distribution is isotropic and the colliding particles are unpolarized, J is 
rotationally invariant, i.e. its eigenfunctions are proportional to spherical harmonics. 
If reactions are present the operator J may be split into a particle-conserving part 
J Pc and a reactive part JR. The latter is usually of a much simpler form than f C, 

but its presence may nevertheless introduce nontrivial complications in the solution 
of the Boltzmann equation. The reactions considered here are irreversible reactions 
of the type A + B ~ C + D, and it is assumed that only the charged species A with the 
distribution function f(c) is measured. These will be called unidirectional reactions 
(Section 25). Further details of this operator are not needed in this section. 
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If available, a solution of equation (3Ia) would provide answers to any questions 
that may be asked about the behaviour of the system in the hydrodynamic or the 
non-hydrodynamic regime. In the hydrodynamic regime, complete knowledge of such 
a solution is not required. Rather one takes the distribution function in a form 
appropriate to this regime as a sum of certain components and derives simpler kinetic 
equations for these components from equation (31a). The 'observable quantities' of 
this regime, i.e. the transport coefficients, are then obtained from the solutions of these 
simpler equations (for further discussion see Section 5 and Note [11]). 

The basic hydrodynamic assumption (Section 2) is that the number density 
satisfies equation (3) and the space-time dependence of the phase-space distribution 
has the form (see Note [7]) 

00 

fer, e, t) = I f(j)(e) 0 ( - V')i nCr, t). 
j~O 

(32) 

The functions f(j)(e) are tensors of rank j and 0 indicates a j-fold scalar product. 
The space-time dependence of fer, e, t) is thus functionally determined by nCr, t). In 
order that equation (32) be properly normalized and consistent with the definition 
(1), we have, using equation (7a) 

f(O)(e) = N- 1 f f(r,e,t) dr, (33a) 

f j<°)(e) de = 1, (33b) 

f f(k)(e) de = 0, k"# o. (33c) 

Substituting equations (3) and (32) into (31a) and for every k equating the coeffi
cients of (-Vln(r, t) on both sides, we obtain the hierarchy of kinetic equations 

k 
(a.o c +J)f(k) = cf(k-l)(e) - L ro(j)f(k-j), 

j~O 

k"# o. 

(34a) 

(34b) 

These equations are to be solved successively by starting from (34a), the equation for 
the space average of the phase-space distribution function f(O)(e). Equation (34a) 
defines an eigenvalue problem and, corresponding to the assumption that the hydro
dynamic regime is the long-time limit, one associates the lowest eigenvalue w(O) with 
the reaction rate rL = - w(O). In the absence of reactions this eigenvalue is trivially 
zero. The eigenfunction belonging to the appropriate eigenvalue is the required 
solutionf(O)(e), to be normalized according to equation (33b). The equations (34b) are 
inhomogeneous equations. A better appreciation of the structure of these equations 
and their relationship is obtained by introducing the linear operator 

(35) 
and the tensors 

k-l 
b(k) = -ro(k)f(O)+ef(k-l)- L ro(j) f(k-j). (36) 

j~l 
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Equations (34a) and (34b) then become 

21(0) = 0, 

359 

(37a) 

(37b) 

Integrating with respect to e, recalling equations (33b) and (33c) and noting that 
only the reactive part JR of the collision operator contributes to this integral, we have 

w(O) = - f JR j(O)(e) de, (38a) 

(O(k) = f cf(k-l)(e) de - f JR f(k)(e) de. (38b) 

These equations give the transport coefficients in terms. of the solutions of the kinetic 
equation sets (34) or (37). Since a solution of the homogeneous equation (37a) can 
always be added to f(k) without altering (37b) a condition is needed to make f (k) 

unique. This is provided by equation (33c) and leadsto the proper definition of the 
transport coefficients given by (38b). An eigenvalue problem needs to be solved only 
for determining the reaction rate - w(O) and the space-averaged distribution j(O)(e). 

Once these are given, all (O(k) for k > ° are determined without solving any further 
eigenvalue problem. * 

Note that when reactions are present the calculation of a transport coefficient of 
rank k requires solutions of the equations up to order k. In the absence of reactions, 
solutions of equations. to the order k - 1 suffice for the same purpose. Thus, in the 
latter case, with w(O) = 0, the drift velocity (0(1) or the mobility is determined by 

. equation (37a) and the diffusion tensor (0(2) by equation (37b) for k = 1. These will 
be called the mobility and diffusion equations respectively. Part IV below is devoted 
to their solution and applications. 

Note further, that by virtue of equation (38b) with k = 1, the drift velocity (0(1) 

is a velocity moment of the space-averaged distribution function j(O) only in the case 
where no reactions are present. 

5. Boltzmann Equation: Existence Theorems and Spectral Properties 

In this section we formulate some questions which need to be answered in order 
to secure fully the foundations of the methods described in the rest of the paper. In 
this connection a number of mathematical works, which come from different streams 
of kinetic theory literature, become relevant. However, at the time of writing, these 
works are not yet in a form where they can be adopted or easily modified for direct 
use in the problems thai concern us. We shall eschew technical details and describe 
the problems and results in an informal way. 

* The second term on the right-hand side of equation (38b) may be written as 

with 

and equation (37b) may then be looked upon as an equation for h(k) which does not involve an 
eigenvalue problem. 
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(a) Steady state and existence theorems 

The basic assumption in transport calculations is that after some suitable time the 
distribution function can be written in the form (32), that is, as 

f(r, c, t) = n(r, t)f(O)(c) + Vn(r, t) .f(1)(c) + .... 

This is the assumption that makes it possible to derive transport coefficients which 
are independent of time. The state described by such a distribution function is some
times called a steady or stationary state. This is to be taken informally-we are not 
making any allusions to any stationary random processes or stationary ensembles 
that may underlie the phenomena. 

The problems underlying this assumption are quite similar to those underlying 
the justification of the Chapman-Enskog procedure and the existence of transport 
coefficients for ordinary gases (Grad 1949a, 1949b, 1960; Uhlenbeck and Ford 1963). 
The present problem is simpler in the sense that the reason for neglecting the non
linearity is very strong. It may be noted that there are two possible sources of non
linearity: the direct one due to ion-ion interaction and the indirect one due to the 
possible alteration of the neutral distribution by the ions and its reaction on the ion 
distribution; both are very small because the ion density is very small compared with 
the gas density. If the definition of the swarm given in Section 1 is adopted the non
linearity is excluded iIi principle. 

On the other hand, the presence of the field term and the particular arrangement 
of equations are significantly different from the Chapman-Enskog development of 
neutral gas transport. A discussion of these equations along the lines of references 
quoted above is not available in the literature [11]. 

Thus, while there is no definite proof that the distribution function has the form 
(12),' the agreement of the theories based on this form with experiments is already 
so good that it'requires explanation. In other words, the form (32) has to be true in 
some sense and the task of mathematical theory is to make precise what this sense is. 

Further work in this direction may well benefit from the existence and uniqueness 
theorems recently proved by Drange (1978). Specifically, Drange considers the 
Boltzmann equation (31a), and allows the electric and magnetic fields (E and B) to 
have space-time dependence, subject to some technical restrictions. The equation is 
solved by successive iterations. An essential part of the procedure is to split the 
collision integral into a multiplicative and an integral operator, for which some cutoff 
procedure is necessary. In an earlier paper Drange (1975) studied several cutoff 
procedures. His work concludes by showing the existence and uniqueness of the 
solution to equation (3Ia) for a class of potentials which include the power law 
V(r) = Vo r- s (s > 2) and the hard-sphere potential. These papers are heavily 
abbreviated and we have not been able to unravel the argument sufficiently to comment 
on its content. But it is evident that the structure postulated in equation (32) is out 
of the reach of such methods. 

There are some indications that the solution of the Boltzmann equation (31a) may 
have a different structure from that postulated in equation (32). Recent experiments 
on H+ ions in helium have shown a novel situation, namely that a small group of 
ions 4avels as if it has suffered no collisions (these are called the runaways) and a 
larger group travels as if governed by ordinary time-independent transport coefficients 
(Howorka et al. 1979; Lin et al. 1979a). Loosely speaking, this suggests that the 
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solution of equation (3Ia) should have a decaying part of the form (32) and a smaller 
part corresponding to free transport. This situation needs to be studied in relation 
to the velocity dependence of the cross sections. 

(b) Position-independent Boltzmann equation and mobility equation 

The position-independent Boltzmann equation is the name given to equation (31a) 
when the term involving the spatial gradient is omitted, that is, to the equation 

aJ +a.oJ = J(f). (39) 

This equation has an interesting relation to the mobility equation (37a). Let B = 0 
and E be independent of rand t, and let!t be a solution of equation (31a) for some 
given initial distribution !to; then if there exists a limit 

lim It = f(c) , (40) 
t-> <YO 

the limit function satisfies the mobility equation 

(q/m)E. oJ = J(f). (41) 

If one writes down the formal time-dependent solution of equation (39) (see e.g. 
CavalIeri and Paveri-Fontana 1972, or references quoted by them) and compares it 
with a related solution for equation (41), one sees that the existence of the limit (40) 
involves questions about the manner in which the memory of the initial state is lost. 

Equation (39) has also been considered by Molinet (1977). He considers the initial 
value problem and proves the existence and uniqueness of the solution for power 
law potentials of the form Ar - S (3 < s < + <Xl) and for hard-sphere potentials. 
Some technical restrictions are placed on the initial distribution!to' The existence of 
the limit (40) is, however, not proved. 

Molinet (1977) bases his proof on an iterative method applied to an integral 
equation derived from (39). The solution whose existence is proved satisfies equation 
(39) only in a generalized sense (i.e. almost everywhere). The integral equation used 
and the estimates of iterates depend upon an angular cutoff used to put the collision 
operator in a suitable form. The bounds on the iterates are time dependent, being 
proportional to exp{2ct(t- to)}. The method thus breaks down as t -+ 00. The 
iterates also depend on the masses (Molinet 1977, equation 4.49) and become ineffec
tive if the ion and gas masses are equal. 

It is well to recall at this point that Wannier (1953, Section lID) has argued that, 
particularly for the· equal mass case, the distribution function actually has a 
singularity .. 

It is clear that further work is needed on the solution of equation (39) if this is to 
be used to prove the existence of the solutions of the mobility equation (41). Onthe 
other hand, it is possible that equations (39) and (41) are not to be related in the way 
indicated. A solution of (41) necessarily satisfies (39) but such a solution may not be 
reachable from any solution of (39) in the limit. 

Finally, we note that Cavalleri and Paveri-Fontana (1972) assume the existence 
of a steady state (i.e. of the limit 40) and from this derive a necessary condition for the 
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suppression of runaways. If, however, the runaways coexist with ordinary transport 
in some sense, then more refined analysis will be needed for the connection between 
equations (39) and (41). 

( c) Representation of operators and their spectrum 

We expect that further work on questions outlined in previous sections will justify 
the use of mobility and diffusion equations in the form used in this paper. Even then 
some mathematical questions remain and we now turn to them. In calculating the 
mobility we solve the equation 

.!l' PO) = O. (42a) 

That is, we are seeking the eigenfunction of the operator .!l' belonging to the eigen
value zero. In calculating diffusion we seek to solve the equation 

(42b) 

and this calls for a knowledge of those eigenfunctions of the operator .!l' which are 
orthogonal to the eigenfunction belonging to the eigenvalue zero. 

At the time of writing there is no information in the literature concerning the 
eigenvalues or eigenfunctions of the operator .!l' as such. Of the two operators whose 
sum it is (equation 35), a. 0 c has a continuous spectrum and its eigenfunctions are 
not square integrable. There is considerable literature on the operator J, the collision 
operator, but most of it is in connection with the linearized Boltzmann equation 
in the pure gas problem or in neutron transport theory. The operator that concerns 
us here is the one used in the so-called foreign gas problem. 

Much of the work on the linearized collision operator is based upon splitting the 
operator into a multiplicative operator and an integral operator: 

J(f) = vf-K(f). (43) 

This requires the introduction of some sort of cutoff in the collision cross section to 
make the two parts of the operator well defined (e.g. Grad 1963; Cercignani 1967; 
Drange 1975). This procedure is inconvenient for numerical work since it corresponds 
in some sense to representing a small quantity as a difference between two large 
quantities. From the literature it is easy to get the impression that for analytical work 
such a procedure is essential. This is, however, not the case: Pao (1974) has been 
able to establish the spectrum oflinearized collision operators without using any cutoff 
procedure. He proves that for the class of power law potentials VCr) = Vo r- s (s > 2) 
the linearized collision operator for the pure gas has a purely discrete spectrum and 
that its eigenfunctions exist, are square-integrable and form a complete set for such 
functions. It is to be expected that Pao's technique will also be applicable to the 
foreign gas .collision operator. The main difference will be in the dependence of the 
spectrum and eigenfunctions on masses. 

For the hard-sphere case more detailed information is available in the works of 
Yan (1969), Jenssen (1972), Klaus (1976), and the references quoted by them. In 
particular Yan shows the close connection that exists between the pure gas linearized 
collision operator and the foreign gas collision operator. The relationship to the 
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operator occurring in neutron thermalization studies may also be seen from his work 
and the papers quoted by him. It appears (Jenssen 1972; Klaus 1976) thatthe spectrum 
for the hard-sphere case differs from that for the power law case in possessing a 
continuous as well as a discrete part. Furthermore, strong evidence is provided to 
show that the spherical components J1 for I ~ 3 possess no discrete eigenvalues. 
There is no information on eigenfunctions. Again, these results are proved for a pure 
gas linearized operator, but may be expected to hold also for the foreign gas collision 
operator in view of the work of Yan cited above. 

Although no precise information is available in the literature, the spectrum of the 
collision operators for more realistic short-range potentials may be expected to be 
purely discrete. However, in calculating transport coefficients of practical interest 
one often works not with potentials but cross sections, which are available from other 
sources, sometimes from ab initio quantum mechanical calculations. Such cross 
sections may not correspond to a simple classical potential scattering. What is needed 
therefore is a study of the operators in relation to typical behaviour of cross sections. 

Returning to the operator !e, we may infer that it will have both a continuous 
and a discrete spectrum. It is not possible to say what the eigenfunctions will be. The 
question of interest is: to what extent do the moment equations, to be discussed in 
Section 17, capture the significant part ofthe operator equations? Or, in other words, 
to what extent are the operator equations well represented in terms of the matrix 
equations and other forms used elsewhere in this paper? No direct answer to these 
questions is available. But matrix representations are used in related problems such 
as that of sound propagation and are used also in the investigation of spectrum 
questions, as for instance in the work of Jenssen (1972). The relationship of the sound 
propagation problem to the problem ofthis paper was discussed earlier by Kumar and 
Robson (1973). 

6. General Space-Time Development: Non-hydrodynamic Behaviour 

Non-hydrodynamic effects most often occur on short time scales and/or near the 
boundaries. They are difficult to measure because just in these regions the effects due 
to imperfections of geometries, contact potentials and reflection coefficients are the 
most difficult to control. In the search for significant and reproducible results most 
experiments are designed to minimize these effects (see e.g. Huxley and Crompton 
1974, Section 10.3). Thus, in the first instance, the interest in the non-hydrodynamic 
effects is a negative one. The investigations, both theoretical and experimental, are 
carried out to delimit the phenomena so that they can be safely eliminated from the 
experiments to obtain the more reliable (hydrodynamic) information. This situation 
is often compared with the corresponding one in connection with the boundary layer 
problems in fluid dynamics. On the other hand, in discharge tubes and phenomena 
near electrodes as well as in some diffusion cell experiments (i.e. in those exhibiting 
diffusion cooling) the non-hydrodynamic behaviour is all important, although some 
of these problems can be treated with small modifications of the hydrodynamic 
scheme. 

From the discussions in the previous sections it is evident that the non-hydrodynamic 
behaviour can be studied by constructing the time-dependent quantities ro(k)(t) defined 
in Section 3, from computer simulations or from the Boltzmann equation, by direct 
numerical solution of the space-time dependent Boltzmann equation, or by other 
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computer-based investigations designed to answer particular questions. As an 
example of the last kind, we mention the work of McIntosh (1974). He studied the 
space-time development of a highly localized pulse of electrons, and noticed a 
'pear-shaped' component in the density distribution nCr, t). He obtained evidence in 
the time development of this component which indicated a non-hydrodynamic 
behaviour. This component is associated with the coefficient oP) in hydrodynamic 
theory. The example serves to emphasize that the hydrodynamic and non-hydro
dynamic effects can have similar appearance and, in order to distinguish between 
them, particularly careful attention needs to be paid to the time development of such 
features. 

1·0 .....---
// Dxx(t) 

/ / 
/. / 

Dxx(t) / //- f(.C,OO)} 
/ / -_ o(c) f(c,t=o) 

?,/ 
o 

Fig. 1. Ratio between the time-dependent values (see equation 18) and the hydrodynamic values 
of the transverse (Dxx) and longitudinal (D,z) components of the diffusion tensor shown for 
two choices of the initial velocity distribution fee, t = 0), namely b(e) and fee, ex»). Here b(e) 
is the distribution in which all particles are given the velocity zero and fee, ex») is the stationary 
distribution that is finally achieved. A cold gas model with hard-sphere interaction between the 
ions and the neutrals is assumed. The mass ratio m/mo is unity. The mean free path 
)~ = (no 0')-1, with no the gas density and 0' the total cross section, is a scale parameter, and 
a is the magnitude of the acceleration of the particles in the z direction. The cold gas assumption 
means that the gas particles are stationary but subject to recoil (see Note [5]). (Diagram 
after Skullerud 1977.) 

Numerical solution of the Boltzmann equation for the initial value problem with 
an initial distribution of the form 

f(r,c,O) = [)(r)f(c) (44) 

is an instance where non-hydrodynamic behaviour can be studied without the com
plication of boundary effects. For this purpose a suitable form of time-dependent 
configuration-space functions has to be found in terms of which the space-time 
dependence may be expressed. It is then possible to solve for the space-time depen
dence by using polynomial expansion methods, rather similar to those used for finding 
the velocity dependence (cf. Section 17). In fact, the velocity dependence is also deter
mined at the same time in a coupled calculation. These methods have been used both 
for the electron and the ion problem (Skullerud 1974, 1977). Among other things, 
a more precise understanding of the problem treated by McIntosh (1974) was obtained 
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in this way. Fig. 1, taken from Skullerud (1977), shows the relaxation of time-depen
dent diffusion coefficients towards their hydrodynamic values. The precise shape of 
the curves before the hydrodynamic values are finally established is sensitive to the 
cross sections. In particular, for some models, oscillations around the final hydro
dynamic values may occur. Apart from such information, these curves provide a 
vivid illustration of the difference between the physical mechanism underlying the 
transverse and longitudinal diffusion coefficients, at least to those who are able to 
follow the relevant details. Similar curves for oP) are available in the references 
quoted. Two further conclusions from these works may be noted to illustrate the 
motivation and use of such studies. These are: (I) that oP) effects should be 
measurable, and (2) that the transport coefficients relax rapidly towards their hydro
dynamic values, and these can be found experimentally by difference measure
ments even when the non-hydrodynamic corrections to the pulse shape are quite large. 

Similar questions for the case of electrons have been investigated by computer 
simulations in somewhat greater detail and good accounts are available in the works of 
Braglia (1977), Braglia and Baiocchi (1978) and Lin and Bardsley (1977). For the case 
of ions, the velocity and energy relaxation were studied by Linet al. (1977) using both 
the simulation techniques and low-order Burnett expansions. The transition to the 
hydrodynamic regime has also been illustrated quite clearly by obtaining an explicit 
analytic solution of equation (31a) for a model collision operator (Robson 1975). 

One of the earliest investigations of non-hydrodynamic effects to attract attention 
was the work of Thomas (1969) and of Thomas and Thomas (1969). They calculated 
the time-dependent reaction rate aCt) = -w(O)(t) for an electron avalanche using 
the two-term Boltzmann equation as well as Monte-Carlo simulations and showed 
that it oscillated about the hydrodynamic value that was finally achieved. More 
recent work by Sakai et al. (1977) and Tagashira et al. (1977) is noteworthy for putting 
this problem in a broader framework. 

It has not been our intention to summarize the discussions or findings contained 
in the works mentioned, but only to pick out the common underlying themes in the 
investigations of the general space-time behaviour. 

7. Effect of Boundaries 

As observed in the General Introduction (Part I) and in the previous section the 
influence of boundaries may lead to large gradients and therefore non-hydrodynamic 
effects. These will occur when the relevant mean free path becomes comparable with 
the dimensions of the system, as in the Knudsen gas limit in rarefied gas dynamics. 
For a perfectly absorbing boundary surface S, the proper boundary condition is 

f(r,c, t) = ° (45) 

for r lying on S and cos e = C. Ii > 0, where Ii denotes the unit vector normal to S 
and directed inwards towards the gas. However, the Boltzmann equation (3Ia) is 
generally difficult to solve with such boundary conditions, and to date little work 
has been done in this direction. Fortunately, there is a wealth of experience in neutron 
transport theory and rarefied gas dynamics on which to draw (e.g. Williams 1971) 
and it would seem logical that the next step would be to apply these methods to ion 
and electron transport problems, as far as possible. 
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Various approximations to the condition (45) exist in the literature: 
(i) The integrated boundary condition (Robson 1976c) 

J~ c3dc Sot1t cos Ol(r, c, t) sin 0 dO = 0 (46) 

is a statement that the net particle flux away from S vanishes. It is deficient from the 
physical point of view since it can lead to an 1 which has a negative as well as a 
positive part. Another suggestion in the same vein is to take 

n(r, t) = 0 (47) 

at a point obtained by extrapolating the density profile to a distance approximately 
equal to the mean free path A, behind S. The relevant macroscopic length scale 
is determined by the length L of the vessel and, since we have L ~ A, equation (47) is 
frequently assumed to apply on S itself, and becomes a boundary condition 
(McDaniel 1964). 

(ii) Lowke et al. (1977) have argued that for the electron case where the two-term 
approximation 1 = 1(0) + 1(1) cos 0 applies, the condition (45) can hold at only one 
particular angle. They take it to be 0 = -tn. Assuming, as before L ~ A, this leads 
to the condition 

on S. (48) 

This is consistent with equation (47) but is a much stronger condition. 
We believe that none of the forms (46), (47) or (48) will be satisfactory in general. 

On the other hand, the half-range expansions familiar in neutron transport theory 
(Williams 1971, Ch. 11) should allow direct implementation of the correct boundary 
condition (45), and may well be useful in future work. 

It is interesting to discuss boundary effects for the simplest case where E = O. 
For the electron problem, because of the smallness of m/mo a distinct separation of 
time and space scales for energy and momentum transfer occurs. Thus, if A is the. 
mean free path for momentum transfer, then the mean free path for energy transfer 
is )"e ~ (mo/2m)tA and it may happen that 

but (49a, b) 

as, for example, is the case in the CavalIeri experiment (Huxley and Crompton 1974). 
The condition (49b) may be thought of as resulting in a good 'thermal contact' between 
electrons and the container walls: high energy electrons are lost preferentially by 
diffusion to the walls, leaving the bulk of the electrons at a temperature lower than 
that of the gas ('diffusion cooling'). On the other hand, from the condition (49a) 
it follows that the extrapolation length is small: it has therefore been assumed in 
previous work that equation (47) applies on the boundary walls (Parker 1965; 
Leemon and Kumar 1975; Robson 1976a). 

The condition (49b) also indicates a non-hydrodynamic behaviour for the electrons, 
with density varying substantially across the container, which is itself of the order 
of Ae in size. Nevertheless it has been shown in the works cited that in the long-time 
limit where large gradients are still present the density n obeys a diffusion-like equation 

(50) 
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where Deff is an effective diffusion coefficient which depends upon the geometry of 
the container, as well as on the cross sections and gas parameters. The deceptively 
simple appearance of equation (SO) should not obscure the fact that it is generally 
applicable under both large-gradient and weak-gradient (hydrodynamic) conditions. 

To look at the problem in the hydrodynamic regime 

(51) 

we employ equation (3), recognizing that all odd roCk) vanish and the other 
coefficients are scalars for zero field, that is, 

at n = I W(2k) ("\l2)k n • 

k=l 

Periodic boundary conditions then lead to the result 

(52) 

where A ~ L is the so-called diffusion length (McDaniel 1964), and hence equation 
(52) can be written as 

at n =, I {w(2k)IA 2k - 2 } "\l2n, (53) 
k= 1 

which is of the same form as equation (50): the sum is effectively a series expansion 
of Deff, which will converge under these conditions. The expansion is in terms of the 
parameter ),./L, since we have W(2k) ~ (Ae)2k-2 (Robson 1976a). Clearly, in the limit 
of high gas pressures and large enclosures, AelL --> 0 and equation (53) becomes 

(54) 

which is the usual diffusion equation, with the (geometry-independent) diffusion 
coefficient D = w(2). Equation (50) therefore encompasses a whole range of 
behaviour of the electrons, from the large-gradient non-hydrodynamic regime to the 
opposite extreme indicated by the conditions (51). 

The nonzero field situation has been discussed by Lowke et al. (1977). Apart 
from a possible inadequacy in their assumed boundary condition mentioned above, 
we note that they have defined the diffusion equation to be exact and therefore have 
to allow the diffusion coefficient to vary with position, which is contrary to normal 
practice. 

An approximate treatment of boundary value problems, valid for both ions and 
electrons where gradients are not too large, is to solve equation (54), with the 
coefficients roCk) found from boundary-free calculations (Skullerud 1974; Robson 
1975) in, conjunction with the boundary condition (47). This sort of analysis was 
outlined above for the diffusion cooling, field-free situation. It should also be useful 
for nonzero fields and will provide a consistency check on any more sophisticated 
theories. 

However, as mentioned before, we feel that· the most satisfactory approach will 
be to do away with the full range (0 to n) expansion in angular variables and adopt 
the half-range expansions (0 to tn and tn to n) so often used elsewhere in transport 
calculations. This should account for the sharp changes in angular distributions 
which occur near material walls, as required by the condition (45). 



368 K. Kumar et al. 

Part III. The form and substance of the collision operator 
8. Introduction (III) 

In this Part (Sections 8-14) we study several alternative forms of the Boltzmann 
collision operator J for ion-neutral interactions. Although our motivation is a 
practical one, namely to facilitate the computation of the moments of J for use in 
transport calculations, we have found that it is important to pay attention to the 
symmetries of the operator, in order to understand its structure and to bring out its 
dependence on parameters. The discussion is organized accordingly. 

We treat in detail the collision operator for elastic scattering (Sections 9-13) and 
point out the modifications needed for including inelastic processes due to the 
internal structure in gas molecules (Section 14). For the latter we use the semiclassical 
form of the operator suggested by Wang-Chang and Uhlenbeck. The same operator 
in the case where both the ions and the gas molecules have internal structure is treated 
in the following paper (Kumar 1980a; present issue pp. 449-68). 

In all cases J is a linear operator. Its action on a functionf(c) of the ion velocity c, 
not necessarily the distribution function itself, is usually given in the form of an 
integral operator (Section 9). From this we derive its representation in terms of 
differential operators (Sections 10 and II), and as an infinite matrix (Section 12). It 
is possible to go from anyone of these forms to another. Thus one may use the differ
ential forms to obtain matrix representations, or from any given matrix representation 
one may obtain the kernel of the integral operator. All these forms have been used 
earlier in approximations suitable to different circumstances. Our aim is to develop 
general expressions which may be used to carry the particular approximations to higher 
orders and also to show the relationships between different procedures so that one 
may effectively compare the efficiencies of the different methods to a given computa
tional accuracy. Such use of the formulae developed here is implicit in the work 
reported in Part IV below. 

In the integral and differential forms, the expressions for the collision operator 
are essentially unique with possible rearrangement of terms in the series representing 
the differential forms. However, in the matrix form there can be several represen
tations depending on the system of basis vectors chosen. Usually, these come from the 
system of orthogonal polynomials in terms of which the ion distribution is expanded. 
The polynomial system introduces new parameters. The matrix elements of the 
collision operator then depend on these basis set parameters or b-parameters for 
short. The proper choice of these b-parameters is important in applications. Their 
special role in calculations is discussed later in Sections 19 and 20. In the discussion 
of matrix forms in Section 12 we concentrate mainly on the relationship between 
different matrix representations and some technical points in the calculation and 
arrangement of matrix elements. References are given to the literature where explicit 
formulae for the matrix elements in particular representations may be found. 

It may be noted that matrix representations are not limited to orthogonal polyno
mial bases. It is possible to use non-orthogonal polynomials or even non-polynomial 
bases. Particularly, in the latter case, no general prescription for calculating the 
matrix elements of the collision operator can be given (see, however, Sections 17 and 
21). 

The differential operator form has been developed in two ways. The first, the 
Fokker-Planck form (Section 10, Note [13]) is an expansion in powers of the velocity 
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gradient operator 0 c' It is appropriate for the case of heavy ions. The second form is 
obtained by first making a spherical harmonic decomposition of the collision operator 
and then developing differential operator forms for the spherical components of the 
operator. This expansion is suitable for light ions and has been most extensively used 
for the case of electrons (Section 11, Note [14]). 

In the past, the Fokker-Planck expansion (also called Kramers-Moyal expansion 
in stochastic theory literature), usually carried only to the second order, has been 
expressed in terms of tensor coefficients. However, the tensors always occur in some 
scalar products. By using the axial symmetry of the operators with respect to the 
direction of the vector c, it is possible to obtain an expression in terms of scalar 
operators involving only the powers of the differential operators \72 and djdc. 

The main reason for developing general expressions in differential form is the 
convenience in calculating the moments of the function J (f). The operators are 
expressed by a series such that to get the moment with respect to a polynomial of 
degree n only the first n terms of the series are needed. For the Fokker-Planck case 
the operator series is actually a power series in the mass ratio Jlo = moj(m + mo) and 
the polynomials in question are polynomials in c. In the case of spherical harmonic 
decomposition each spherical component of the collision operator is a scalar differen
tial operator arranged in a series. The nth member of the series has a leading term 
~ (JlJlot with Jl = mj(m + mo), although the series is not a power series in (JlJlo)' 
The calculation of moments is facilitated by using the adjoint J of the collision operator 
J. Hence expressions for the adjoints are also given. For further remarks on the use 
of the adjoint operator see Section 17 a. 

The derivation of differential operators is often motivated by noting that in 
collision with a neutral at rest the change Ac in the velocity and the change AB in 
the energy are 

AB ~ JlJlo B. (55) 

It is then said that the former is small when Jlo is small and an expansion of the 
collision operator in powers of Ac does lead to a power series in Jlo (the situation is 
plasma physics is somewhat different; see Note [13]). The second quantity AB is said 
to be small for small Jl and low-order expansions for spherical components of J 
have been obtained in the same way by expansion in powers of AB. It is evident, 
however, that these quantities are neither parameters nor small, except in some 
average sense. Furthermore, even accepting the vagueness, in the case of AB the 
smallness argument by itself is not sufficient to justify its mode of application: AB 
being small if either Jl or Jlo is small. In our derivations we make no use of this 
argument. We are primarily guided by the symmetry of the problem and our moti
vation in obtaining suitable expansions for calculating the moments. Towards the 
end of Section 11, the difference between low Jl and low Jlo situations for the spherical 
harmonic decomposition is· pointed out. 

In our treatment an essential role is played by the operators corresponding to a 
cold stationary neutral gas [5], for which 

(56) 

This provides significant simplification, in that the Co integration can be carried out 
immediately. Mathematically, the cold gas approximation corresponds to the zeroth 
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order term in a certain series expansion of the collision operator. Physically, the 
approximation corresponds to the situation where the ions are driven through the 
gas by an electric field so strong that the thermal motion of the gas molecules may be 
neglected. That is to say, the cold gas approximation should become exact in the 
high field limit. Hence one looks for an expansion in which the cold gas approximation 
occurs as the first term. 

For all that, our interest here is not in the cold gas approximation itself but in 
the expressions suggested by it, in the information provided by the expansions about 
the structure of J and in their utilization in calculating transport coefficients to greater 
accuracy. 

We consider here only the collisions described by a differential cross section 
a(g, X) whose angular dependence is carried entirely by the polar angle X between 
the initial and final relative velocities 9 and g', with 

cosx = g.g'. (57) 

Note that apart from central forces, this includes the case where scattering is from 
unoriented molecules and an averaged cross section may be used. The differential 
cross section always occurs with a Legendre polynomial and integrated over all 
angles, i.e. in the form of partial cross sections a,(g) defined by 

f +1 

atCg) = 2n -1 a(g,x)PtCcosX)d(cosx). (58) 

In classical scattering there is a singularity in a(g, X) in the forward direction and the 
partial cross sections are not well defined. However, the combination 

f+1 

a(l)(g) = ao(g)-a,(g) = 2n -1 a(g,x){l-P,(cosx)} d(cosX) (59) 

is usually well defined; the exceptions being in cases such as Coulomb scattering, 
where well-known 'cutoff' procedures have to be employed to ensure convergent. 
integrals. 

All formulae concerning elastic scattering have been arranged so that the cross 
section always occurs in the form a(l)(g). For inelastic scattering a slightly modified 
function plays the same role. This avoids those cutoff procedures (cf. Section 5), 
which are introduced solely for the purpose of making the partial cross sections for 
clasical scattering well defined. The quantities a(l)(g) are the most naturally occurring 
forms in our context and it is desirable in general to work with quantities associated 
with an orthogonal function (see Note [12]). 

9. Integral Form 

The collision operator J acting on the ion distribution function fCc) has the basic 
definition 

(60) 
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where the explanation of the integral is the usual one. It is sometimes convenient 
(cf. Section 5, equation 43) to write 

with 
J(!) = v(c)f(c) -K(f), 

v(c) == ffo(co)ga(g,X)dU'dCo , 

K(f) == ff(C')fo(c~)ga(g,X)dU'dco, 

(61a) 

(61b) 

(61c) 

where v(c) is the so-called collision frequency. To make v and K well defined, in the 
case of classical scattering some cutoff has to be prescribed. 

The operator J defined above takes a function f(c) into another function, say, 
fCc), J:f -+ fCc) == J(f) and depends on the gas distribution fo(co). It is therefore 
an operator functional of fo(co). We indicate this by 

J(f) == J([fo]; f). (62) 

From the definition (60) it is seen that this can be written as a convolution 

J([/o];f) = f fo(V)J([b(Co- V)];f) dV. (63) 

The operator on the right-hand side will be called the moving cold gas operator. 
From this we can calculate the collision operator for any neutral gas distribution by 
using equation (63). 

Since c is a constant vector inside the integral (60) we can replace dco by dg and 
express the arguments of the distributions inside the integral in terms of c, 9 and g': 

Co = c-g; c' = C-flo(9-9'); 

with flo = mo/(m + mo) and J1 = m/(m + mo), as before. 
Let T be the translation operator, defined by 

Tf(c) = f(c+ V), T fo =f(co+ V); 

then from equations (60) and (62) 

or 
T J([fo]; f) = J([T fo]; T f) , 

J([T-lfo];f) = T-1J([/0]; Tf) 

(64) 

(65) 

(66a) 

(66b) 

This is a fundamental relation between the collision operators corresponding to 
different gas distribution functions related by translation. In particular, we have the 
relation between the operators for moving and stationary cold gas distribution 
functions: 

(67) 
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The adjoint X of any operator X is defined by 

f q> X (f) dc = fiX ( q» dc . (68) 

Hence from equation (60) 

J(q» = f lo(co){q>(c)- q>(c')}g CT(g,X) de' dco · (69) 

In addition, since T = T -1 equation (67) gives 

(70) 

This is a consequence of the following relation, easily derived from the definition (68), 

[XYZr = ZYX, (71) 

where, for longer expressions, we use the notation [A r == A. 

10. Differential Forms: Fokker-Planck Expansion 

The usual form of the Fokker-Planck expansion is 

J(f) = L (%c)n (0 (An(c)/(c), (72) 
n 

where An(c) are tensors of nth order, the symbol (0 indicates an nth order scalar 
product and (a/act is a product of n operators %c;, i = 1,2,3. To make it explicit 
one must supply n indices on the tensors and take account of the combinatorial 
problems that arise. 

If the tensors are regrouped so as to transform like the spherical harmonics, the 
expansion (72) takes the form 

J(f) = L 116n+1 2~I]('l'},:'I)(C) f(c), (73) 
nlm 

where the mass dependence coming from the velocity change has been made explicit; 
2 is the tensor differential operator independent of interactions, defined in 
Appendix 2a (see also Appendix 3, p. 447); and the 'l' are tensor functions which 
contain all the information about the gas distribution and cross sections. The 'l' 
may also depend on other vectors (besides c) if they occur in the problem, for instance, 
through an anisotropic 10. Thus 

(74) 

These tensors for arbitrary gas distribution may be expressed in terms of the 
corresponding quantities for the cold gas. We are then able to give compact 
expressions for these quantities to any order. 

If o'l'},:'l) are the tensors for stationary cold gas then 

(75) 

This relation follows since c is the only vector in the problem. Explicit expressions 
for °'l'n,(c) in terms of cross sections are derived in Appendix 2a. 
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Applying the relations (67)-(73) and noting that 7L commutes with T, we have 

With equation (63) this gives, for an arbitrary gas distribution, 

tp~I)([Jo];c) = ffo(V)T-lotp~I)(C)dV. 

It follows that when 10 is isotropic 

tp~l)([Jo] ; c) = Y~)(c) tp nl([JO]; e) . 

(76) 

(77) 

(78) 

In particular for a Maxwellian gas distribution (setting the number density no equal 
to unity for the present) we have 

f 10(V)exp( - V. oJ dV = exp( _to!o2\1~), 

tpnl([WO]; c) = exp(-tO!o2\1?)°tpnl(e). 

Here \1~ is the Laplacian and 

(79a) 

(79b) 

(79c) 

(80) 

If we substitute equation (78) into (73) then the sum over m indices can be carried 
out directly and we have for isotropic gas distributions 

00 

J(f) = L tt~n+1 snl(tpnle)f(c) , (81) 
",1=0 

where 

snl = --±-Ff2" \12(n+r) - -
21 1 [tll (d 2)/-2r 

411: nl rf'o arl C de + e ' (82a) 

(82b) 

and [tl] is the largest integer less than or equal to tf. The adjoint operator is given by 
00 

J ( ¢) = L tt~n + 1 tp nl e) S nl( ¢ ) , (83) 
n,I=O 

where 

S-nl = (_)1 --±-N- 2 " _ ",2(n+r) 21 1 [til (d )'-2r 
4 nl 1.... arl d v C • 

11: r=O e 
(84) 

It is shown in Appendix 2a that the stationary cold gas functions °tpni are given by 
n+1 

0tp (e) = e2n + l + 1 " uP')(e) a" nl ~ nZ, (85a) 
,,=0 

where 

y = {1(1-X)}t. (85b) 
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The coefficients a~l are pure numbers and the u(A)(c) were defined in equation (59). 
Some properties and special values of the coefficients a~1 are given in Appendix 2b. 
In particular it may be noted here that 

a~1 = 0 for A> n+l, (86) 

so that the upper limit in the sum in equation (85a) need not be written down; it 
is automatically enforced by the properties of a~l' Further, from equations (85b) 
we have a~o = bOA so that 

°'l'OO(c) == O. (87) 

Equations (81) and (82) give complete Fokker-Planck expansions of the collision 
operator and its adjoint for isotropic gas distributions. The functions '1' nl for a 
Maxwellian gas are given by equations (79c) and (85a). For other isotropic distribu
tions these are to be calculated from equations (77), (78) and (85a). In Table 1 we 
give explicit expressions for the adjoint collision operator for a stationary cold gas 
to fourth order (see also Appendices 2a and 2b). 

In the above formulae the dependence of the operator on the parameters of the 
problem is explicitly seen. The mass-ratio dependence appears entirely through the 
factor fl~n+1 and verifies the usual statement that the Fokker-Planck expansion is 
appropriate for the case of heavy ions m > mo or flo < t-

An important feature of the formulae (83) and (84) for i is that snl is a homo
geneous differential operator of degree (2n + I). It therefore annihilates all poly-
nomials in e of degree less than (2n+/). To calculate the moment . 

f </J(e) J(j(e)) de = f f(e)i(</J(e)) de (88) 

with a polynomial of degree N in vector e, it is necessary to take only those terms in 
equations (81) or (83) for which (2n+/) ~ N. Higher terms in these expansions make 
no contribution to this moment. The highest u(A) that can occur in this calculation 
corresponds to A = N. 

Finally, we note a property of the adjoint operator that is useful in the calculations 
of transverse diffusion coefficient. It may be verified from equations (83) and (84) 
that 

i(e</J(e)) = ci(</J) +K(</J) , (89) 

where K(</J) is an isotropic operator given by 

K (</J) = I fl~n+1 'l'nle) S fl( </J), (90a) 
n,I=O 

(90b) 

The similarities between J and K are evident. There is a similar relation for the 
operator J but the adjoint of K does not enter in it. In fact, 

i(e</J) = e LI(</J) implies LI(ef) = eJ(f) (9la) 
and 

J(e f) = e L 2(f) implies Lie</J) = ei(</J). (91b) 
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Table 1. Adjoint collision operator to fourth order for stationary cold gas 

(See equation 84) 

2n+l n A a:z Function ·'PnZ OperatorA snZ 

0 0 0 0 0 

0 0 t -te2a(I) - 2Dc 
-.!. 

2 

2 0 0 t --te3a(I) tV: 
-.!. 

2 

2 0 2 0 I -te3a(l) + {e3 a(2) 2D:--tV: ..-
-.!. 

2 

2 I ..-

3 0 I c4 ( - ta(I) + {a(2») --}Dc V; "3 

1 -.!. 
2 

2 1 
"6 

3 0 3 0 I e4 ( - ja(1) +ja(2) - ja(3») -jD: +-}Dc V: .. 
3 .. 

2 3 .. 
3 I .. 

4 2 0 0 .!. e5 ( -ta(I)+{a(2») ,zs V~ 3 

-.!. 
2 

2 I 
"6 

4 2 0 • e'( -·Ha(1) + 274a(2)- 430a(3») ~D: V: - 24, V~ 24 
_ll 

40 

2 7 
24 

3 _..L 
40 

4 0 4 0 I e5( - {a(1) + ja(2) _ {a(3) + ~(4») iD~ - ~D; V: + 32• V~ T6 
1 ..-

2 3 .. 
3 I ..-
4 /. 

A In this table we have used the abbreviations Dc == djdc, D; == d2jde2 etc. 

The operators £1 and L2 are obtained by making small modifications in the operators 
j and J; namely, to get £1 from j replace (d/de) by (d/de + I) in the expression for 
snl and use equations (83) and (84); to obtain L2 from J replace (d/de +2/e) by 
(d/de +3/e) in the expression for snl and use (81) and (82a) (see also Section 16a). 

11. Differential Forms: Spherical Harmonic Decomposition 

The action of the collision operator on irreducible tensors of the form 

f~)(c) = Y~)(c)f(e) (92) 

can be expressed in terms of certain scalar operators J I or J(nlll1211 .), which act 
only on the scalar functionf(e). These expressions are called the spherical harmonic 
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decomposition of the collision operator. In this section we give complete expressions 
for these decompositions for an arbitrary gas distribution function, as well as for 
special cases which are important in applications. It should be noted that the fCc) 
here are not the ion distribution functions but functions which may occur in the spheri
cal harmonic expansion of them. 

It is known that the spherical harmonic decomposition of the collision operator 
is diagonal when the gas distribution is isotropic, as for instance in the case of a 
stationary cold gas or a Maxwellian gas. In these cases we have 

(93) 

This equation may be taken as a definition of the scalar operator JIU), which is called 
a spherical component of J of rank I. 

The spherical components in the case of a Maxwellian gas are related to those of 
the stationary cold gas, but the relationship is not very direct. In fact, to find this 
relationship one has to go through the case of a moving cold gas. It will be seen 
that it is then no more difficult to treat the most general case. 

The collision operator for the moving cold gas is not diagonal in the above sense. 
The spherical symmetry is broken by the motion of gas, as explicitly shown by the 
presence of the translation operator T in equation (67). Since there is only one 
other vector, namely V, involved in the problem, the tensor decomposition is con
veniently described in terms of the composite irreducible tensors 

ylth(l) = '\' (I m I m 11m) y(lt)( V) y(lh(c) 
m - ~ 1 1 2 2 ml m2' (94) 

m1 m 2 

where the (/1 m112 m2 11m) are the Wigner coefficients. 
We write 

J([D(co-V)];f~l)(c» = L (4n)fV2nI+IIy.!:h(l)J(n1l11211f)· (95) 
nIlt!, 

This equation defines the scalar operators J(n1111211.). They are taken to be 
independent of the vector V and therefore depend only on the cross sections and the 
masses, there being no other parameter in the problem. The convenience of having 
these operators is seen in that the tensor decomposition of any gas distribution can be 
expressed in terms of these operators. Thus using the relation (63) and the definition 

<v2nI+1IY~:)(h) = Jfo(V)V2nl+ltY~:)(hdV' 

equations (94) and (95) give 

L (4n)-1-(l1 ml l2 m211m) 
nl1112ml m2 

(96) 

The case of isotropic, i.e. spherically symmetric, gas distributions is particularly 
important in applications. Fortunately it is also particularly simple in as much as 
the averages (96) vanish for /1 ¥- O. It is convenient to introduce new symbols for the 
operators in this case. We set 

J;U) == J(n 0 III f) . (98) 
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For the Maxwellian gas (equations 79) we have 

<V2n, +l , y~:)(V» = JltoJmlo(4n)-t(2nl +1)!!(kTo/mo)nl. (99) 

From equations (97) and (98) (10 == wo; equation 79a), 

(100a) 

00 

Jl[wo];f) = L (2n+l)!!(kTo/mo)nJ'"(f). (l00b) 
n=O 

The dependence of the collision operator on the parameter (kTo/mo) coming from the 
Maxwellian distribution is made explicit in this equation. The operators Ji do not 
depend on the gas distribution but only on the cross sections and masses. 

The stationary cold gas corresponds to the limit To ~ 0, and hence to the first 
term in equation (lOOb) 

'(101) 

Now we come to a most important result: we show that all the scalar operators 
J(nl/l/z/l.) needed for the general problem may be expressed in terms of the operators 
JP which occur in the spherical harmonic decomposition (101) for the stationary 
cold gas case. 

For this purpose we need the tensor decomposition of the translation operator, 
similar to equation (95) (see Appendix 3): 

T(f~I) = L (4n)t V 2n l +It y~'h(l) T(nl 111211 f), (102) 
n,ltt, 

where the scalar operators T(nl/1/211.) depend only on c. They are kinematic 
operators needing no reference to the dynamics of collisions or distribution functions. 
The tensor decomposition of T- l may be obtained from equation (102) by replacing 
Vby - V. 

We define the adjoint A of a scalar operator A by means of the relation 

f ep(c) (AI(c») CZ dc = f (A ep(c»/(c);Z dc, (103) 

and note that 

(104) 

with i = (21+ 1)t. Using these relations in equations (67) and (95) one, can show that 

J(nll 1 1z11f) = L J(2nl+11-(2n~+I~+2n~+m) 
nl'lt'h'nl"!t" 

x (- )t(It'+,It"-ld(l~ 0 l'~ 0 1/10) i~ lr 12 w( I11zl) 
1~1~lr 

x r( n~ lr 1~ lzi JI~,(T(~~ l~ 1211 f))) . (105) 

The Wigner coefficient (I{ 0 Ir 0 III 0) and the Racah coefficient W in (lOS) arise 
from the recoupling of tensors. The.sum on the right-hand side goes over all positive 



378 K. Kumar et al. 

integral values, and zero, of the indices as allowed by the c5 functions and the 
restrictions on the l's implicit in the Racah and Wigner coefficients. It is a sum over 
a finite number of terms. Specifically, the c5 function implies that 

and the Wigner and Racah coefficients imply that 

1~+1~+11 even, 

(106) 

(107a) 

(107b) 

where the more restrictive conditions take precedence. Further, from the properties 
of the Toperators, I~ +/2 +/2 and I{ +/2 +1 are even; together with the relations (107) 
this implies that /1 + 12 + I is even. That is to say, the operator defined by equation 
(105) vanishes identically if /1 + 12 + I is odd. 

When /1 = 0, the expression (105) simplifies and we have 

Jref) == J(nOlllf) 

n"I'~'''12' c5( n - (n~ + n~ + ID) T( n~ I~ I; II J?AT(n'{ I~ I; II I)) ) . (108) 

We note that the sum is symmetric in n{ and n'{ and the sum over 12 is restricted to 
those values for which 

I { + 12 + I even and I/{-/I ~ 12 ~ (l{+/). (109) 

The meaning of operations on the right-hand side of equations (105) and (108) is 
that the functionfis operated upon in succession by the three operators T, Jf and 1. 
As an example of working with these formulae, note that in equation (108) if n = 0 
then nl = n~ = I { = 0 and we have an identity since 

(110) 

For n = 1 there are three possible sets of indices (n~ n~ In, namely (100), (010) and 
(001). Correspondingly equation (108) gives 

J}(f) = T(1011 IJNT(0011II))) +T(001lIJ?(T(1011II))) 

+ T(01/-11 1 J1?.1(T(O 11-111 f))) +T(O 11+111 JI~1(T(011+111 f))). (111) 

Using the expressions for the relevant T operators given in Appendix 3, we find 

21 {(d 1-1) 0 (d 1+1)}] - 21+1 de --e- JI- 1 de +-e- I . (112) 

This is the first-order temperature contribution for the Maxwellian gas as given by 
equation (100b), expressed in terms of the stationary cold gas operators Jf. 
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We now give the expressions for the stationary cold gas operators as derived in 
Appendix 2c: 

JloU) = c-(l+1) n~o (2:~0)n C(~2)r(<Pnl(C)CI+lf(C»), (113a) 

where 

(113b) 

with 

(113c) 

(ll3d) 

The coefficients b~1 depend on the masses. Their properties are discussed in Appendix 
2d. It may be inferred from equations (113c) and (ll3d) that 

b~1 = 0, 

b~1 = c5.u , 

A > n+l; 

11 ---+ 0, 

11o ---+ 0 . 

From equation (ll3a), for the two extreme limits we have 

J?(f) = c(J(l)(c)j, 

= 0, 11o ---+ 0 . 

(114a) 

(114b) 

(1I4c) 

(lISa) 

(1ISb) 

The spherically symmetric component J8(f) is distinguished in the limit 11 ---+ 0 since 
we have J8 == 0 but J? i= 0 for I i= O. The components of the distribution function 
for I i= 0 thus decay in time and the distribution is dominated by its spherical com
ponent I = O. The spherical harmonic expansion is suitable in this limit, that is, for 
electrons and light ions, since it leads to a separation of this distinguishing feature. 
Further distinction between I i= 0 components can only come from the cross sections 
and the structure of the equations in which these operators are to be used. 

In the opposite limit 11o ---+ 0 no spherical component is distinguished and this is 
reflected in the fact that for heavy ions the spherical harmonic expansion has not 
been used with the same effectiveness. 

However, smallness arguments of the above extreme form cannot be decisive in 
choosing a form of expansion. In precise calculations where many contributions have 
to be taken into account, the decisive requirement is that the formulae allow clear 
and efficient management of the terms. The present development is directed at this 
aspect of the problem. 

We turn to the calculation of moments of these operators. The moments are 
defined by integrals like (103) where A is a JI operator and ¢ is a polynomial in c. 
The adjoint operators are of importance in this connection. If A and A are related by 
equation (103) and A is of the form 

A(f) = (d/d(c2»nj, (1I6a) 
then 

A(¢) = (_)n c-l(d/d(c2»nc ¢. (1l6b) 
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Consequently, from equation (113a) 

-0(", 1 ~ (-2J-LJ-Lo)n ( d )n( -I "'( )) 
J1 '1') = e n~O n! <Pnle) d(e2) c 'I' c . (117) 

It is seen that for ¢(e) of the form 

¢(c) = el ¢N(e2) , (118) 

where ¢N is a polynomial of degree N in c2, one needs only terms up to n = N to 
calculate the moment exactly (see Appendix 3). The higher terms make no con
tribution to the moment of this polynomial. 

The factor J-LJ-Lo is a measure of relative change in the energy of an ion in collision 
with a stationary gas atom. The expansions (113a) and (117) thus bring out the impor
tance of the energy change in the determination of spherical components. When the 
relative energy change is small a good representation of the collision operator is 
obtained from only a few terms in these expansions. 

Since equation (108) is symmetric in n~ and n'~ we have 

Now it is a property of the T operators that 

N'':::;N, (120) 

where <Pw is a polynomial in c2 of degree N'. From this it follows that in calculation 
of moments with ¢ given by equation (118), the expansions (117) of all operators 
occurring in (119) need be carried only to n = N. This is an important property, 
which also holds for the operators J(n l l l I2 11.), the proof being essentially the same. 

To summarize this section: The simplest case is that of the stationary cold gas. 
The spherical harmonic decomposition of its collision operator is diagonal. The 
spherical components are the scalar operators J? given by the equations (113) and 
derived in Appendix 2e. The tensor decomposition for the general gas distribution 
is given by equation (97) in terms of the scalar operators J(nl/l/2/1.). These operators 
are constructed in terms of the cold gas operators J? and the scalar kinematic 
operators T(nl/l/2/1.) by equation (105). Expressions for the T operators are given 
in Appendix 3. For a spherically symmetric gas distribution the decomposition is 
diagonal in I and expressed in terms of simpler operators JF given by equation (l08). 
A more detailed expression for Jl is given by equation (112). For the Maxwellian 
gas, the decomposition in terms of JF is an expansion in powers of the parameter 
(kTo/mo) (equation 100b). The adjoints of scalar operators are defined by equation 
(103), T by (104), J7 by (117) and Jj by (119). The role of these expansions in the 
calculation of moments is noted following equation (118). 

12. Matrix Forms: Properties and Principles 

In matrix form an operator can have different representations, depending upon the 
choice of basic vectors. The matrix elements in different representations are different 
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and depend on parameters related to the particular representation chosen, in addition 
to the intrinsic parameters displayed in the integral and differential forms of the 
operator given in the previous sections. Here we discuss general properties of these 
representations, the connection between representations and some further points 
related to the actual calculations of the matrix elements. Several different represen
tations have already been used in this problem. We give references to the original 
papers where the specific formulae for the matrix elements can be found. 

(a) Representations and polynomial systems 

The moments of the function Wee) are integrals of the form 

fcc ... e W (c) de . (121) 

If Wee) is such that all its moments exist, then it is possible to construct a set of 
polynomials Pn(e) such that 

f p;(e)Pn·(e) W(e)de = (j1111" (122) 

where the asterisk denotes complex conjugation and the right-hand side is a Kronecker 
delta. The polynomialsPn(e) are obtained from the moments (121). They depend on 
the function Wee) and thus on the parameters that may occur in it. The function 
Wee) is called the weight function, and the polynomials are said to be orthogonal 
with respect to this weight function in view of equation (122). This relation also 
fixes the normalization of the polynomials. 

In one dimension a given weight function and normalization fixes the polynomial 
system uniquely but this is not the case in three dimensions. Thus, corresponding to 
a gaussian weight function we may take the polynomials as products of three Hermite 
polynomials in cartesian coordinates, or as Burnett functions in spherical polar 
coordinates or as other polynomials appropriate in cylindrical coordinates. Further, 
the index n on the polynomials is a composite index. Usually there are three 
independent indices and the numbering of polynomials requires a convention. If 
all three indices are shown, the delta function on the right-hand side of equation (122) 
is correspondingly modified. 

A functionf(e) of e may be expanded in a set of polynomials {Pn} in various ways. 
If we take the form 

fee) = W(en:: Pn(e)j,,, (123) 
n 

the numbers In are obtained from equation (122) as 

fn = f p~(e)f(e) de. (124) 

These numbers, called expansion coefficients of fee), are linear combinations of the 
moments of the functionf(e). The expansion (123) involves some assumptions about. 
the function fee), the most obvious of which is that its moments should exist. 
However, we do not go into this aspect of the problem but proceed formally as is 
usual in kinetic theory. 
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The function J(f), generated by the operator J acting on f(e) , may be expanded 
similarly. The corresponding expansion coefficients are given by the integrals 

f p:(e)J(f) de. (125) 

The moment equations of kinetic theory are obtained in terms of such integrals. 
These integrals may be expressed as linear combinations of the moments of fee) or 
In if we use the expansion (123). We then have the matrix elements of the operator J 
given by 

(126) 

The matrix elements so defined depend on the polynomial system {Pn}. One speaks 
then of a representation of the operator in the basis {Pn}, or just {Pn} representation. 
The matrix elements depend on the parameters and the weight function Wee). For 
a given weight function there can be different representations depending on the 
polynomial system chosen. The form of the matrix depends on the convention 
chosen to enumerate the basic polynomials. The matrix elements define the connection 
between the expansion coefficients of the two functionsfand J(f), given by equations 
(124) and (126), and thus depend on the assumptions implicit in the expansion (123). 

Using the expression (60) for the collision integral in equation (126) and the usual 
manipulations, we have 

Jnn · = f fo(eo) W(e)p:.(e) (Pn(e)-Pn(e'») d't", (l27a) 

where d't" is defined in equation (A22). The adjoint matrix element is given by 

(Jf)nn' = J:'n = f fo(eo) W(e)p:(e) (Pn·(e)-Pn·(e'») d't". 

This may be put in the form 

J:'n = f Pn·(e) (Jo(eo) W(e)p:(e) -fo(eb)W(e')pnCe'») d't". 

The right-hand sides of equations (127a) and (127c) are equal if 

fo(eo) Wee) = fo(eb) W(e'). 

(127b) 

(127c) 

(128) 

This is the functional equation that occurs in the proof of the H-theorem and has the 
unique solution that both fo(co) and Wee) are Maxwellian distributions at the same 
temperature. 

Thus the matrix Jnn . is self-adjoint if Wee), the weight function used in expanding 
the ion distribution fee) in equation (123) is a gaussian with the same temperature 
parameter that occurs in the gas distribution fo(eo)' This defines the so-called one
temperature representations. Note that the one-temperature representations may 
still differ depending on the choice of polynomial system chosen. It is found that the 
matrix elements are easiest to calculate and simplest in appearance if Burnett functions 
are used. If no further qualification is made here, the one-temperature representation 
will be taken to mean the one-temperature Burnett-function representation. 

The self-adjoint property by itself is not essential. It has been found that there are 
advantages in using representations in which the matrix is not self-adjoint. 
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(b) Connection between different representations 

Consider two weight functions W1(c) and Wz(c) and associated polynomial 
systems {pdc)} and {P2v(c)}. The polynomials are linearly related, 

pUc) = L A nv p;ic). (129) 

Then from the orthogonality relation (122) we have 

A nv = Jpfn(C) W2 (c)p2ic) dc. (130) 

This defines the transformation matrix A. If d1(n) and d2 (v) denote the degrees of 
polynomials PIn and P2v respectively, then it is clear that the sum in equation (129) 
is restricted to such values of v that dz( v) ~ d1 (n). It is therefore a finite sum. In other 
words, we have the general property of matrix A that 

if (131) 

Hence the matrix may be arranged in blocks characterized by d1(n) and dz(v). In 
such an arrangement it will be lower block triangular; that is, all elements of the 
blocks in the upper triangle will vanish. 

We also have the relation 

(132) 
n 

In contrast to equation (129), the sum in (132) is, in general, an infinite sum. 
The matrix A is invertible, 

(133a) 
n 

(133b) 

and the matrix A -1 is also (block) lower triangular. Using these relations in equation 
(126) we see that matrices J1 and J2 representing the operator J in two representations 
are related by a similarity transformation 

(134) 

It should be noted that in view of equation (133b) the matrix multiplication (134) 
involves an infinite sum. 

The property of self-adjointness is not preserved in going from one representation 
to another unless A is unitary; that is, unless A -1 = At. This is the case for 
which transformations between different polynomial systems belong to the same 
weight function. 

(i) Mixed Representations 

The representations considered above use the members of the same polynomial 
system in two places in equation (126). These may be called pure or unmixed represen
tations. A mixed representation is defined as 

(135) 
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At least formally, the operator J may be recovered from its matrix representation as 
follows. Writing 

J (f) == I J (c, c') f(c') dc' , (136a) 

we have 
J(c,c') = L Wz(c)PzvCc)Jvnptn(c'). (136b) 

v,n 

Pure representations are the ones most commonly used but in certain circumstances 
the mixed representations may prove more convenient. 

(c) Choice of polynomial systems: gaussian weight functions 

The first requirement on the polynomial system is that it should be possible to 
calculate readily the matrix elements of the collision operator in it. The collision 
operator is such a complex entity that this simple requirement limits us to those 
systems in which the polynomials are orthogonal with respect to a gaussian weight 
function of the general form 

(137a) 

with 

x = t.(c- W), aZ = mjkT, (137b) 

The factor aZ has been introduced for the sake of convenience. The temperature T 
is an arbitrary constant not necessarily related to the gas temperature To, t is a 
real nonsingular tensor and W is a real vector. The polynomial system thus depends 
on the parameters a, Wand t. 

The reason for the pre-eminence of gaussian weight functions is that the integrations 
indicated in equations (l27a) and (60) can then be carried out; mainly because 
with such functions it is possible to separate the relative and centre of mass 
variables. 

As discussed in Sections 17, 19 and 20 different choices of polynomial systems 
are useful in different regions of the parameter values: apart from the masses of 
ions and gas atoms one also has to consider the gas temperature and cross sections, 
and above all the strength of the electric field. Although the field strength makes 
no appearance in the collision integral itself, it has a decisive influence on the ion 
distribution. Since the matrix elements Jnn , determine the relation between the 
expansion coefficients of J (f) and f, the choice of representation is influenced by the 
electric field strength, significantly although indirectly. 

Burnett functions ¢(v')(x) of the vector variable x (Appendix 1) are polynomials 
orthogonal with respect to the weight function (I 37a). The normalization is fixed by 

I w(x) ¢(V)(x) ¢(V')(x) de = 6vv ' 6/1/1' 6mm ,· (\38) 

The index v stands for the triple (v,/,m). 
We now give a summary of polynomial systems which have already been used 

in calculations: 
(I) One-temperature representation. This is defined by 

t = 1, W=o, (139) 
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where To is the gas temperature and the gas distribution is MaxweIIian at this 
temperature. This is the representation most often used and is implicitly present in 
earlier works that do not use matrix language (e.g. Kihara 1953; Mason and Schamp 
1958; Kumar and Robson 1973; Whealton and Mason 1974). 

(2) Two-temperature representation. This is defined by 

(X2 = mjkT, t = 1, w=o, T i= To. (140) 

Such a representation was systematically applied to these problems by Viehland and 
Mason (1975), who also calculated the particular matrix elements. A different 
calculation of matrix elements and a critical study of some properties of approximate 
calculations in this representation is given by Forsth (1979). It is recognized by 
Forsth (1979) and Lin et al. (1979b) that if the gas distribution is expanded in a 
polynomial system orthogonal to a Maxwellian weight function appropriate to the 
temperature Tthen some formulae of Kumar (1967) can be used to calculate the matrix 
elements in this representation. 

If the cold gas problem is treated by polynomial moment methods then one is 
necessarily dealing with a two-temperature representation. 

(3) Drifted three-temperature representation. This is defined by 

(X2 = mjkT, t = diag( T, T, To), W i= 0, T i= To. (141) 

Lin et al. (1979c) have calculated the matrix elements for a special choice of parameters 
in a Hermite polynomial basis; certain symmetries of the problem are obscured by 
the specialization they introduce. A calculation of matrix elements in a Burnett
function basis is given by Kumar (1 980a), along with the general case T i= To, 
W i= 0, and t a real nonsingular (not necessarily diagonal) tensor. 

(d) Calculation of matrix elements 

(i) Use of Symmetries and Auxilliary Coefficients 

In any representation the expression for matrix elements of a coIIision operator 
will be complicated and therefore can be arranged in various ways. Special coordinate 
systems and polynomial systems have often been used in the belief that they provide 
a straightforward or unique way of carrying out the calculations. There is enough 
truth in this belief but such derivations often obscure the symmetries and structure 
of the expressions. From the theoretical as well as from the computational point of 
view it is advantageous to carry the symmetries of the expressions as far as possible. 
The expressions should be assembled in terms of other matrices or coefficients whose 
properties can be studied separately and which can be calculated in separate sub
programs. As an example, note that one expands a function in terms of spherical 
harmonics not because one expects it to be a spherical harmonic or even a sum of a 
small number of spherical harmonics but because one knows how to manipulate 
spherical harmonics in a convenient way. Considerations of this type have been 
advanced to show that Burnett functions are the most suitable for calculating matrix 
elements of collision operators. This remains true even for the most general case of 
equations (137). 

It is of importance to keep the cross section in one integral, which should be made 
as convenient as possible since this is usually the most time-consuming part of the 
calculations. 
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Having emphasized the complexity of these calculations, let us also say that it is 
possible to speak of a simplicity. The first point about simplicity is that it can be 
recognized-that requires familiarity. In the present context to recognize simplicity 
one has to familiarize oneself with the symmetries of the intermediate quantities that 
go into the sums which produce matrix elements and also with the problems of 
computation. 

It may be noted that the principles outlined above have already been used in 
Sections 9, 10 and 11 in the treatment of other forms of the collision operator. 

The matrix elements for various operators may be calculated using the integral 
or differential forms. However, it is found that the integral form is better suited to 
calculation of matrix elements and is the one most often employed. We now turn to 
a specific example. 

(ii) Calculations based upon Cold Gas Case 

The matrix element of the stationary cold gas collision operator in a Burnett
function basis has the integral form 

(142) 

Let [T(V)] be the matrix representation of the translation operator in this basis, 

[T(V)]vv' = J 4>(v)(x)(exp(V.oc)w(x)4>[V'l(x») dc. (143) 

Then the matrix representation of the collision operator for the moving cold gas, 
from equation (67), is given by 

[J(V)] = [T(V)r 1 [J(O)][T(V)]. (144) 

Comparison of this expression with equation (134) shows that this is also the matrix 
representing the stationary cold gas in the basis in which x is replaced by 

x' = 't.(c- W+ V). (145) 

The matrix representation for an arbitrary gas distribution is related to the cold 
gas representation by means of a super-operator matrix g which is characterized by 
four indices: 

[J ]VV' = L gVV';v 1V2 [J (O)]V,V2' (146) 
VIVZ 

From equations (63) and (144) we then have 

gVV';V,V2 = J [T(V)];"~ [T(V)]V2V' !o(V) dV. (147) 

For the Maxwellian gas (equation 79a), the integration may be carried out after 
expanding the matrix elements in powers of V, and the results may be expressed as 
a power series in the parameter (a/aD). We quote the result for the special case t = 1 
and W = 0 which corresponds to a two-temperature expansion. The matrix elements 
for the cold gas itself are derived in Appendix 2e. 
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Since we have 
(148) 

we only need the elements of [/ for which 11 = 12 and m1 = m2: 

00 

[/ = L «(I./(l.o)2n [/(2n)' (149a) 
n=O 

where 
(149b) 

with 

(149c) 

V3 and v 4 being given by 

(149d, e) 

and (J (l1/3/) and Nvl as given in Appendix 1. 
The sum in equation (I49c) is finite and in many ways similar to those encountered 

in previous sections. The values of 13 are restricted by the requirements that I and 11 
couple to form 13 with 1+/1 +13 even and that the values for V3 and V4 given by 
(149d, e) are greater than or equal to zero. If either of the requirements is not met 
there is no contribution to the sum. The consequence is that for given (vv'/) and n 

. there are at most (n+ 1)2 sets of values of (V1 v2/1) for which the quantity defined 
by equation (149c) does not vanish. Thus inthe nth order of the expansion defined 
by equations (146) and (I49a), a given matrix element [J1]vv' requires, in general, 
(n+ 1)2 elements [J?Jvlv2 of the cold gas collision operator. For small values of 
(vv'/) this number would be smaller. These relationships may be summarized as 
follows. 

Let 11 =I-r, 13=iri,iri+2, ... ,n, with r=n,n-l, ... ,-n. 

For r ~ 0, v1 = v,v-I, ... ,v-(n+r), v2 = v' +n, v' +(n-I), ... , v' -r. 

Forr;):O, v1 = v-n, v-en-I), ... , v-r, v2 = v', v' + 1, ... , v' +(n-r). 

If any of the numbers (V1 V2/1) becomes negative there is no contribution. 
It should be noted that if the restrictions 11 = 12 and m1 = m2 are not used the 

expression for [/(2n) will involve the recoupling coefficients W etc. It is instructive 
to compare this expansion of matrix elements with the operator expansion (lOOb). 
The parameter occurring there is (kTo/mo) which has the dimension [L 2T- 2]; each 
term is dimensionless because the differential operators have the correct cancelling 
dimensionality. In the present expansion the parameter «(1./(1.0)2 = (m To/mo T) is 
dimensionless. But T is an arbitrary scale provided by the polynomial system. The 
smallness of this parameter is therefore not, by itself, very meaningful. As with the 
operator expansion (1 OOb), reference has to be made to the functions operated upon 
and the magnitudes of their derivatives. 
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(iii) Matrix Elements and Collision Integrals 

In this section we have given the general properties of the matrix elements and the 
relation between different representations and one example of a more specific nature. 
These are not available elsewhere in the literature. The actual evaluation of matrix 
elements remains a technical problem of some complexity even after a choice of 
representation has been made. Even to reproduce some of the formulae will require 
series of definitions and a lot of space. A recourse to the original papers is therefore 
necessary at this point. 

As equation (127a) shows, a matrix element is a collision integral and thus all the 
enormous literature on evaluation of collision integrals could be relevant here. There 
are a variety of techniques and notations. The references given here on this topic 
are not exhaustive but should be adequate for the purpose at hand. 

A comparative study of cartesian and spherical tensor notation may be found in 
the paper by Kumar (1966). The matrix form of the Boltzmann equation in a 
Burnett-function basis with isotropic weight functions was given by Kumar (1967). 
This latter work includes expressions for matrix elements and an explanation of 
technical points in the use of Burnett functions. A more limited study covering some 
of the same points has been made by Aisbett et al. (1974). 

A technical point of some importance in calculations with gaussian weight functions 
is the proper treatment of the quadratic form in the exponential. This was first 
recognized in the work by Suchy (1964; see also Weinert and Suchy 1977). The 
transformation matrix connecting polynomials orthogonal with respect to gaussian 
weight functions is discussed in the second following paper by Kumar (1980b, 
present issue pp. 469-79). 

Other references to particular matrix representations are given in Section 12c. 

13. Model Collision Operators 

Qualitative or semiquantitative information about transport processes can some
times be found by solving the Boltzmann equation with a simplified model collision 
operator. The models to be described here fall into three categories: scattering 
models, truncated expansion models and relaxation models. 

The scattering models are functionally simple angular cross sections (l(g, X) together 
with the exact collision operator. Three of these models will be mentioned. 

The constant mean free time model assumes a cross section inversely proportional 
to the relative velocity, that is, 

(150) 

where go is an arbitrarily chosen reference speed. Special cases of this model are 
the Maxwellian and the polarization potential models, corresponding to repillsive 
and attractive r - 4 potential interactions respectively. The adjoint collision operator 
j is particularly simple with a cross section of the form (150) and, for any polynomial 
ljJ(c), j ljJ(c) can be expressed analytically as another polynomial of the same order 
in c (Maxwell 1866). It can be further shown that the one-temperature Burnett 
functions are eigenfunctions of the collision operator in this case (see e.g. Kihara 
1953). Consequently, in any gaussian-based representation the collision matrix will 
be lower triangular. This suggests that for a general potential interaction the matrix 
elements in the upper triangle may be small, and decrease away from the diagonal. 
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This assumption has been used to set up approximate procedures for solving moment 
equations (see Section 18d below). 

The hard-sphere model assumes a constant angular cross section 

o-(g,X) = O'o/4n (151) 

and consequently constant and equal transport cross sections 

(152) 

The kernel K (c, c') in the integral representation of the collision operator (equation 
61c) can be found analytically in this case (Pidduck 1915): 

, (mc2 ) O'o( mo )t(mo+m)2 
K (c, c ) exp 2kTo = n 2nkTo 2mo 

1 {mo (ICXC'I)2 mO-m( ') mo (mo-m)21, 12} x--exp----- ----cc ------ c-c I c-c' I 2kTo I c-c' I 2kTo • 2kTo 2mo . 
(153) 

In the solution of the Boltzmann equation, this does not lead, however, to essential 
simplifications, and the hard-sphere model exhibits all the principal difficulties 
encountered in calculations with more realistic potentials. 

The idealized resonant charge transfer model has been used to describe approxi
mately collisions between particles with identical nuclei, and it assumes that charge 
(electrons) can be transferred without any noticeable accompanied transfer of mom en
tum. If the motion of the charged particle is followed, this corresponds to elastic 
scattering where the velocities of the collision partners are interchanged, i.e. where 
the scattering angle is close to n: 

O'(g, X) = 0'2tr(g) lim c:5( cos X - cos Xo) . 
n xo-+" 

(154) 

The collision integral then reduces to 

J f(c) = f(c) J fo(co)g O'tr(g) dco - fo(c) J f(co)g O'tr(g) dco· (155) 

Two special cases of this can be noted. Firstly, for the case of a cold gas, the second 
term reduces to a c:5-function source term at c = 0, yielding 

JO f(c) = cO'tr(c)f(c) (kTo = 0, c =F 0). (156) 

Secondly, for a charge transfer cross section O't.(g) ex g-l (constant mean free time), 
equation (155) reduces to a relaxation-type expression 

Jf(c) = {f(c)-fo(c)},.-l, (157) 

The forms (156) and (157) allow analytical solutions for f(c) to be obtained in certain 
cases. 

The truncated expansion models may be obtained from the differential forms of 
the collision operator, given in Sections 10 and 11. They can be used with arbitrary 
cross sections O'(g, X), and are most useful at extreme mass ratios. 
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The Lorentz gas model assumes a vanishing mass ratio fL = m/(m+mo), in which 
case the spherical harmonics dt(composition of the collision operator reduces to 
(cf. equations 115) 

I =I 0; 

1=0. 

(158a) 

(158b) 

The model describes satisfactorily the relaxation of anisotropies for an electron swarm, 
while the energy loss is not accounted for. 

The quasi-Lorentz gas model keeps the Lorentz gas model expression (158a) for 
J/, but expands Jo to first nonvanishing terms in mass ratio and gas temperature, to 
account for energy loss and to ensure relaxation towards a Maxwellian. This gives 
Davydov's expression for Jo: 

-Jo(fo) = ? !(c4q(1)(C)fo) + m::2 :Jc3 q(1)(c) ~~}. (159) 

The quasi-Lorentz gas model is fully satisfactory for describing elastic collisions 
between electrons and neutrals. 

The Rayleigh gas model assumes a small mass ratio fLo = mo/(m+mo) ~ 1, and 
neutral velocities much larger than ion velocities, Co ~. c. To second order in flo, 
one then obtains, for example from equation (73), a Fokker-Planck expression with 
constant coefficients of the form 

(160) 

A quasi-Rayleigh gas model has been used (e.g. Wannier 1953; Smirnov 1967) 
to de~cribe collisions with fLo ~ 1, but where the assumption Co ~ ccannot be made. 
The essential modification to equation (160) is obtained by expanding the coefficients 
IJ'n/(c) (equation 74) to first order about a characteristic velocity c •. 

The relaxation models make explicit assumptions about the form of the velocity 
distribution 'after a collision', the physical meaning of the term 'collision' seldom 
being quite clear. The most well known of these models is the BGK model (Bhatnagar 
et al. 1954) where the distribution is taken to relax towards a Maxwellian one at the 
local gas temperature with a phenomenological time constant T. This gives rise to a 
collision term of the form (157), arrived at for the idealized charge transfer, constant 
mean free time model! The physical implications of using the BGK model for other 
cases seem unclear. 

14. Inelastic Collisions and Reactions 

The foregoing results must be modified when inelastic collisions take place. 
Relative speeds g and g' before and after a collision are different in an inelastic collision 
and some symmetry is therefore lost in the analysis. These effects can largely be 
incorporated through a modification of the cross' section formula (59) and the 
integrals in which they occur. 

Reactions, including phenomena such as attachment in the case of electrons, can 
usually be treated more simply. For the unidirectional reaction 

ion + neutral -+ products, 
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one can express the collision operator in the form 

J*(f) = v* /, (161a) 
where 

v*(c) == f /o(co)g (}'*(g) dco (161b) 

and (}'* denotes the total cross section for all reaction channels. This effect is simply 
additive; that is, the right-hand side. of the Boltzmann equation is 

(d//dt)coll = -J(f) -J*(f) , (162) 

where J(f) denotes the nonreactive collision operator. It is the effect of inelastic 
collisions on this latter quantity which is of most interest here. 

We may use the semiclassical model of Wang-Chang et al. (1964) to generalize 
equation (60) to the case where the ions and molecules have internal structure. The 
inadequacy of this model for dealing with degenerate internal states (e.g. angular 
momentum states) is well known (Waldmann 1965). However, we assume that any 
errors arising in this way are small (Ferziger and Kaper 1972). For simplicity, we con
sider the case where only the neutral molecules have internal degrees of freedom, the 
ions still being treated as point particles. This is appropriate for electrons or atomic 
ions, but not for molecular ions. 

Let i denote the quantum number (or set of quantum numbers) characterizing the 
internal molecular states, the corresponding energy being E i• The distribution of 
molecules in these states is Maxwell-Boltzmann, that is, 

(163a) 
where 

nOi = (no/Z)exp( -eJkTo) (163b) 

is the number of molecules in state i and 

Z = L exp( -eJkTo) (163c) 
i 

is the partition function. The Wang-Chang et al. (1964) generalization of equation 
(60) is then 

J (f) = f.1 f (j(C)fOi(CO) - f(c')fo/c~)) g (}'(ij; gX) dg' dco, (164) 

where (}'(ij;gX) is the differential cross section for the scattering channel in which 
the internal state of the molecule changes from i to j and the relative speed from 
g to g', where by conservation of energy 

(165) 

and mr is the reduced mass. The microscopic reversibility relation 

(166) 

is used in deriving the identity 

f ¢(c) J (f) dc = ?: ff(C)/Oi(CO)( ¢(c) - ¢(c'») g (}'(ij; gX) dO' dcdco, (167) 
',J 
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for any function ep(c). We now consider how the results of previous sections are 
modified. 

(a) Fokker-Planck expansion 

We proceed from the identity (167). Equation (72) still applies in the same form, 
but the coefficients are defined differently; for example, 

A 1 == (At) = ~ fiolco)!!c g u(ij; gx) dg' dco. 
',J 

(168) 

Since momentum is still conserved in a collision (G' = G), equations (64) still apply. 
It is shown in Section 10 and Appendix 2a how the general term in the 

Fokker-Planck expansion could be calculated for elastic collisions .. The generaliza
tion of that analysis to include inelastic collisions is not difficult: instead of cross 
sections u().) defined by equation (59) we have the quantities 

u().;V)(g) == Z-l Lexp(-edkTo){uo(ij;g) -(g'/g)2vH uiij;g)}, (169) 
i,j 

where the uiij;g) are partial cross sections, defined for the differential cross section 
u(ij; gX) in analogy with equation (58). Notice that the cross sections (169) appear to 
have a temperature dependence; we shall comment further on this observation below. 
For the cold gas limit, which now not only implies that the molecules are at rest but 
also that they are in their internal ground state, equation (169) gives 

u().;V)(e) = L {uo(ij;e) -(e'/e)2VH uiij;e)} , 
j=l 

and instead of equations (85) we then have the generalization 

"+1 n 
°'Pnle) = e2n +l+ 1 L Lu().;V)(e) a~:, 

),=0 v=o 

where the a~~ are pure numbers defined by 

(170) 

(171a) 

(l71b) 

with P = 2n + t, p = 2 v + A and p' = 2 v' + A'. Because of the (j function there is only 
one sum in equation (171 b). It can also be verified that these coefficients vanish for 
A > t+n. Evidently, a relationship exists between these coefficients and the 
coefficients a*1 of Section 10 and Appendix 2b, but we will not go into that. 

Equations (170) and (171) are the only changes to the cold gas formulae of Section 
10, the form of the differential operator being otherwise maintained. Notice that the 
entries for 'Pnl(e) in Table 1 would have to be modified according to equation (171a); . 
in particular, the quantities U().;V) do not necessarily vanish for A = 0 (unlike. their 
elastic collision counterparts u().» and must therefore appear. We can consider the 
elastic collisions separately by splitting off the j = i terms in equation (164): 

Jel(f) = ~ f (f(c) iolco) -i(c')iolc'o») g u(ii; gx) dg' dco · (172) 
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This is formally equivalent to scattering of ions from a mixture of neutral gases; 
that is, the excited states i of the neutral molecules effectively behave as different 
species (see Note [I5]). 

Alternatively, we can write equation (172) in the condensed form 

(173a) 

with a temperature-dependent cross section· 

u(gX; To) = Z-l L exp( -e;/kTo) u(ii; gX) . (P3b) 
i 

Only in the special cases where (i) the neutral molecules exist in one level only and 
(ii) the scattering cross sections are the same for all quantum numbers, that is, when 

u(ii;gX) = u(g, X) , (174) 

is this temperature dependence removed, and u(gX; To) = u(g, X). It is worth noting 
that equation (60) and the subsequent analysis are based upon such assumptions. 

(b) Inelastic collision term for Lorentz gas 

The spherical harmonic decomposition outlined in Section 11 is specially suited 
for electrons (or light ions) for which J1. = ml(m+mo) ~ 1. We noted there and in 
Section 13 that the scalar part of the elastic collision operator vanishes in the Lorentz 
gas limit' J1. --+ 0, corresponding to. a vanishingly small energy change for infinitely 
heavy molecules. On the other hand, energy exchange can occur with even infinitely 
heavy neutral molecules possessing internal degrees of freedom. It is possible to 
start from the Wang-Chang et al. (1964) collision operator (164) and show that the 
scalar part of the spherical harmonic decomposition of J(f) in the limit J1. --+ 0 is 

Jo(fo) = (2Ime)t L {nOi[B!O(B)uo(ij;B) -(B+Bji)fo(B+Bji)uo(ij;B+Bji)] 
i<j 

where B = tmc2 and Bji = Bj-B; > 0 is the energy exchange in a collision. This is 
essentially of the same form as the expression of Frost and Phelps (1962) who 
modified Holstein's (1946) work to allow for 'superelastic collisions', that is, colli
sional de-excitation of the molecule represented by the second term in square brackets 
in equation (175). 

The time-reversal symmetry relation (166) allows us to write equation (175) entirely 
in terms of excitation cross sections: 

If the states are degenerate, statistical weights g i of the appropriate states i have to 
be incorporated in the cross sections, that is, u o(i j ; B) --+ g i U oW ; B) and the u 0 are to 
be interpreted as averages over internal states. 

Frost and Phelps (1962) also considered a differential form of equation (175) 
obtained by Taylor expansion of the terms on the right-hand side about B. This is 
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essentially an expansion in 8 j ;, a parameter that is small when the energy levels of 
the molecules are closely spaced, as sometimes happens for the case of rotational 
levels. In general, however, the usefulness of this expansion is not clear and it is 
probably better to use equation (I75) or the more general form (164). The latter 
form is, of course, necessary when one wishes to go beyond the Lorentz approximation. 

(c) Matrix forms 

For the electron case, matrix elements have been given by Lin et al. (I 979b). 
General formulae for the case in which the charged particles as well as the gas 
molecules have internal structure are given in the following paper (Kumar 1980a). 
The effect of inelastic collisions appears only in the interaction integrals and the 
cross sections through which the matrix elements are defined. 
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Part IV. Technique and precision in the calculation of 
drift and diffusion 

15. Introduction (IV) 
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This Part of the paper (Sections 15-23) is devoted to the most important application 
of the theory, namely the calculation of the drift velocity (or the mobility) and the 
diffusion coefficients for ions and electrons in a uniform electrostatic field. Magnetic 
fields and reactions are excluded. The ions and the gas molecules are assumed 
structureless; that is to say, inelastic effects are also excluded. However, such effects 
due to the structure of gas molecules can be included by constructing the collision 
operator according to Section 14: no other modification of the methods is necessary. 
The modification needed in order to deal with the case of a mixture of neutral gases 
is pointed out in Note [15]. 

Transport coefficients of higher rank can also be calculated by the same methods. 
The only modifications required are in the details of inhomogeneous terms and in 
the operators that determine the anisotropic parts of these coefficients. These will 
be evident from the work in Section 16. There are no new questions of principle 
at these levels. 

The collision operator is taken in one of the forms discussed in Part III and we have 
the problem of solving the kinetic equations derived in Section 4. These are homo
geneous or inhomogeneous linear eqiIations. We give a brief survey of the techniques 
available (Section 17) and discuss in detail those which have been actually used 
(Sections 19, 20 and 21). We are interested in those techniques which are capable 
of yielding accurate results. The standard for this is set by experiment [3] where at the 
present time the best results give mobilities to within O· 1 % and diffusion coefficients 
to within 1 %, apart from possible systematic errors. 

The accuracy of a calculation based on a given method, scheme or theory-the 
words are interchangeable in current usage--depends on the mass ratio, the gas 
temperature and the field strength, for a given collision model. A method or theory 
is said to break down in a range of these parameters if the desired accuracy cannot 
be achieved. Properly speaking, such a breakdown is not of the theory but of the 
method of solving the equations in a calculation with limited time and effort. 

The choice of a method of solution should be made in relation to the expected 
form of the solution, the information one wants from it and the ranges of parameters 
that need to be covered. Physical and mathematical considerations along with the 
information from known analytic solutions of model problems (Section 18) are useful 
in this connection. 

Moment methods, in the form of a polynomial expansion of the unknown function, 
can be applied in fairly general circumstances and are the ones most often used. They 
are described and their effectiveness is discussed in Sections 19 and 20. In special 
circumstances, when more is known about the nature of the solutions or when the 
collision operator is simple, non-polynomial methods (Section 21) may be used. When 
applicable, they are capable of producing better results. 

Computer simulation (or Monte Carlo) methods [2] are a means of obtaining the 
transport coefficients from the correlation functions and averages discussed in 
Section 3, without the use of kinetic equations. Comparison of results from these 
two independent approaches has been very useful in the development of methods for 
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precise calculation of transport coefficients. Section 22 gives a brief survey of the 
literature on computer simulations. 

In the special problem dealt with in this Part, the only preferred direction is the 
one provided by the electric field E, that is, by the acceleration a = (q/m)E suffered 
by the particles. The kinetic equations and the transport coefficients therefore 
have cylindrical symmetry about this direction, a = E. In particular, the drift velocity 
Wand the diffusion tensor D then have the form 

W= Wa, (176) 

Thus there are three transport coefficients to consider: the drift velocity W, the 
longitudinal diffusion DL and the transverse (or lateral) diffusion DT • The drift 
velocity is often expressed in terms of the mobility K, which is a scalar quantity in 
this problem defined by 

W=KE. (177) 

It may be noted that it is the drift velocity Wand not the mobility K that is the true 
transport coefficient according to the definition in Section 2. 

The experimental results are expressed in terms of the reduced electric field E/no, 
where no is the number density of neutrals, specified in units of townsends 
(1 Td = 10- 21 Vm2). The drift velocity W (ms-l), the reduced mobility noK 
(mTd- 1 s- 1) and the reduced diffusion coefficients noD (m- 1 s- 1) depend on the 
neutral number density and the acceleration only through the ratio a/no = (q/m)(E/no)' 

In the next section we simplify the relevant kinetic equations by using the cylindrical 
symmetry noted above and prepare the way for the subsequent sections. 

16. Equations for Mobility and Diffusion 

We shall take the equations for mobility and diffusion from Section 4, equations 
(37a) and (37b). Since reactions are not present, w(o) is zero and the operator 2 of 
equation (35) becomes 

(178) 
For any function f(c) we have 

52 f(c) de == O. (179) 

The equation for mobility or drift velocity is the scalar equation 

2 fro) = 0, with f f(O)(c) de = 1, (1S0a) 

and 

W = <c) = f cJ<°)(c)dc. (1 SOb) 

The equation for diffusion is a vector equation for the vector function f(1)(c): 

2 f(1) = (c- W)f(O)(c) , with f f(1)(c) de = 0, (ISla) 

and 

D = f cf(1)(c) de. (1S1b) 
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Equation (I81a) is consistent with the property (179) of the operator!£. The origin 
of the coordinates in the velocity space is fixed by the requirement that the neutral 
gas is at rest in this frame, i.e. by (co> = O. 

If a matrix representation of these equations is chosen then the orientation of the 
coordinate axes is unimportant provided one uses the proper formalism. An orienta
tion-independent form of the mobility equation has been given earlier by Kumar and 
Robson (1973) (it was called a coordinate-free form, which is not strictly correct). 
It may, however, be convenient to take the z axis along a. 

To exploit the rotational invariance of the collision operator one uses spherical 
polar coordinates c == (c, e, cp) and the operator JI defined by the spherical harmonic 
decomposition of J, 

(182) 

Then from equation (180a) j<°)(c) is independent of cp, so that it can be expanded 
in terms of Legendre polynomials as 

00 

j<°)(c) = I f?)(c) Pz<cos (). (183) 
1=0 

Using equations (182) and (183) and noting that JI is independent of the normalization 
of the spherical harmonics, one finds that the equations leading to mobility become 

with 

and 

a(O) .(0) () J .(O)() a(O) ,(0) ( ) - 0 
1,1-111-1 C + IJI C + 1,1+11/+1 e - , 

a(O) _ I ( d 1-1) 
1,1-1 - a 21 - 1 de --e- , 

a(O) _ 1+ 1 (d 1+ 2) 
1,1+1 - a 21+3 de + -e- , 

foOO fJO)(e) e2 de = 1, 

W = 1- fooo e3 fI°)(c) de. 

(184a) 

(184b) 

(184c) 

(184d) 

For the longitudinal or the z component of the vector f(1) the right-hand side of 
equation (I8Ia) is independent of cpo Consequently, we may use the expansion 

00 

fP) == j<L)(C) = I j;(L)(e) Pz<cos (). (185) 
1=0 

The equations leading to the longitudinal diffusion coefficient DL then become 

with 

and 

a(O) r(L) (e) + J ,(L)(e) + a(O) r(L) (e) - b(L)(e) 
1,I-UI-1 lJl 1,1+ UI+ 1 - I , 

foOO 
fJ L)(c)C2 de = 0, 

DL = 1 fooo c3 fIL)(e) de. 

(186a) 

(186b) 

(186c) 

(186d) 

The two transverse components of equation (18Ia) may be converted into two 
complex-conjugate equations for the functions f~1) ± if;1). Since W is along the 
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z axis, the right-hand sides of these equations are therefore '" exp( ± i<p). The two 
equations then reduce to one equation for the transverse component I(T) of 1(1) 

defined by 
1~1) ±i/}l) = pT)exp(±i<p). (187) 

The appropriate expansion for I(T) is 

00 

f(T) = L f?)(c) pf(cos 0), (188) 
1= 1 

and the corresponding equations leading to the transverse diffusion coefficient DT are 

with 
dU!..l = (l_1)I-ldiS~l' dU~l = (i+2)(1+1)-ldfSL, 

biT)(c) = (21-1)-1 cJ/~l(c) -(21+3)-1 cf/~L 
and 

(l89a) 

(189b) 

(189c) 

(189d) 

The condition corresponding to (I8Ia) is automatically satisfied for I(T) since 
equation (187) vanishes on integrating with respect to <p, and the term corresponding 
to I = 0 does not occur in the expansion (188). 

The equations above are given in the normalization most frequently found in the 
literature. The normalization enters through the expansions (183), (185) and (188) 
and may be easily changed if required. 

The preceding equations are particularly convenient when II is taken as a 
differential operator (Section 11) and the number of I values needed is not large. 
One then. has a coupled system of differential equations for functions I, of a single 
variable c. The difficulties in numerical integration of such a system arise from the 
need to adjust properly the boundary conditions (or the starting values) for the 
different functionsfz(c) and from the presence of higher derivatives in the operators ll' 
The equations of this form have been most successful in the electron problem [16], 
where in most cases the distribution function is nearly isotropic and only the terms 
I = 0 and 1 are usually needed. 

The left-hand side of equation (184a) shows that the operator 2 is tridiagonal in 
the I indices. By a further expansion of the c dependence one can put the operators 
d(O) and II in matrix form, to obtain block tridiagonal matrix equations. 

If the distribution function deviates substantially from spherical symmetry and the 
decomposition (183) is not to be used, one can still preserve the advantages of cylindri
cal symmetry by taking the z axis along a and using cylindrical coordinates 
c = (cT, cz , <p). One now defines the operator 2 1ml by the relation 

(190) 

and obtains the equations 

2 PO)( Cn cz) = 0, (19Ia) 

(191b) 
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2/(L)(CT , Cz ) = (Cz - W)/(°l(cT , CZ )' 

DL = J CJ(L)(CT, cz ) de ; 

DT = t J CT I(T)( CT , cz ) de. 
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(192a) 

(l92b) 

(193a) 

(193b) 

These equations are the most appropriate to use with the Fokker-Planck type of 
differential form of the operator J, in the case where the distribution function is 
expected to deviate substantially from spherical symmetry. 

(a) Operator for transverse diffusion equation 

To obtain an explicit form for 2 T note that from equation (190) 

2 T 1 == 211 = 2(c.jcT) 2(c + 1 jcT) , (194a) 
with 

c± = ± (ij.J2)(cx ± icy) = +(i.J2)cT exp( ± i<p). (194b) 

Using equations (81) and (82) for J in (194a) and (178) together with the following 
identities which hold for any function g of c: 

(195) 

with JT defined in analogy with equation (194a), one can write 

(196a) 
w 

JT(f) = L S;l('l'nd) , (l96b) 
nl=O 

21 1 [tl] (d 3)1-2r S nl _ .+ N-2 ~ '<;72(n+r) -1 
T - -4- nl L... ar/ CT v C -d + - CT' 

n r=O C C 
(l96c) 

Other symbols in equations (196b) and (l96c) are defined in equations (78) and (82). 
The operators 2 m for m > 1 will occur in anisotropic parts of higher order 

transport coefficients and may be constructed in the same way (see remarks at the 
end of Section 10). It will be noted that the operator JT above can be calculated by 
a simple modification of the program that calculates J. 

17. Methods of Solution: Moment Equations 

In this section we make some general observations regarding the methods of 
solution for the equations derived above. Omitting the elaborations of symbols, we 
have equations of the form 

21 = b, (197) 

where, in particular, b may be zero. Such an equation may be converted to an integral 
equation [9] and solved by iteration (Section 5), or by Monte Carlo methods. Apart 
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from these two methods, all other methods of solving these equations may be seen 
as special cases of the weighting function or Galerkin method (see e.g. Hildebrand 
1956; Prenter 1975). The latter have been the most successful in applications although 
there are indications that problems in numerical implementation of the first two 
methods may also be overcome (G. L. Braglia, personal communication). 

The Galerkin method may be briefly characterized as follows: one takes two sets of 
linearly independent functions 'P == {!pie)} and cD == {¢iCe)}, with i,j = 1,2, ... , imax> 

and assumes that 
irnax 

fee) = L ~i ¢le). (198) 
i= 1 

Then using the functions from the set 'P one obtains a set of linear algebraic (i.e. 
matrix) equations for the unknowns e i: 

(199a) 

where for any functions gee) and h(e) 

(g,h) = f g(e)h(c) dc. (199b) 

These equations should be supplemented by the normalization or other conditions 
onf(c), and hence on ei' which ensure that the system is uniquely solvable. 

The choice of basis sets cD and 'P is guided by one's expectations about the form 
of the solution. Typically one is interested in the moments (c,f) and (cc,f) and has 
some idea of their magnitudes. One also knows something about the asymptotic 
behaviour off, and may expect to see properties similar to those exhibited by known 
analytic solutions of model problems. If a singularity is present in f, the sets should 
be primarily chosen to incorporate its effects. 

Roughly speaking, the set cD is chosen to represent the function f as adequately 
as one can and the set 'P is chosen with regard to the moments off which one wants 
to know accurately. The optimal choice of basis sets is determined to a large degree 
by the practical requirement of being able to calculate the matrix elements of the 
collision operator occurring in 2'. Only in the case of very light ions and electrons 
is the collision operator simple enough to admit a high degree of flexibility in this 
choice. In the general case, it is all a compromise. One is commonly limited to the 
sets 

(200) 

where the ¢lx) are polynomials orthogonal with respect to the weight function w(x) 
which is a gaussian in x, with x a linear function of c. This choice has the drawback 
that it tends to place undue weight on the less important parts of the function f 
The equations so obtained are linearly related to the moment equations (Note [17]) 
familiar in most kinetic theory work. The use of orthogonal polynomials somewhat 
simplifies the equations and is particularly useful in calculation of the matrix elements 
of J (see Part II and Kumar 1 980a, 1980b). 

It may be noted here that representation of f(c) by its values given in a finite 
number of points together with a prescription for interpolation between the points 
is quite a regular basis set expansion in the sense used here. 
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The equations above are written in terms of the vector variable c, but the same 
general remarks, with appropriate changes, apply as well to the equations of the 
previous section in terms of other variables, such as c, CT and Cz• 

The results obtained from such a calculation, particularly the first few moments 
which are physically important, should be seen to be independent of the choice of 
the basis set. Their independence can be tested by calculating the quantities with 
successively larger sets, i.e. by increasing imax in successive stages. If the calculated 
values do not change one speaks of converged values. This is, of course, not the true 
mathematical convergence, but for all practical purposes these numerically con
verged values can be taken as the true results of the theory. On the other hand, 
little reliance can be placed upon a calculation of this type if such a (numerical) 
convergence is not demonstrated. When converged values cannot be obtained it 
usually means that an inappropriate choice of basis sets was made. 

It is convenient sometimes to take basis functions which depend upon some 
auxilliary parameters. We shall call such parameters the b-parameters. The basis 
sets are then altered by altering the b-parameters. It is found that the rate of con
vergence, or indeed whether the convergence is at all achieved, depends upon the 
choice of the b-parameters. How to make this choice is an important question in 
such calculations, and has to be discussed for each particular type of set separately. 
Evidently, the results from smaller sets depend upon the b-parameters. They may, 
therefore, be chosen from physical considerations, but since they cannot be allowed 
as adjustable parameters in the final results it is all important to show that con
vergence is achieved. The role of basis sets and the b-parameters is that of scaffoldings 
which must be removed (by ensuring convergence) before the structure can be 
recognized as being truly free standing. 

Usually, the lower moments will converge before the higher ones. In view of the 
coupling of equations, the part 1(0) of the distribution function that determines the 
mobility must be sufficiently accurate before the equation for diffusion can be solved. 
In particular, at least the second moment of f(O), that is, the mean square random 
velocities, needs to have converged before a meaningful calculation of the diffusion 
coefficients can be attempted. 

(a) Use of adjoint operator 

When the set 'P consists of polynomials of maximum degree k, it is convenient 
to calculate the matrix elements in equation (l99a) in the form 

(201) 

The adjoint of the operator a. 0 c is - a. 0 c and that of the collision operator J, 

which was developed in Section 10, has the form 

00 [trJ 
J = L ilo L Ar.(c)(c.ocy-2sCv~)S, (202) 

r=l .<=0 

where the Arlc) are linear combinations of Pnz(c) (cf. equations 83 and 84). These 
functions depend on the cross sections but are independent of the basis sets and may 
be tabulated once for all in a calculation involving any basis sets and any values 
of the electric field. 
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When the t/J j are polynomials of maximum degree k then, no matter what the 
other functions CPj' the left-hand side of equation (201) can be calculated without 
any approximation by retaining only the first k terms in equation (202); that is to 
say, one effectively has a finite k-term expansion of the matrix element. It will be 
noted that this simplicity is not available if the right-hand side of equation (201) is 
evaluated. This economy in calculational effort enables us, in Section 20 below, to 
go to much higher orders than have been previously considered. 

Similar techniques can be used in the calculation of transverse diffusion where the 
adjoint of the operator f£' T should be used. In working with the spherical harmonic 
decomposition, the adjoint operators J1 can be used to effect similar economies. 

18. Solutions of Model Problems 

Model collision operators were discussed in Section 13. Here we show how some 
of them can be used to obtain analytical expressions for the velocity distributions and 
the transport coefficients. One hopes that the solutions of real problems would have 
some of the features shown by these expressions. Four model problems are con
sidered: in the first two cases (a and b), the results although analytic are approximate; 
in the last two (c and d), the results are exact solutions of the model problem. 

(a) Quasi-Lorentz gas model 

This model has been treated in detail in the literature and only a summary of the 
basic equations and results is given below. One assumes that the mass ratio is very 
small, m/mo ~ 1, that only elastic collisions occur and that the stationary distribution 
function is nearly isotropic. In the spherical harmonic decomposition (equations 
183-6) the terms with I > 1 are omitted, and simplified forms of the spherical com
ponents of the collision operator, Jo and J1 (equations 100) are used. The kinetic 
equations (184a) then reduce to the two coupled equations 

ta(d/dc +2/c)fiO) +JofbO) = 0, 

a(d/dc)fJO) + v(l) f1(0) = 0, 

(203a) 

(203b) 

where v(l)(c) = no c (T(l)(C) is the collision frequency for momentum transfer. From 
this one finds Davydov's expressions for fJO) and ffO): 

friO) = Aexp ( - ~: J: {(a/v(l))2 +3kTo/mo} -Ie' de'), (204a) 

(204b) 

Expressions for the velocity distributionsf(L)(c) andf(T)(c) associated with diffusion 
are found in a similar way, and one finally obtains from equations (183)-(189) 

W = <vee)~ == <c- 2 d(e 3a/v(1»)/de) , 

DT = <e2/3v(l), 

(205a) 

(205b) 

-1 fOO . 1 ( (1) 2 3(a/v(1»)I(e)). 
DL = DT +a ° (a/vU)?+3kTo/mo -2e(a/v ) + e2fri0)(e) I (e) dc, (205c) 
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where 

I(c) = f: {v(c')- W} fJO}(C')C,2 de'. 

(b) Quasi-Rayleigh gas model 
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(205d) 

This model describes the motion of heavy ions in a light gas, and it is obtained 
by expanding the elastic collision operator J to second order in the mass ratio 
110 = mo/(m+mo)· The mass ratio expansion of J is given by equations (Sl) and 
(S2). Insertion of this expansion into equation (iSOa) gives a Fokker-Planck type of 
equation, which can be written in the form 

where 8 is the electric field parameter: 

(207) 

The coefficients Pn/(c) were defined in Section 10. Their behaviour for large c may be 
seen from Table 1, while at small values of c they vary as cl • Those occurring in 
equation (206) are always negative. 

To bring out clearly the behaviour as c -t 0, we write the PHI in the form 

c-+O, 

c-tOO, 

(20Sa) 

(20Sb) 

which defines the quantities Qnlc) and O'nzCc). Specifically, one finds for c -t 0 

(209) 

where QY·l)(kTo/mo) is one of the usual 'Q integrals' of kinetic theory. Inserting 
the forms (20S) into equation (206) we get 

'Vc .([CQOl -8]j<0}) + 11o {'Vc 'Vc :(CCQ02j<°}) 

+k'V~([Ql0+C2Q02]f(0})} = O. (210) 

We modify this equation to make it separable, and to ensure the correct Maxwellian 
solution for 8 -t O. 

For small fields, one can assume c2 ~ 3kTo/mo, use for QOl and QlO their values 
at c = 0, and neglect the C2Q02 terms. With these approximations, however, one must 
also replace 110 = mo/(m + mo) by mo/m, to get the correct zero-field solution. The 
resulting equation and its solution are 

'Vc .([CQ01(0) -8]f(0» +(kTo/mo)Qol(0)'V2j<0) = 0, 

W = (c) = 8/Q01(0) , 

j<°)(c) = A exp{ -(mo/2kTo)(c- W)2}. 

(211 a) 

(211 b) 

(2Ilc) 

Equation (211c) gives the true Rayleigh gas solution. The distribution of random 
velocities is unchanged by the field, while the drift velocity can become much larger 
than the random velocities. 
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When the drift velocity is large (W2 ~ (c- W)2) another approximation can be 
made to equation (210). Firstly, we determine W from (210) to the lowest order 110: 

(212) 

We then expand the coefficients in equation (210) to the lowest nonvanishing order 
in (c- c.), to obtain the separable equation (still with mo/m substituted for 110) 

( 
(0) . Of(O») mo/m ( 2) 021(0) 

Q01 I +Cx oCx + -3- Q10 -c. Q02 oc; 

where Q01 = dQo1(c)/dc and the coefficients are to be evaluated at c = c •. 
have the following results: 

1(0)( ) _ A (C;+. c; (Cz -C.)2) c - exp - ---
2<c;) 2«cz -C.)2) ' 

with 
/ Q 2 Q / 2 (2) < 2) = mo m 10 -c. 02 --+ mo m ~ 

Cx 3 Q 6 (1)' 01 c",-+Cf.) (J 

(213) 

We then 

(214a) 

(214b) 

(214c) 

Equations (213) and (214b) are seen to subsume the weak-field equations (211a) and 
(21lb). 

As the distribution (214a) is gaussian, the diffusion coefficients are related to the 
differential mobility K. through the generalized Einstein relations (equation 30; see 
Note [10]), Kxx is equal to the total mobility K = <cz)/E, since without approximation 
as Ex --+ 0 we have oWx/oEx = K, while 

Kzz = o<cz)/oE = K{l +d(lnK)/d(lnE)}. 
This gives 

DT = Dxx = (m/q)<c;)K. (215a) 

DL = Dzz = (m/q)«cz-co)2)K{1 + d(ln K)/d(ln E)} . (215b) 

(c) Cold neutral gas, idealized charge transfer model 

This model is represented by the collision operator J f( c) = no c (J tcC c) f( c), where 
(Jtr(c) is the cross section for charge transfer. With this form of the collision operator, 
the drift equation (180a) or (191a) becomes essentially one dimensional, yielding the 
solution 

(216) 
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Insertion of this into the diffusion equation (192a) gives 
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(217a) 

(217b) 

where the averages (c:> are to be evaluated with the distribution (216). The lateral 
diffusion coefficient is zero. 

The form of the distribution (216) has more general interest than indicated by the 
model used. The very high energy tail of a velocity distribution will always (except 
at extreme mass ratios or very small fields) be expected to be strongly peaked in the 
forward direction, and populated nearly exclusively by direct acceleration of particles 
from lower velocities. The collisions will then represent a pure loss term, as in the 
present model case. The shape of the high energy tail will therefore be expected to 
be similar to that in the distribution (216), with atr(c) replaced by some effective total 
cross section. The singularities represented by the delta functions will, of course, be 
ameliorated in a real problem. 

Further discussion of the charge transfer problem may be found in the studies by 
Sena (1946), Wannier (1954, 1966), Smirnov (1967), Fahr and MUller (1967), 
Skullerud (1969) and Lin and Mason (1979). 

(d) Constant mean free time model 

This model was defined in Section 13, where its relation to the Maxwell and 
polarization force model was pointed out. For cross sections appropriate to the 
model (cf. equation 150) the constant mean free time" and a function II (X) may be 
defined by the relation 

On introduction of the collision frequencies VI for I = 1,2,3, ... , by 

VI = nog2n J {1-Plcosx)}a(g,x)sinxdx 

= ,,-12n J {1-PlcosX)}II(x)sinxdx, 

(218) 

(219) 

it can be shown, for example by the moment method of Wannier (1953), that the 
following relations hold exactly: 

The mobility given by 
K = W/E = q/mr v1 

(220c) 

(220d, e) 

(221) 

is a constant, independent of the field. Equations (220d) and (220e) are the generalized 
Einstein relations [10]. Note also that all moments (c ... c> can be calculated exactly 
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for this model (e.g. Ferrari 1978). Another exact result for the model is the theorem 
of Wannier (1953), which connects the time-averaged distribution function j<°)(c) 
with its high-field (or cold gas) limit h(c): 

j<°)(c) = fW(Il(,IC-Vl)h(V)dV, (222) 

where 1l(2 = m/kTo and w(ll(, c) is the Maxwellian at To. In other words, it is 
necessary only to obtain the high-field solution and- the general solution follows from 
the convolution above. 

The usefulness of the model derives from the fact that most real ion-molecule 
potentials are dominated by the polarization force ( '" r - 5) at large distances, so that 
for low relative speeds we have u(g, X) '" g -1 . Hence, for low To and low E/no
the so-called 'polarization limit' -an ion swarm may be expected to conform to this 
model. For this reason the model has received a great deal of attention in this 
problem (McDaniel 1964; McDaniel and Mason 1973); elsewhere in kinetic theory 
it is popular for its mathematical simplicity alone. 

The model has been widely used in developing various approximations. It is 
assumed that, in the general case when g u(g, X) is not a constant, certain equations 
valid for the model may be taken over with the replacement of (speed-independent) 
averages by average values determined at the mean speed. The moment equations 
simplified in this way yield the so-called momentum-transfer theories [18]. A number 
of authors (e.g. Kihara 1953; Mason and Schamp 1958; Viehland and Mason 1975, 
1978; Lin et al. 1979c) have developed successive apptoximation schemes for the 
solution of moment equations, with the first approximation based on equations trun
cated so as to have the same structure as those for the constant mean free time model. 

19. Polynomial Expansions: Isotropic Gaussian Weight Function 

This section contains a discussion of what, in the terminology of Lin et at. (1979c) 
is called a two-temperature expansion. One temperature is an intrinsic parameter of 
the problem: it is the temperature To of the neutral gas. The other temperature Tb 
is introduced through the basis set .. It is a b-parameter (Section 17), to be adjusted 
to improve convergence. When Tb = To we have the one-temperature expansion. 

In the terminology of Section 17, the chosen basis sets are 

(223a) 
where 

(223b) 

The functions cjJrv](ll(c) are polynomials orthogonal with respect to the isotropic 
gaussian weight function w(ll(, c); they are effectively normalized Burnett functions: 

v = (v,l,m), (224a) 

(224b) 

(224c) 
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where the y~l are spherical harmonics and the sf~\ are Sonine polynomials. 
set 'P consists only of polynomials 
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The 

(225) 

The use of the constant Tb here is similar to that of Viehland and Mason (1975) 
and Lin et al. (1979b). If differs from that of Viehland and Mason (1978) and Lin et al. 
(1979c) in that the temperature Tb here does not depend on the density gradients, 
all gradient dependence having been eliminated in the decomposition (32) leading to 
the equations (34). Further discussion of this point will be given in Section 23. 

Table 2. Interpretation of coefficients in Burnett-function expansion of J<k) 

(See equations 268a, b) 

k vIm kJ<V) Comment 

0 000 Normalization 
DIm o<c~1»a Gives drift velocity 
100 °(3-a2 c2 )lJ6 Vanishes if 3kTb = mO<c2 ) 

000 0 Consistency requirement (cf. eqn 181a) 
DIm '<c~»a Gives diffusion tensorA •B 

100 '(3 -a2 c2 )/../6 Vector quantity ~ EA 

A This quantity is an average with respect to the vector functionf(1)(f~~»). 
B In the coordinate system chosen this quantity takes the form bmm' Dm, where 
Do = DL and D±l = DT (see Kumar and Robson 1973). 

The functionsf(k)(c), later generically denoted by fCc), are expanded about w(a, c) 
in terms of the set <l> as 

f(/()(c) = L w(a, c) ¢[vl(ac) Y(V) , (226a) 
v 

where, by virtue of the orthonormality of the basis functions, the expansion coefficients 
are given by 

(226b) 

We note the conditions on the expansion coefficients and identify the transport 
coefficients in Table 2. 

(a) Structure of matrix equations 

In view of the isotropy of the weight function the matrix elements of the collision 
operator are diagonal in the I and m indices, 

(227) 

and the equations (199a) are tridiagonal in the I indices (cf. equations 184a, 186a 
and 189a). To emphasize that we are dealing with the specific representation introduced 
above, we use symbols slightly different from the ones used in Section 17. 
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Because of cylindrical symmetry (z axis along a) the equations are diagonal in the 
m indices: in those for mobility and longitudinal diffusion one takes m = 0, and in 
those for transverse diffusion m = 1. In each case one has a system of the form 

o 

(228) 

o 

o o o o 
where the P and hi are column vectors, the )1 are matrices and L is the maximum 
allowed value of I. If v. is the maximum allowed value of v then d~ and )1 are 
v. x v. matrices and fl and h I are column vectors with v. entries. The matrices d~ 
are diagonal and the d~ have nonvanishing elements only along a subdiagonal. 

One exploits the tridiagonal nature, and the structure of the d~ matrices by a 
suitable adaptation of the well-known backward substitution method for tridiagonal 
matrices. (A general method for solving block tridiagonal systems by backward 
substitution has been given recently by Calimon and Ligon (1979).) Briefly, from the 
last equation one obtains f L- 1 in terms of fL and hL, then, from the last but one 
equation, fL - 2 in terms of fL, hL and hL -1, and so on. In the end, from the zeroth 
equation one has a v. x v. matrix equation for fL and this is solved by standard 
procedures. The method may also be used with other truncation schemes to be 
discussed below. There is considerable saving in computation time compared with 
a direct inversion of the whole matrix. 

It is evident that in place of fL any other fl with 0 :::;; I :::;; L could have been chosen 
and the system (228) converted to a set of v. x v. equations for that fl. In practice, 
it is convenient to choose I = 0 or L. The fact that the system of equations in the 
spherical harmonic decomposition of the Boltzmann equation (not just the Burnett
function representation given above) can be reduced to a size effectively independent 
of the number of I values included in the calculation seems to have been first indicated 
byWannier (1953). The application of iterative methods (e.g. Kihara 1953; Mason 
and Schamp 1958; Viehland and Mason 1975, 1978; Lin et al. 1979c) to equations 
like (228) appears to offer no real advantage . 

. (i) Truncation Schemes 

The way in which the matrices or the sets are enlarged, that is, the way one 
chooses successively a larger number of allowed indices, is called a truncation scheme. 
The choice of an efficient scheme is of some importance from the point of view of 
limiting the computational effort. 

For small mass ratios m/mo and low field strengths an independent truncation in 
the I and v indices seems the most efficient, as the maximum I value is in any case low. 

For mass ratios m/mo ~ 1, both the above truncation and a coupled truncation 
1+ v :::;; n (Viehland and Mason 1978) have been used, the latter being probably 
somewhat more efficient. 
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For mass ratios mjmo ;G 2, except at weak fields, with small basis sets both of the 
above-mentioned truncation schemes tend to yield pathological values of the mean 
square random velocities and diffusion coefficients. This can be overcome by using 
a method due to Baraff (1964), where the relation between /L-l and /L is modified 
to what it would be if the distribution function had a form "" b( cos (] -1). This takes 
some account of the high anisotropy of the distribution function. It is a method of 
truncating the equations but not in the same sense as defined above. When large 
basis sets are used, which is necessary to obtain reliable and accurate results, the 
precise form of the truncation scheme is not of importance, nor should it be. 

For mass ratios minto ~ 3, the isotropic weight function expansion of this 
section, in any case, converges too slowly to be useful. It may be said that the 
method then breaks down. The expansion becomes inappropriate because in these 
cases the anisotropy increases very rapidly with the field strength and the basis set 
is inadequate to take account of it. 

(ii) Explicit Forms 

At first sight the matrix equation for mobility is homogeneous. It can be con
verted to the inhomogeneous form (228) by removing a row and a column (see e.g. 
Kumar and Robson (1973) for the one-temperature case; the method carries over 
to the general case unaltered). With the z axis taken along a we have m = 0 and 

d~ --+ d~vv' = (oca/no)(2v)t{(l+ 1)/(2/+ I)} bV',v_l, 

d~ --+ d~vv' = -(ocajno)(2v+2/+ I)t{I/(2/+ I)} bv'v' 

(229a) 

(229b) 

(229c) 

For longitudinal diffusion (m = 0), the d± operators remain the same as above but 

hl--+ b~ = 0j<VI)Oj(Ol)+ I (101 10 11 O)(vl II OCC[l] II Vi 11)°j<v I II ) , (230) 
V1Z! 

where the 0j<VI) are the solution of the mobility equation obtained by using equations 
(229) in (228). Note that the equation corresponding to (v = 0,1 = 0) does not 
occur in (228) because it is lost in the process of converting the homogeneous equation 
to an inhomogeneous one. 

For transverse diffusion, the m = 1 and m = -1 equations are equivalent. 
Taking m = 1, then with the same 0j<vl) we have 

hi --+ b~ = I (/1111/1 O)(v/ll OCC[l] II viIi) 0j(v1i!) , 

vIII 

d~ --+ d~vv' = (oca/no)(2v)tF~{1+1)ti(21+1)}bv"v_l' 

d~ --+ d~vv' = -(oca/no)(2v+21+1)t{(12-1}~/(21+1)}bv'v: 

In equations (230) and (23Ia) we have the usual Wigner coefficients and 

(vlllocc[lJ II v'l') = (-y'+v a(1'1l),J2(bp'+l,P ~'I' +bp'_l'PN~vI), 
Nvl v'I' 

with 

(23Ia) 

(231b) 

(231c) 

(232a) 

p = 2v+l, a(l'll) = (1'010 110)il '-1+3. 

(232b) 
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The formulae (231) and (232) may be obtained following the work of Kumar and 
Robson (1973). The explicit forms for the matrix elements Jl have been derived by 
Viehland and Mason (1975, 1978), Lin et al. (1979b), Forsth (1979) and in the follow
ing paper by Kumar (1980a). All the formulae are too detailed to be given here 
(see, however, Part III, Section 12). 

(b) Matrix elements J;v': approximations 

For small basis sets, typically (2/+ v+ v') :::;; 8, the matrix elements may be 
calculated exactly from the general formulae given in the references quoted above. 
However, the required computational effort increases rapidly with the size of the basis 
sets and it is not possible to go much higher in this way, except when Tb = To. 
But in the case of electrons we have m/mo ~ 1 and it is justifiable to retain terms only 
to first order in m/mo in the formulae for J!v" It is then possible to go to very 
much higher values of v and I. In the work of Lin et al. (1979b) values up to v = 29 
and I = 6 occur. 
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Fig. 2. Mobilities (a) and longitudinal diffusion coefficients (b) calculated with a cold gas expansion, 
for a unit mass ratio, and a hard-sphere interaction; A is the mean free path: 

wf, weak-field expansion, with kTb = kTo; eg, cold gas approximation; 

peg, perturbed cold gas expansion to second order in kTo/kTb (Burnett-function expansion with 
Imax = Vmax = 8). 

To go further, approximate expressions for J~v' may be used, provided one later 
justifies the approximations. It has been noted (Section 8) that the cold gas approxi
mation should be very good at high fields. There is a natural expansion of the general 
matrix element J~v' based on the cold gas matrix elements in powers of the parameter 
(k To/mo)/(k Tb/m). When Tb = To this is, of course, an expansion in the mass ratio 
m/mo. Since this parameter involves Tb , which is an (auxilliary) b-parameter (see 
Section 17), the nature of the approximation involved may not be clear. However, 
if, for some given value of the b-parameter, convergence is achieved with approximate 
J~v' and the results improve in successive approximations, one has an acceptable 
situation. Usually Tb will be close to the ion temperature, so that it is still meaningful 
to speak of (kTo/mo)/(kTb/m) as an expansion parameter. 

In Fig. 2, for m/mo = 1, we show the results for the drift velocity and the diffusion 
obtained for the cold gas approximation (eg), the perturbed cold gas (peg) appro xi-
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mation to second order in To/Tb and the one-temperature or the weak-field (wf) 
expansion with To = Tb. The results show that whereas the eg approximation does 
not produce good results at low fields, the peg approximation for mobilities seems 
good over the entire range. Should the peg results prove reliable then, for longitudinal 
diffusion, the entire range can be covered by using wf and peg approximations in 
different ranges. Other work not presented here shows that for m/mo ~ 0·2 the peg 
expansion alone suffices, that is, peg corrections are small also over the range covered 
by wf, while for m/mo ~ 1 there remains a gap in the range which is covered neither 
by wf nor by peg (see also Skullerud and Forsth 1979). 
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Fig. 3. Successive approximations in a Burnett-function basis with isotropic weight function shown 
as a function of the basis te:nperature Tb , for (a) mobilities and (b) longitudinal diffusion. A hard
sphere cold gas model with a mass ratio molm = 1 is used. The curves are labelled by the order n 
(= Imax = Vmax)' of the approximation. Normalization is provided by kTI = tm«c- W)2), 
W = 1·1467(aA)-!- and DL = O·2202(aA3 )\ with A the mean free path. Oscillations in a curve show 
that the convergence is not uniform (nor is it expected to be). 

(c) Choice of basis temperature 

A convenient scale for comparing Tb is provided by the ion temperature T;, defined 
by 

(233) 

An initial estimate for Tb is provided .by adapting the formulae for the constant 
mean free time model (Section 18d): 

(234a) 
where 

(234b) 

Fig. 3 shows how a range of Ti can be covered using one value of Tb , the example 
. being that of a rigid sphere interaction and a cold gas, for which m/mo = 1. We have 

plotted the ratio of calculated to converged values of transport coefficients as a 
function of Tb/Ti. It is clear that as long as we have Tb ~ Ti we can expect conver
gence of the successive approximations. On the other hand, if we have Tb/Ti ~ 1, 
as for example in one-temperature theories at high fields (Tb = To ~ Ti), there is 
no convergence. 
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Thus while there is some relationship between a properly chosen Tb and the ion 
temperature Ti they need not be equal, and Tb may be chosen to improve other 
aspects of the distribution function. Thus, for example, in the work of Lin et al. (I 979b ) 
Tb has been chosen to optimize the fit over certain energy regions, namely the 'tail' 
of the distribution function when inelastic processes occur with high energy thresholds. 
In the earlier work of Viehland and Mason (1975) the choice Tb = Ti was made. 
With this choice the expansion coefficient 0/(10) must vanish (see Table 2). This 
so-called self-consistency condition provides one equation for determining Tb for a 
given value of E/uo. In actual practice it is more convenient to take Tb as the indepen
dent parameter and to find the corresponding E/uo from equation (233) with Tb = Ti . 

lt is clear that such a choice of Tb is unnecessarily restrictive; for further discussion 
see Section 23. 

In the following section, we consider expansions involving more than one basis 
parameter. 

20. Polynomial Expansions: Gaussian Weight Function with Anisotropy and Drift 

This type of expansion was introduced in the theory of swarms by Lin et al. 
(1979c) and was designated by them as a 'three-temperature expansion' (for earlier 
applications in other areas of kinetic theory see Note [17]). They used Hermite poly
nomials and carried out the calculations with small basis sets. The analysis given 
here differs from that of Lin et al. (1979c) insofar as the expansion parameters are 
constants, independent of the density gradient (see Section 23). 

The expansion is most appropriate to high mass ratios, where the expansion of 
the previous section is no longer useful, and may be motivated with reference to the 
results for the quasi-Rayleigh gas obtained in Section 18b. lt is interesting to note 
that Langevin (1905) also employed a gaussian with drift, although not in the context 
of a polynomial expansion. 

The three b-parameters in this problem are the transverse and longitudinal 
'temperatures' T~T) and T~L) respectively and the drift velocity parameter Wb , which 
is directed along the field direction (z axis). By defining 

(235a) 
where 

(235b) 

(235c) 

(235d) 
we have the weight function 

(236a) 

and, in the terminology of Section 17, the basis sets 

<I> : w( c) 4>[V]( tXC') , (236b) 

Instead of T~T) and T~L), one may take tX and one of the r's as parameters. 
The form of kinetic equations appropriate for this case are given by the formulae 

(19la)-(193b), with 2'T given by the formulae (196). With these equations, maximum 
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use of symmetry can be made and the basis polynomials need be functions of only 
two velocity variables CT = (c';+c;}t and Cz • Nevertheless, the calculations in this 
case are much more complicated than in the previous section. In general, no matrix 
element of .It' 0 or .It'T vanishes so that the block tridiagonal structure of the equations 
of the previous section is lost, along with the advantages of backward substitution, 
and the calculation of the matrix elements of the collision operator are now more 
difficult. Thus we not only have three parameters instead of one, but they also occur 
in more complicated equations. 

In the applications below we again use the cold gas model, as was indeed done by 
Lin et at. (l979c). Our main interest is to see how the choice of parameter influences 
the calculations so that inessential complications may be avoided in the future. 

(a) Matrix elements 

The calculation of the matrix element of the field term a. iJ c offers little difficulty 
in any representation. 

Matrix elements of the collision operator J have been given in a Hermite poly
nomial representation by Lin et af. (l979c) and in a Burnett-function representation 
by Kumar (1980a). In either case, the general formulae contain many nested summa
tions and the cross sections occur in two-dimensional integrals involving b-parameters, 
so that most of the calculation has to be done anew for each new set of parameters. 
Lin et at. (l979c) were able to go up to the fourth order, but it may be difficult to go 
much higher with these representations. 

It is here that the use of the Fokker-Planck expansion for the adjoint collision 
operator J (Section 10) according to Section 17a introduces essential simplifications 
in the problem. The reason is not that the Fokker-Planck expansion is good at 
these mass ratios but that, without approximation, the matrix elements can be 
calculated by a shorter series. Further simplification comes from the appropriate 
form of kinetic equations used (see above) so that polynomials in only.two variables 
CT and Cz may be used. The two-dimensional integrals obtained for the matrix elements 
have been calculated with a Gauss-Hermite-Laguerre quadrature. We found that a 
10 x 5 point formula yielded sufficient accuracy. 

(b) Choice of basis parameters 

The use of a drifted gaussian weight function is appropriate when the ion velocity 
distribution is mainly confined to a relatively small region away from the origin in 
the velocity space. The distance from· the origin is related to the field strength. 
Similarly, the temperature parameters which determine the shape of the distribution 
localized in this region will also depend on the field strength. We thus have three 
b-parameters, which have to be chosen in relation to the field strength. 

The most important parameters are Wb and (X2 = m/kTb. They can be estimated 
from the constant mean free time model in a way similar to that used for the isotropic 
weight function (cf. equations 234). 

The anisotropy of w(c) around c = Wb may be estimated by appeal to quasi
Rayleigh gas expressions (Section 18b). Estimates are somewhat improved by 
replacing mo/m by mo/(m+mo) and evaluating the coefficients at c. = (w~ +3kTb/m)t; 
this is to compensate for approximations made in that model. However, these 
estimates cannot be critical, that is, it is not necessary that the weight function have 
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exactly the same drift and anisotropy as the true distribution function. Both the 
one-temperature and two-temperature approximations are known to produce drift 
and anisotropy in calculated distributions. Their failure at high mass ratios and large 
fields shows only that it is difficult to produce large drifts and anisotropies, when 
none is initially present. Thus, to correct the situation at high mass ratios it would 
be sufficient if approximately right amounts of drift and anisotropy were introduced 
into the weight function. In other words, a given choice of b-parameters will be 
effective over a range of E/no values. Further, it seems very likely that anisotropy 
itself may not be so important. If a Tb is chosen properly then it will probably not 
matter what T~T) and T~L) are, particularly if Tb is greater than (TIT), TIL»). 

Table 3. Effect on convergence of choice of temperature and drift parameters in weight function 

Here a hard-sphere cold gas model with a mass ratio m/ mo = 2·5 is used. The 'order' n of the 
calculation in the Burnett-function basis is defined by n = Imax = vmax• Converged values are 
W = 1·7069(a.1.)t and DL = 0·2981(a),3)t, with ). the mean free path. The parameter sets 
(Wb/W, Tb/T;, T~T)/T~L)) are IX = (1,1,0·586), f3 = (1,1,1), y = (1,1·5,1) and c5 = (0·75,1·5,1), 
with kTi = tm«c- W)2), kTlT ) = tm«cz - W)2) and kTlL) = tm<c;>; TlT)/TlL) = 0·586 is the 

converged value used in the set IX 

Order w(n) / W for set D't)/DL for set 
n IX f3 y c5 IX f3 y c5 

2 0·9920 0·9919 0·9897 0·9883 1·187 1·168 1·238 1·193 
3 0·9994 0·9998 0·9933 0·9951 0·992 0·989 1·015 0·902 
4 0·9998 0·9996 0·9978 1·0008 1·018 1·026 1·023 1·028 
5 0·9996 0·9995 0·9990 0·9988 0·998 0·995 1·004 0·986 
6 1·0002 1·0002 0·9996 1·0000 1·000 1·006 1·001 0·989 
7 1·0001 0·9998 0·9998 1·0002 1·000 0·999 1·001 1·006 
8 1 ·0001 1·0000 1·0000 0·9999 0·986 1·005 1·000 0·997 
9 1·0001 1·0004 1·0000 1·0002 0·999 1·001 1·000 1·001 

The above expectations were confirmed by calculations on a hard-sphere cold gas 
model with polynomial expansions to order n = 9 with n = Imax = Vmax ' Several 
mass ratios were used. The results for a mass ratio of 2·5 are presented in Table 3. 
It was found that the convergence becomes better as the mass ratio increases, 
provided suitable parameters are used. For m/mo ~ 4 answers obtained with quite 
low values of n are already equal to the converged values to the required accuracy. 
For smaller mass ratios increasingly larger n values are required. 

21. Non-polynomial Expansions 

As pointed out before (e.g. Section 17), the expected asymptotic behaviour of fCc) 
should be taken into account in the choice of basis sets. In particular, if a singularity 
is present or expected, the functions of the set should have the correct asymptotic 
behaviour near it. In most cases precise information of this kind is not available. 
One should then use functions which are flexible enough to represent arbitrary shapes 
in different regions. Examples of such functions are cubic splines and finite difference 
sets. The discussion in Sections 19 and 20 may be taken to mean that the sets based 
on gaussian weight functions are not very flexible in this sense. 

The difficulty with the more general type of sets mentioned above is that matrix 
elements of the collision operator cannot be easily calculated for them. For this 
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reason only special cases, where the collision operator is reasonably simple, have 
been treated using such sets. Note that the sets mentioned above are non"polynomial; 
the splines are represented by polynomials in a given range, but they are not true 
polynomials. 

The examples below show that, when applicable, such sets are capable of producing 
very high accuracy. 

(a) Modified Bessel functions and non-integral moments 

This method was devised by Wannier (1953) for the case of a cold gas and an 
interaction potential ~ r -no In this case 

a{g, X) = a(go, X) (g/goY , y = -4/n, 

f eS Jf(f) de = !Cis) <es +1+Y), 

<er) = fer f dc, 

(237a) 

(237b) 

(237c) 

where go is an arbitrary (scaling) constant and Jf is the lth spherical component of 
the cold gas collision operator (equations 113). The constant Ki S ) is defined by 
equation (237b) and is obtained as an integral over the angular distribution in the 
scattering. 

In this case the moment equations obtained from the spherical harmonic decom
position (1 84a-c) may be analytically reduced to equations connecting moments <er)o 
with respect to the functionlo only. The process of reduction determines new quantities 
rx and [3 in terms of the collision quantities Kis ). The equations for the unknown 
moments <e,>o have the form (Wannier 1953; Skullerud 1976) 

1+ 1 I rxjl\el-1+j(Z+y»0 = [3(/). 
j=l 

The exponent in the moment is, in general, non-integral because y is. 
One can now expand 10 in any basis set 

fo(e) = I ~i CIli(e) , 
i 

(238) 

(239) 

substitute in equation (238) and solve the equations for ~ i. The use of modified 
Bessel functions for CIli in the cold gas case, with m/mo = 1 and a hard-sphere inter
action, was suggested by Wannier (1953). These functions give the right asymptotic 
behaviour for both large and small e, and the expected logarithmic singularity at 
e -t 0 is correctly represented. This in turn results in a drift velocity correct to five 
significant figures, W = 1· 1 467(a},)t, from the fifth approximation onwards. A 
Burnett-function expansion gives only four figures correctly even in the tenth approxi
mation (lmax = Vmax = 10) W(lO) = 1· 146 1 (aA)t. One of us (H.R.S.) has tried 
several other basis sets for this problem, such as gaussians with different widths, 
sometimes combined with modified Bessel functions and polynomial expansions, 
and cubic B-splines. When the asymptotic behaviour is correctly represented the 
convergence is always good. 
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The results obtained by this method have been used as 'bench marks' against 
which the results from other approximation schemes may be tested. The assumption 
or hope is that an approximation scheme which is good for this model, and is 
also applicable to a real interaction situation will give good results for the latter also. 
The method described here, however, cannot be applied to real systems for the 
reasons pointed out earlier in this section. 

Table 4 compares the results obtained in this way with those from a Burnett
function expansion. The Burnett functions were obtained from an isotropic weight 
function with an 'optimal' choice of temperature kTb = kTi = 3m<c2). In the 
Wannier-type expansion the functions <Pi were of the form 

(240) 

with Ko the modified Bessel function of order zero. The calculations are for a hard
sphere cold gas model with m/mo = 1, and A = (nou)-l is the mean free path. 

Table 4. Comparison of successive approximations in two different expansion schemes 

Here the results obtained from (oc) an optimum Burnett-function basis are compared with those from 
(p) a Wannier-type basis (equation 240). A hard-sphere cold gas model with a mass ratio m/mo = 1 
is used. The parameter n determines the size of the basis set in the two expansions. For the Burnett
function basis n = Imax = Vmax and the corresponding set is used for the Wannier-type expansion. 
The normalization is provided by W = 1 . 1467(aA)t , DL = o· 2202(aA 3}l- and DT = o· 3202(aA 3)\ 
with A the mean free path. The values for Di2 ) and D~2) are too crude to be meaningful; between 

n = 6 and 10 the change in numbers is very small 

Order w(n)/w Dr)/DL D~)/DT 
n oc p oc p oc P 

2 0·9692 0·9923 
3 0·9985 0·9989 0·876 0·998 1·016 0·992 
4 0·9963 0·9998 1·023 0·998 1·004 0·996 
5 0·9986 1·0000 0·991 1·003 1·001 0·997 
6 0·9989 1·0000 1·000 1·000 1·000 0·998 

10 0·9997 1·0000 1·000 1·000 0·999 1·000 

(b) Special methods for electron transport 

The quasi-Lorentz gas model (Section 18a) is fully satisfactory for electron 
transport calculations, when only elastic collisions are of importance. When inelastic 
collisions occur, the form of the collision operator is still quite simple, but analytical 
solutions to the transport problem cannot be obtained. 

If the collisional energy transfer rate is small compared with the momentum 
transfer rate, a two-term expansion of the velocity distribution in spherical harmonics 
will still be sufficient and, as in the quasi-Lorentz gas case, the kinetic equation can 
be reduced to one equation for the isotropic part fo(c) of the velocity distribution. 
This difference-differential equation can be solved by standard finite difference 
methods (see e.g. Huxley and Crompton 1974; Kitamori et al. 1978; Tagashira et al. 
1978). 

If the collisional energy transfer rate is large, as is the case over certain energy 
ranges in some molecular gases, the velocity distribution may become quite aniso
tropic, and more terms must be retained in the spherical harmonic decomposition 
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of the equations. A reduction of the system of equations to one equation for fo(c) 
can then no longer be easily performed, and one will have to revert to expansions 
involving the full distribution function fCc). 

A general treatment of the electron problem in a Burnett-function representation 
has been given by Lin et al. (1979b). 

A different approach, using a cubic B-spline expansion of the spherical harmonic 
components J,,(c) of the velocity distribution, has been used by L. C. Pitchford 
(personal communication). The cubic B-splines are constructed by joining together 
cubic polynomials defined in adjoining intervals. They are continuous functions with 
continuous first and second derivatives,and are nonzero only in four adjoining intervals 
(see e.g. Prenter 1975). The B-spline expansion will still lead to a block tridiagonal 
system of linear equations (cf. equation l84a), but the subdiagonal blocks will be 
band-diagonal, and not strictly diagonal as in the Burnett-function expansions. This 
does not lead to substantial computational problems, however, as band-diagonal 
matrices are quite easily inverted. 

The B-spline expansions offer advantages especially when an accurate represen
tation of the high energy tail of the distribution function is wanted. The convergence 
properties of B-spline expansions are, in general, remarkably good and they do not 
depend critically on any assumed form of asymptotic behaviour. The basis set sizes 
needed in B-spline representations are large compared with 'normal' Burnett-function 
basis set sizes, but the disadvantage of this is compensated by a considerably easier 
matrix element evaluation. 

A finite element approach to electron transport calculations, without any spherical 
harmonic expansion, has also been reported by Kleban and Davis (1977, 1978), 
but this approach seems not to offer any advantages compared with B-spline and 
Burnett-function methods (Lin et al. 1979b). 

22. Computer Simulations 

In computer simulations, the dynamic behaviour of one or several ions is followed 
through a succession of collisions and free paths. Velocity distributions, velocity 
moments and spatial moments are, in general, time-dependent quantities formed by 
averaging the behaviour of a large number of independent ions. If stationary 
transport can be assumed, as in drift and diffusion calculations, the same results are 
found if time averages over the behaviour of one ion are formed, which is usually 
more convenient. 

The dynamic behaviour is modelled by choosing stochastically the lengths of the 
free paths, the velocities of the neutral collision partners and the outcome (scattering 
angles, energy loss) of the collisions, in agreement with probability distributions 
obtained from the prescribed scattering cross sections and neutral velocity distribu
tions. The modelling can be made numerically exact, avoiding approximations 
involved in numerical integrations, by the use of a 'null-collision technique', described 
by Lin and Bardsley (1977). 

The simulation approach-quite often classified as experiment by theoreticians 
and as theory by experimentalists-is closely related to so-called free path methods 
in transport theory. These methods are, in dilute gases, fully equivalent to a 
Boltzmann equation approach, as shown in our context, for example, by Fahr and 
Muller (1967). 
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The main advantages of the simulation approach are the conceptual simplicity, 
the ease with which correlation functions and other 'difficult' averages can be calculated, 
and the appearance of safe error estimates in the form of standard deviations. Draw
backs are the need for quite detailed differential cross sections a(e, X), and the slow 
improvement of the accuracy (proportional to [time]~) with increased computational 
effort. 

A good exposition of the simulation method as applied to ion transport problems 
is given by Lin (1976), while applications to electron transport problems have been 
discussed very satisfactorily by Braglia (1977), and Braglia and Baiocchi (1978). 

23. Discussion 

Let us begin by recapitulating the main points: 
(1) Section 4 gives the derivation of kinetic equations and identifies the transport 

coefficients as moments of the respective functions J<k) which are solutions of these 
equations. Limitations of the theory are pointed out in Section 5 and Note [11]. 

(2) The kinetic equations were obtained by eliminating the density gradients. 
Their solutions are functions of c and E only. (In Sections 15-20, we have used 
f(c) as a generic symbol for the functionsf(k)(c) and it is not necessarily the distribution 
function itself.) 

(3) The business of solving the equations is separated entirely from the method of 
deriving them. 

(4) The choice of basis sets in expansions is an auxilliary to the process of solution. 
The weight function chosen may in some sense represent the true distribution function 
but that may be likened to a scaffolding which resembles the structure it helps to build. 
Some of the parameters in the weight function will therefore be related to some 
physical quantities, but they are not, in general, precisely those quantities. 

(5) The examples given in previous sections are for a cold gas hard-sphere model 
for different mass ratios. They are intended to be only illustrative. We point out the 
features that are likely to survive in the calculations for realistic cross sections. 

We believe that we have outlined an economical path through the complexities 
of the problem from the conceptual as well as the computational point of view. It is, 
of course, possible to obtain results without following this path, but whenever that 
has been done, it has led to some complications. We illustrate this remark by an 
example: 

Suppose we make a polynomial expansion of the complete space-time dependent 
distribution function, that is, 

fer, c, t) = nCr, t) w(oc, e) l:Ct>[Vl(occ) f(V)(r, t), (24Ia) 
v 

where 
(241b) 

The quantities of physical interest, the average velocity <c) and mean ion energy 
},kTi = lm<e2 ), now depend upon space and time. They may be calculated from 
equation (241b) by setting v = (0, I,m) and (1,0,0) respectively (cf. Table 2). Now 
if one argues that the basis parameter Tb is equal to Ti , then (X2 = m/kTi and we have 

(242) 
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In the hydrodynamic regime, all space-time dependence is carried by nCr, t) and its 
derivatives, and we write 

00 

j(v)(r, t) = I kj(v) 0 ( - \l)kn, (243a) 
k=O 

00 

Ti(r, t) = n - 1 IT?) 0 ( - \l)kn . (243b) 
k=O 

Equation (242) is equivalent to j~10) = 0, and by equation (243a) we have the 
constraints 

k = 0, J, 2, ... , (244) 

which provide the means for determining the coefficients T~k) in equation (243b). 
The transport equations are obtained by substituting the expansion (241a) into 

Boltzmann's equation, expanding all quantities, including IX, in gradients of nCr, t) 
and equating coefficients of (\lk)n. This is a possible scheme and has actually been 
implemented for k = 0,1 by Viehland and Mason (1978)* for the single b-parameter 
situation outlined above and by Lin et al. (1979c) for several b-parameters. Their 
notation is, of course, different. There are three points to be made: (1) no matter 
what notation is used the fact that IX of the weight function has to be expanded in 
terms of \In, generates lengthier expressions at all levels; (2) the constraints (244) 
have to be imposed at all levels of approximation; (3) most importantly, one loses 
the flexibility of being able to adjust the parameter IX, which has been found so impor
tant in computations (see e.g. Lin et al. 1979b; Forsth 1979). Some criterion for 
relating Tb to Ejno has, of course, to be provided, but this may be different for different 
problems; for example, when· inelastic collisions occur, it was found by Lin et al. 
(1979b) that a Tb which gave a good fit to the distribution function in regions of 
dominant energy exchange provided optimal convergence of successive truncation 
approximations. 

These remarks concern accurate calculations with large basis sets. The original 
motivation for introducing a \In dependence in IX seems to have been to obtain a 
justification for qualitative formulae, such as the generalized Einstein relations [10]. 
For these purposes and low order calculations, the approach has some advantages. 

With regard to future applications we can sum up our findings as follows. 

(J) Formulae for drift and diffusion are given by equations (176), (180), (181), 
(184), (186), (189), (191), (192) and (193) and in Table 2; they are to be used as 
indicated in conjunction with methods suited to particular representations. 

(2) Accuracies comparable with or better than those from the currently available 
experimental data (0' I % for K and I % for D) may be achieved from the best 
methods. Actual calculations will need larger basis sets than have been previously 
used. The difficulties with the computation time, reported in earlier work, can be 
largely overcome with proper management as outlined above. 

* In this case equation (243b) takes the form Ti = Ti(O) - Ti(l). \In. Since the only constant vector 
in the problem is E we have Ti(l) ~ E, so that we may write Ti = Ti(O)(1 -AE. \In). That is to 
say, the scalar temperature Ti can depend on the density gradient only through its component onjoz 
in the field direction. Hence, the quantities A± in equations (33), (34) and (35) of Viehland and 
Mason (1978) should vanish identically. 
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(3) Gaussian weight functions provide basis sets adequate for most purposes if 
the cross sections are well behaved. We have indicated how the parameters in the 
basis sets are to be chosen, and the conditions under which these methods are 
applicable. 

(4) With polynomial moments, that is, when the set 'P of Section 17 consists of 
functions c, cc, ... , the use of the adjoint operator (Section 17 a) will make it possible 
to compute the collision operator matrix elements for many different types offunctions 
in the set «1>. Thus one is no longer constrained to use gaussian-based sets «1>. The 
same computational method will also be. suitable in the case of more unruly 
cross sections such as those for the cases of charge transfer and electron-mercury 
interactions. 
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In the d~scussion of drift and diffusion calculations in Part IV it was assumed that 
the number and properties of the charged particles were not changed in collisions 
with neutrals. In this part, we remove this restriction and allow reactive processes 
to take place. The term 'reactive processes' is here to be interpreted in a wide sense; 
it includes not only processes where a change in the chemical composition of the 
constituents takes place, but also processes such as electron impact ionization and 
attachment, and positron annihilation in gases (Massey 1976; Campeanu and 
Humberston 1977). As in Part IV, we consider only homogeneous electrostatic field 
conditions, with no magnetic field present. 

Our discussion will be restricted to unidirectional reactions and systems in chemical 
equilibrium, as these two cases can be treated within a hydrodynamic framework. 
The unidirectional reactions are irreversible ones of the type.A+B -+ C+D, and it 
is supposed that only the transport properties of the charged species A with the 
distribution functionf(c) are measured. Examples of such reactions are the loss and 
attachment type of reactions involving electrons lost by capture to form negative . 
ions, or positrons lost by annihilation. For this type of reaction, we will be 
primarily interested in determining the asymptotic reaction rate IX, defined by equations 
(4) and. (8a). On the other hand, systems in chemical equilibrium are governed by 
reversible reactions of the type A + B ~ C + D. The overall reaction rates are zero, 
and th~ interest is primarily in finding the drift velocities and diffusion coefficients 
describing the transport not of the particles but of the electric charge, and the relative 
numbers of the different charge-carrying species. 

A general reacting system with different charged species i, j = 1, 2, ... all present 
in trace amounts only, can be described by a system of kinetic equatiqns of the form 

(Ot+c.o,+ai.oc+JlPC)+JlRL»h(n,c,t) -:L Ji)RG)fin,c,t) =0, (245) 
j*i 

where Ji PC) is the particle-conserving or nonreactive part of the collision operator, 
JIRL) represents reactive losses, summed over all reactive channels depleting the i 
species, and J ~JG) Jj( c) represents 'reactive gain', i.e. the influx of particles i with velocity 
c from reactive i-neutral collisions, integrated over all initialj velocities c'. Expressions 
for the collision operator with reactive terms included are given in the following paper 
by Kumar (1980a). 

In the case of unidirectional reactions, the reactive gain term in the equations (245) 
is zero, and the determination of the asymptotic behaviour of fi(r, c, t) can be formu
lated as an eigenvalue problem. This will be considered in the next section (25). 

For systems in chemical equilibrium, all the reacting species will asymptotically 
have the same distribution in configuration space, and the kinetic equations in the 
hydrodynamic limit can be found by using this as an ansatz in the equations (245), 
together with the usual expansion in powers of the spatial gradients. This will be 
considered in Section 26. 

The solution of the equations (245), in the hydrodynamic limit, is considerably 
more demanding in terms of computer time than the solution of the similar equations 
without reactive terms, but not prohibitively so. More serious for practical calcula
tion on real ion-molecule systems is the nearly complete lack of reasonable inelastic 
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and reaction cross section data, needed as input for the transport calculations. 
However, a lot of effort is presently being invested in improving this situation (Miller 
1976), and it is to be hoped that this will increase the usefulness of a transport theory 
for reacting ion systems. 

25. Unidirectional Reactions 

In the case of unidirectional reactions, one charged species only is involved in 
the transport problem, and the formal description presented in Sections 2 and 4 
applies. There we have noted that the presence of reactions not only leads to the 
introduction of the reaction rate as an additional transport coefficient, but also makes 
invalid the usual association of the drift velocity with the average velocity and of the 
diffusion tensor with the velocity autocorrelation function. However, the modification 
to these transport coefficients due to the reactions can be found, after the reaction 
rate has been determined, by using essentially the same methods as for nonreacting 
systems. This was discussed in some detail in the last part of Section 4, and we will 
therefore here only consider the problem of calculating the reaction rate. 

We assume the reactive gain term fRG) in the equations (245) to be zero, and 
integrate over dr to obtain an equation of the form 

aJ(e, t) + 2' fee, t) = 0, (246a) 

(246b) 

The linear operator 2' will be assumed to generate a complete set of orthonormal 
eigenfunctions fi(e) with associated eigenvalues Ai: 

2' fle) = A Jle) , f w(e)/le) fie) de = (jij' (247a, b) 

We make no attempt to justify this assumption. It can be shown to be correct with 
certain model collision operators, but is certainly incorrect when runaways can occur. 
For the sake of consistency the weight function wee) must be given by the eigen
function belonging to the lowest eigenvalue Ao, 

(248) 

In terms of the eigenfunctions fle) the general solution of equation (246a) can 
be written in the form 

fee, t) = L PiNe) exp( -Ai t) --+- pofo(e) exp( -Ao t). (249) 
i (/-+00) 

The hydrodynamic (i.e. long-time) behaviour is determined by the lowest eigenvalue 
AO (assumed distinct from all others), which is equal to the reaction rate, IX = Ao. 

The determination of Ao from equation (247a) is in principle a standard eigenvalue 
problem, which can be solved by well-known methods. We will first sketch a 
general-and usually also quite laborious-way of proceeding, related to, but not 
equivalent to, the matrix methods for determining energy eigenvalues in quantum 
mechanics. However, when the reactions are 'weak', often a simpler perturbational 
approach can be used, and a scheme for this will be outlined subsequently. 
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(a) Matrix eigenvalue method 

To transform equation (247a) to a matrix eigenvalue problem, we first expand 
fee) in some basis set <p(V)(e) and then form moment equations by multiplying with 
moment functions I/I(v')(e) and integrating over dc, in the same way as explained in 
Section 17. We thus arrive at a set of homogeneous equations for the expansion 
coefficients ~V' analogous to equations (l99a), 

VIX ~..{(I/I(V\2'<p(v') -).,(I/I(V\ <p(v')} = O. (250) 
v'=l 

This is an overdetermined system of equations, and has a solution only if the 
determinant is zero: 

det{(w, 2'<p) -).,(W, <p)} = O. (251) 

The 'secular equation' (251) is a vmax-order algebraic equation for the eigenvalue ).,. 
Its solution thus gives Vmax, in general different, eigenvalues. We are only interested 
in the lowest of these. 

Most textbooks on numerical analysis describe methods for solving matrix eigen
value problems, and working computer programs are available as publications and in 
computer libraries. Two points are, however, worth noting: Firstly, most methods 
assume orthonormal basis sets (I/I(v), <p(v') = ovv" To avoid an orthogonal trans
formation, it is therefore convenient-and more so here than in the foregoing Part 
IV-to start out with orthonormal basis sets from the beginning; e.g. with normalized 
Burnett functions. Secondly, quite a few methods assume the matrix (W, 2'<p) to be 
symmetric (or, if complex functions are used, self-adjoint). The field term a.oc 

will, however, always induce asymmetries, regardless of the basis set, and the 
last-mentioned group of methods can therefore not be used in general. 

The choice of basis set, and the parameters occurring in it, is governed by essen
tially the same considerations as in Part IV. Ideally, the size of the basis set and the 
basis set parameters should be varied until converged values for the lowest eigenvalue 
are obtained. Non-converged values are of little use, as there is no extremum theorem 
showing the sign of the deviation from the true value for non-self-adjoint eigenvalue 
problems. 

(b) Zero-jield eigenvalue method 

At zero field, only the collision operator J remains in the linear operator .P. It can 
be made self-adjoint by extracting a Maxwellian w(occ) at the neutral gas temperature 
as a weight function (Robson 1976a, 1979), 

f I/I(V)(e)J(wl/l(V')(e») de = f I/I(V)(e)J(wl/l(V')(e») de. (252) 

With self-adjoint operators, the approximate solution of the eigenvalue problem 
obtained from the use of a finite basis set or a set of trial functions will always give an 
upper limit to the lowest eigenvalue, as is well known. 

The solution of equation (251), using w(occ) as weight function, will thus in this 
case give useful information about ).,0 even with a small basis set. Further, one is no 
longer restricted to the use of a linear combination of trial functions, i.e. a basis set 
expansion, but may alternatively use a nonlinear variational approach, as discussed 
by Robson (1976a, 1979). 
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The zero-field problem is, of course, formally the same whether the test 
particles are charged or not. Recently, a theory of 'hot atom reactions' has been 
presented by Robson et al. (1978), with a more elaborate discussion of what has here 
been classified as the 'zero-field eigenvalue method'. The theory also finds application 
to electron attachment in molecular gases; a comprehensive analysis of this phenom
enon in the zero-field CavalIeri experiment (Huxley and Crompton 1974) has been 
given by Ness (1977), who considers 'diffusion cooling', 'attachment cooling' and 
cross effects. 

(c) Perturbation method 

The reactions can quite often be classified as 'weak', in the sense that the presence 
of reactions does not greatly influence the form of the velocity distribution. The 
reaction part of the collision operator can then be treated by perturbation methods, 
as will be shown below, and this considerably reduces the computational efforts 
needed for the determination of the reaction rate. 

If the influence of the reactions on the form of the velocity distribution is totally 
neglected, as is common practice in neutral chemistry calculations, the reaction rate 
is obtained directly as an integral over this unperturbed velocity distribution. A 
reaction theory using these assumptions, in a Burnett-function representation, has 
been presented by Viehland and Mason (1977). 

In a more general perturbation expansion, which will allow us to proceed beyond 
the infinitesimally weak-reaction assumption, we may formally associate the reactive 
loss collision operator with a smallness parameter B (which in the end is put equal to 1), 
and expand both velocity distribution and reaction rate in powers of this parameter: 

(253a) 

(253b) 

(253c) 

The zeroth order contribution to the reaction rate is by definition zero. Further, the 
functions j{i)(c) should fulfill the normalization and self-consistency condition 

(254) 

Insertion of the equations (253) into (247a) gives, on equating the coefficients of 
Bi individually to zero, a system of equations of the form 

(255) 

Integration of this equation gives, using the normalization conditions (254) on the 
jU)'s and the particle-preserving property of 2(0), an expression for !X(j) in terms of 
jU-1): 

(256) 
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The equations (255) and (256) are in a form equivalent to the drift and diffusion 
equations in Section 16, and can be solved to successively higher orders with exactly 
the same methods as described in Part IV. One simplification, however, is worth 
noting: ](RL) is spherically symmetric and all the fU)'s thus have the same cylindrical 
symmetry, while the distribution functions occurring in the diffusion problem have 
different symmetries due to the vector form of the inhomogeneous term. It may be 
noted at this point that endothermic reactions will often take place only in the high 
energy tail of the velocity distribution. Here, there will be very few particles, and the 
reactions may easily disturb the velocity distribution appreciably, making the 
perturbation approach a doubtful procedure in some cases (to be tested by the calcula
tions in the actual case). On the other hand, exothermic reactions (for nonresonant 
processes) tend to take place more uniformly over the whole distribution, and drastic 
(i.e. order-of-magnitude) changes in the distribution due to reactions are less likely to 
occur, increasing the chances of a successful perturbation approach. 

The methods described in subsection (a) and here have been applied to the recently 
demonstrated phenomenon of 'attachment cooling' by Crompton et al. (1979). For 
discussions of ionization and attachment see the papers by Taniguchi et al. (1977; 
1978a, 1978b) and Sakai et al. (1979) and the references quoted by them. 

26. Systems in chemical equilibrium 

The stationary transport of a multicomponent system in chemical equilibrium can 
be formally treated very much in the same way as the transport of a one-species 
system, outlined in Section 4. To attain this formal equivalence, it is only necessary 
to sum over all charged species to obtain the density and velocity distributions of the 
charges, regardless of charge carriers. 

For the sake of simplicity, we consider here only the lowest level kinetic equation, 
i.e. the one determining the drift velocity. This equation may be obtained (compare 
equation 180a) by averaging equation (245) over r and assuming %f = 0: 

(ai.oc +J/PC) +J/RL»)/;{C) + L Ji~RG)/;{C) = O. 
i*i 

The charge velocity distribution f(c) is given by 

fCc) = L /;(c). 
i 

(257) 

(258) 

Moment equations can be formed in the usual way by expanding f(c) in a basis 
set and integrating the Boltzmann equation with suitable moment functions. The 
dimensions of basis and moment function sets, however, will have to be increased to 
encompass the whole 'multispecies space'. 

We thus insert into the Boltzmann equation an expansion 

f(c) = L ~(v) <p(V)(c) == L L ~~v) <p~v)(c) (259) 
v i v 

and use moment functions t/I(v)(c) == t/I)v)(c) to obtain linear algebraic equations of 
the form 

L !Fvv' ~(v') = 0, (260a) 
v' 
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where the matrix elements 2 vv ' are given by 

2 VV ' == 2it = (jii' f t/J~v)(ai .oc + J \PC) + J/RL»cp\v') de + f t/J~V) Ji\~G) cp~~') de. 

(260b) 

Equation (260a) should be solved with the normalization condition f fee) de = 1. 
The only essential difference between this equation and the one-species mobility 
equation is the i-dimensional summation. The symmetry in e space is not changed 
and, in particular, in a spherical harmonic representation the tridiagonality in the 
I index is preserved. In a Burnett-function representation, the equations can thus be 
reduced in effective size and solved as outlined in Section 19. 

From the solution of equation (260a), both the partial velocity distributions fi(e) , 
normalized to the mole fraction Xi' and the total velocity distribution fee), yielding 
the drift velocity, are found. 

The hydrodynamic limit assumption that is implicit in omitting the time derivative 
from equation (257) is more serious here than in the one-species transport theory. 
In the latter case, the hydrodynamic assumption implies time scales (and corresponding 
length scales) that are long compared with typical energy-relaxation times, while, 
in the present case, the time scales must also be long compared with the mean time 
between reactions; a condition which is often not fulfilled experimentally. If the 
reactions are slow on the energy-relaxation'time scale, one may, however, break the 
description of the system up in two parts, firstly an uncoupled treatment of the 
different species as undergoing unidirectional reactions, and then a purely hydro
dynamic (i.e. non-Boltzmann) description of the coupled system. 
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Part VI. Concluding remarks 
The reader interested in calculating drift and diffusion will find a summary of 

methods and results in Section 23. If calculation of higher transport coefficients is 
contemplated, appropriate kinetic equations may be taken from Section 4 and solved 
by the methods discussed in Part IV. The manifestations of their effects in experi
ments have to be carefully disentangled from those due to non-hydrodynamic phenom
ena and time-dependent transport coefficients (Section 3). The same methods apply· 
for calculations in the presence of (1) inelastic effects due to the structure of gas atoms 
(the appropriate collision operator for this case is treated in Section 14); (2) mixtures 
of neutral gases (Note [15]); and (3) loss- or attachment-type reactions (Section 25). * 
Greater modifications are needed when different charged species or ions with internal 
structure are present (Section 26). The calculation of reaction rates is discussed in 
Sections 25 and 26 . 

. Most of the theory outlined in this paper is for an infinite medium, with no 
boundaries. This is an idealization, and proper analysis of experiment requires that 
boundaries be taken into account, which in turn requires a proper kinetic treatment 
of the boundary layer. Sometimes, these effects can be dealt with by using 'effective' 
transport coefficients; this was briefly touched upon in Section 7. 

Computer simulations are an effective means of obtaining physical insight into 
all aspects of swarm behaviour. They can also be used to obtain accurate values of 
transport coefficients (Section 22). 

The mathematically inclined reader will find a discussion: of the limitations of 
hydrodynamic theories in Section 5; of the problem of finding accurate solutions of 
kinetic equations in Sections 17-21; of the properties of the collision operator in 
Part III; of the properties of the three-dimensional translation operator and the 
corresponding Taylor series in Appendix 3. 

The appended Notes will give some idea of how the work stands in relation to 
special treatments of the problems considered here and in the broader context of kinetic 
theory. 

The problem we have treated in this paper is that of calculating the transport 
properties from given cross sections, which may be specified by giving an interaction 
potential. The inverse problem, that of finding the potentials or cross sections from 
given transport properties, is perhaps of greater practical interest. While the solution 
of the direct problem is unique, that of the inverse problem is not. The ambiguities 
in the solution of the inverse problem are resolved in various ways (Elford 1972, 
Section 2.2c; Huxley and Crompton 1974, Ch. 13; Milloy et al. 1974, 1977; 
Viehland et al. 1976; Gatland et al. 1978; Maitland et al. 1978). It will be seen from 
these discussions that the greater the accuracy in solving the direct problem the better 
it is for the solution of the inverse problem, although some ambiguity will always be 
present. 

The problems that need further elaboration are the problems involving boundaries, 
charged particles with internal structure and many species of reacting charged particles. 
Methods which may be used in these investigations have been pointed out. 

Further afield, many problems have been treated in the presence of weak high 
frequency fields. These treatments can be generalized to the situation where a strong 

'" The kinetic theory part of the treatment of positrons in gases (Massey 1976; Campeanu and 
Humberston 1977) may well be improved by use of these methods. 
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electrostatic field is present along with a superimposed weak oscillating electric field, 
by replacing the collision operator J occurring in these treatments by the operator 
a. 0 c + J. Similarly, the treatments of processes involving large density gradients 
can also be generalized. In all such cases, attention has to be paid to the time scales 
in the processes involved to ensure that the hydrodynamic or quasi-hydrodynamic 
description can be applied. 
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Notes 

[1] History. Kinetic theory is particularly well served by studies of a historical 
nature. Among the works of a general nature we mention those by Brush (1972) 
and Truesdell (1968). Of more immediate interest will be the historical remarks by 
Uhlenbeck and Ford (1963), Chapman and Cowling (1970) and Koga (1970). 
Specifically for the subject of this paper, systematic historical comments may be found 
in the texts by Huxley and Crompton (1974) and McDaniel and Mason (1973). For 
greater detail about recent history, see Kumar and Robson (1973) and Lin et al. 
(1979b). A shorter review covering many of the points discussed in the present paper 
was given by Skullerud (1977). 

[2] Computer simulations or Monte Carlo methods. These methods first came into 
prominence in connection with the kinetic theory of liquids and that is still the most 
common association in kinetic theory (Watts and McGee 1976; Berne 1977). The 
technical problems in simulating gases and swarms are, however, somewhat different. 
The first such simulation seems to have been made by Yarnold (1947), in connection 
with a discharge-related problem. An important early application by R. W. Hamming 
was reported in Wannier's (1953) paper. Itoh and Musha (1960) were the first to 
simulate electron drift. The null-collision method was introduced by Skullerud (1968, 
1973), and improved by Lin and Bardsley (1977). For a comparison between the 
Boltzmann equation and Monte Carlo calculations in specific cases, see Taniguchi 
et al. (1977) and Reid and Hunter (1979). Other references are given in Section 22. 
That the computer simulations may be regarded as a way of solving the Boltzmann 
equation itself has been argued by Bird (1970) in the context of rarefied gas dynamics. 

There are three distinct sets of ideas involved in the topics mentioned above: the 
first is that of the molecular dynamics simulations of liquid theory which give informa
tion on both the equilibrium and nonequilibrium properties; the second concerns the 
so-called 'straight' Monte Carlo simulations, which sample the equilibrium configura
tion space and yield only the equilibrium properties; and the third is that of the 
simulations used for the problems considered in this paper which give the transport 
properties for dilute systems. 

[3] Accuracy of present day experiments. Discussions of the problems involved 
in estimating accuracies have been given by Elford (1972) and Huxley and Crompton 
(1974, Ch. 10, 11, 12). From these and other sources we surmise that the best 
experiments may be relied upon to provide the drift to 0·5 % and the diffusion to 1 %. 
Measurements themselves may be repeatable to within 0·1 % for the drift. We thus 
consider it reasonable that in theoretical calculations one should aim for a precision 
of O· 1 % in drift and 1 % in diffusion. 

[4] Kinetic theory models. In other areas of kinetic theory there is a lively tradition 
of solving model problems with mathematical rigour. Some references are given in 
Section 5. For a refreshing discussion see Blatt (1975). However, there is little of 
that in connection with the present problem. Here the models are used more as an 
aid to physical reasoning and to provide estimates and insights not easily found 
otherwise. 

[5] Cold gas approximation. In this approximation the gas atoms are initially at 
rest but are free to recoil. It is evident that the two assumptions are not compatible. 
However, if we consider the motion of only one test particle in an infinite gas, the 



430 K. Kumar et al. 

perturbation would be very small indeed. The test particle may set a gas molecule in 
motion but is not likely to meet with it again. Such approximations must have 
occurred earlier in kinetic theory, but the first systematic discussion is byWannier 
(1953). It does not seem to have been used much until recently (Paveri-Fontana 1970, 
1974; Skullerud and Forsth 1979). In the case (J(g,X) '" gY, y < 0, after a scale 
transformation the kinetic equations (Section 4) in the limit E --+ 00 are the same as 
those for limit To --+ 0. However, the limit To --+ ° does not necessarily imply the 
limit E --+ 00 and some further clarification is needed for the case of general cross 
sections. 

[6] Swarm experiments. Systematic and comprehensive expositions have been 
given in the books by McDaniel and Mason (1973) and Huxley and Crompton (1974). 
A shorter review is made by Elford (1972) and a simpler account may be found in 
the text by McDaniel (1964), Chapter 11. 

[7] Expansions in terms of density gradients and Fourier series. Expansions in 
terms of density gradients are implicit in the works of Wannier (1953) and Kihara 
(1953). The first systematic use of Fourier expansion in this context was by Parker 
and Lowke (1969). Both approaches are discussed by Kumar and Robson (1973). 
For extensive discussions and applications of the continuity equation, see Huxley 
and Crompton (1974). 

[8] Path integral methods. These methods have their origin in the work of Wiener 
on Brownian motion and are used mainly in quantum statistical methods (see 
e.g. Wiegel 1975). In kinetic theory (Reif 1965) they arise from the integral equation 
for the distribution function and have similarities with simulation methods (Fahr 
and Muller 1967). The path integral methods are to be distinguished from free path 
methods also used in kinetic theory. 

[9] Integral equation approach. The idea that the integro-differential equation of 
Boltzmann can be converted to an integral equation and solved in that form goes back 
to Hilbert. In the present context, the books by Reif (1965) and Koga (1970) and the 
papers by Paveri-Fontana (1970), CavalIeri and Paveri-Fontana (1972) and Braglia 
(1977, 1978) may be consulted. 

[10] Generalized Einstein relations. Huxley and Crompton (1974) have argued 
that the Einstein relation between mobility and diffusion at zero field should be 
properly called the Nernst-Townsend relation. Wannier (1953) suggested that a 
similar relation should hold in the presence of fields. A clear statement of the 
generalized relations along with a thermodynamic derivation was given by Robson 
(1972). Since then they have been widely used in solid state physics (Robson 1973b; 
Chattopadhyay and Nag 1977) and kinetic theory (Skullerud 1976; Robson 1976b). 
Considerable effort has been denoted to understanding them from a theoretical point 
of view (Wannier 1973; Kumar 1977; Viehland and Mason 1978; and references 
quoted by Skullerud 1976). These relations are exact only for the constant mean free 
time model. Our point of view regarding them is expressed at the end of Section 3. 

[11] Derivation of kinetic equations. The Boltzmann equation can be decomposed 
into simpler equations in a number of ways, depending on the strength of the external 
field, as discussed by Chapman and Cowling (1970). All such methods are variants 
of the original Chapman-Enskog method and are sometimes called the Chapman
Enskog method. There is no fixed usage for the latter term, although specific meaning 
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is attached to it in the context of the theory of neutral gases (see e.g. Uhlenbeck and 
Ford 1963). The assumptions regarding the hydrodynamic regime are similar to those 
involved in the theory of neutral gases. The main point of the derivation given here is 
the use of equations (3) and (31b), for which see Note [7]. The derivation may be 
combined with other assumptions about the distribution function, with consequent 
complications in the equations; an example is discussed in Section 23. Limitations 
of such theories are discussed in Section 5. They are not rigorous in the mathematical 
sense, although in kinetic theory and chemical literature they are sometimes described 
as rigorous. 

For discussions involving 'time-scales', see Schruben and Condiff (1973) and 
van de Water (1977). 

[12] Transport cross sections and collision frequencies. The quantity 

O'(l)(g) = 2n f O'(g, X)(l- cos X) d( cos X) 

is called the momentum transfer cross section, and nog O'(l)(g) is the corresponding 
momentum transfer collision frequency. Similar interpretations may be made for 
the quantities O'(l)(g) for I > 1. As pointed out at the end of Section 8, we prefer to 
deal with these because they occur naturally in our work and because of their 
relationship to orthogonal polynomials. In the literature, related quantities 

f+1 

Qlg) = 2n -1 O'(g, x)(l -cos1X) d(cos X) 

are often used. The integrals Q(l.s) of kinetic theory are defined in terms of Ql(g). 
The relation between 0'(1) and Ql is straightforward (Kumar 1967), 

[til [til 

O'(l)(g) = L ar1Qlg) , PtCx) = L arlxl-Zr 
r=O r=O 

For another point of view concerning the use of these quantities and the evaluation of 
related integrals, see Suchy and Rawer (1971), Thiel and Suchy (1977), Weinert (1978) 
and Weinert et al. (1978). 

[13] Fokker-Planck expansion. There is considerable literature on the Fokker
Planck expansion in plasma physics (see e.g. Allis 1956) and in stochastic theories 
(see e.g. papers in the collection by Wax 1954). In plasma physics the change in velocity 
Ac (cf. equation 55) is considered small by virtue of the long-range nature of the 
Coulomb force and the resulting small-angle deflections in the particle trajectories. 
Expansions up to second order in Ac are used throughout irrespective of the mass of 
the particle. The general expansion is sometimes also called the Kramers-Moyal 
expansion after Kramers (1940) and Moyal (1949). The related literature is reviewed 
by Braglia (1978). 

The presentation in Section 10 is not closely connected with such theories or special 
approximations used in them. It is a straightforward expansion of the (foreign gas) 
collision operator in powers of the mass ratio mo/(m + mo). Complete formulae were 
first derived by one of us (H.R.S.) starting from cartesian tensors in cartesian 
coordinates. The derivation given in the present text is somewhat more compact. 
The actual expressions obtained in the two cases have different appearance. At the 
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time of writing we have not been able to show their equivalence but results up to 
fourth order are found to agree. 

[14] Differential operators for spherical harmonic decomposition. Earlier calcula
tions of these operators occur in connection with the electron problem. The expansion 
is motivated in analogy with the Fokker-Planck expansion, with the change in energy 
L18 playing the role of L1c in the Fokker-Planck case. To give proper meaning to the 
'order' of the expansion, certain 'consistency' considerations have to be introduced. 
The temperature dependence is not treated separately and no reference is made to 
the cold gas limit. The related literature is reviewed by Braglia (1978); see also 
Lo Surdo (1971). It will be seen that our motivation is quite different and we circum
vent the problems of previous derivations. 

[15] Mixtures of neutral gases and Blanc's Law. The work in the text is easily 
generalized to the case when the charged test particles move in a mixture of neutral 
gases. The single species collision operator is replaced by 

J(f) = I Xi J;(f) , 
i 

where Xi is the mole fraction of the ith neutral species and Ji(f) describes the collisions 
between the charged particle and the ith neutral species. If Ki denotes the mobility 
in the pure neutral gas i, then Blanc's law (McDaniel and Mason 1973) states that the 
mobility K in the mixture is given by 

K - 1 " K- 1 = L.J Xi i • 
i 

The general nature of the deviation from the law at low fields was pointed out by 
Robson (1973a). 

Milloy and Robson (1973) and Whealton et al. (1974) extended the momentum 
transfer theory of Mason and Hahn (1972) to obtain corrections to Blanc's law 
which agree with the results from both a low-field solution (Whealton and Mason 
1974) and a high-field solution (Viehland and Mason 1975) of the Boltzmann equation. 
These approximate analytic formulae involve the logarithmic derivative of the 
mobility, which is familiar from the generalized Einstein relations [10] and other 
similar results (Viehland et al. 1974). 

[16] Theory of electron swarms.· In view of the simplicity of the collision operator 
for this case it is convenient to use differential equations with various numerical 
methods (Huxley and Crompton 1974). Usually the first two terms in the spherical 
harmonic expansion suffice. Calculations with three terms have been reported by 
Ferrari (1975, 1977). Other theories are reviewed by Braglia (1978). In the presence 
of inelastic interactions and highly anisotropic differential cross sections, such methods 
are no longer useful and recourse to more general methods is needed (Lin et al. 
1979b). Thus one might say that the gap that was apparent earlier between the methods 
used in the theory of electron and ion swarms has been bridged. 

[17] Moment equations. These equations have a long history in kinetic theory. 
They are completely equivalent to the equations obtained by polynomial methods 
(see e.g. Chapman and Cowling 1970). To look upon these as matrix equations is a 
relatively recent approach and so is the use of weight functions that are different from 
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the equilibrium Maxwellian (Weitzsch 1961; Everett 1963; Suchy 1964; Weinert 
and Suchy 1977; and other papers quoted in the text). 

[18] Momentum transfer theory. This theory is significant in having produced 
formulae which are simple and at least qualitatively correct for arbitrary fields and 
various ion-neutral interactions. One takes the moment equations from the constant 
mean free time model (Section 18d), but inserts collision frequencies with an energy 
dependence prescribed by the actual law of force operating between the ion and gas 
molecules. The resulting equations are easy to work with and produce reasonable 
results. While these are considerable advantages in a complex situation, the theory 
is not suitable when high accuracy is desired. It has been extensively used (Mason and 
Hahn 1972; Hahn and Mason 1973; McDaniel and Mason 1973; Milloy and 
Robson 1973; Whealton et al. 1974; Robson 1976b). 
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Appendix 1. Notation and Frequently Used Formulae 

As far as possible we have tried to assign to the symbols the meanings conventionally 
associated with them. It should help in recognizing them, although such associations 
are not uniform throughout the literature. The symbols are defined where they first 
appear. At a subsequent appearance there is a reference to some equation where the 
symbol was previously used, or to the defining equation itself. Sometimes the defini
tions are repeated so that a long search should not be necessary at any point. A 
description of conventions used and a list of frequently used formulae follows. 

A group of equations occurring together should be read as a whole: the first 
equation usually contains abbr-eviations which are explained in subsequent equations. 

Vectors and tensors are denoted by bold face type and used in the conventional 
way. The second order unit tensor is 1. If c is a vector, C is the unit vector in the 
direction of c. Sometimes c is used for the spherical polar angular variables (0, cp) 
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of c == (c, e, q». The volume element de is d(cos e) dq>. We reserve c for charged 
particle velocity, Co for neutral particle velocity, g and g' for relative velocities and 
W for the drift velocity. 

Spherical harmonics Y~)(C), irreducible tensors 1J'}:l) etc., Racah coefficients Wand 
Wigner coefficients (/1 m1 12 m2 1/3 m3), and the corresponding coupling and recoupling 
schemes for irreducible tensors, all follow the conventions used in the book by Fano 
and Racah (1959). These have been summarized, for instance, by Kumar (1966, 
1967). In these references the Gothic symbol ID~) was used, for which we have written 
Y~) in this paper. The convention of round and square bracket superscripts for tensors 
is explained in the references above and is summarized by 

(AI) 

The rank of the tensor is associated with I (=0,1,2,3, ... ); for each I, the index m 
takes the values I, 1- 1, ... , -I. 

Collision operator J and translation operator T. Any symbol with leading letter 
J (or T) denotes an operator or matrix element related to the collision (or translation) 
operator. Subscripts, superscripts and other indices are added to emphasize different 
properties of the operators or to specify the derived quantities. The symbol T is also 
used for the temperature and, in other papers, for the Talmi coefficients. The latter 
do not occur in this paper and no confusion should arise. 

Distribution function f Any symbol with leading letter f denotes a function of 
c or an expansion coefficient related to the distribution function. Bold-facefis used 
when such a quantity is a tensor. Indices are attached to emphasize certain properties 
or to specify the derived quantities. Note thatJ<°l(c) is the space-averaged distribution 
function in equations (33); f10)( c) is a function of the scalar variable c occurring in 
the spherical harmonic decomposition (Section 16); while fo(co) is the distribution 
function for the neutral gas and a function of the neutral velocity vector Co. 

Differential cross section (J(g, X). Derived quantities (J l(g) and (J(l)(g) are defined 
by equations (58) and (59). The symbols (J(/1/2/3) and (i(/'ll) are constants not related 
to cross sections (see below). 

Weight functions W(c), w (c). These are functions of the three-dimensional vector 
c. They are not to be confused with the magnitude of vectors W used for the drift 
velocity. 

The Maxwellian is denoted by 

w(o:, c) = (o:2j2n)3/2 exp( -to:2C2), f w(o:, c) dc = 1. (A2) 

Burnett functions ¢}:l)(c). For these, see Kumar (1966, 1967) or, closer at hand, 
Section 2 ofthe second accompanying paper (Kumar 1980b). Frequently used formula 
are: 

v == (v, 1, m); 

¢~I)(C) = RVI(C) Y~)(c), 

RVI(C) = Nvl(cj.j2)I S/~~(tc2), 

Nv7 = 2n3/ 2 r(v+l)jr(v+l+!), 

the Sl'2t(tc2) being Sonine polynomials. 

(A3) 

(A4) 

(A5) 

(A6) 
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Another frequently used normalizing constant is 

N~l = 2n3 / 2;r(v+l)r(v+l+t). (A7) 

The Legendre polynomial Pl(x) is given by 

(AS) 

where HI] is the largest integer less than or equal to y. 
The coupling rule for spherical harmonics is 

Y~!](c) Y !~2](C) = f (1(l1121)(11 ml12 m211m)Y !1](C) , (A9) 

(1(l1 12 13) = (211 + 1)(212 + I))t . 'reg) , (A10) 
4n(2g + 1) 'r(g -11) 'r(g -12) 'r(g -13) 

'reg) = g !j(2g !)t , 2g = 11 + 12 + 13; (All) 

if (AI2) 

An alternative expression is 

(1(1 1 1) = ilt+h-13(211 +1)(212+I))t(1 01 011 0) (AI3) 
123 4n(213+I) 1 2 3 , 

but 
q(lIl/) = i(l-I'+3)(1'010110). (At4) 

The addition theorem for spherical harmonics has the form 

P (a b) = ~ ~ y[l](a) y(l)(b) 
I· 21 + 1 mf'-I . m m • 

(AtS) 

The 'plane-wave' expansion is given by 

<Xl <Xl I 

exp(2a.b) = L L L Nn~(ab)2n+ly~](a)y~)(b). (AI6) 
n=O 1=0 m=-I 

Appendix 2. Collision Operator for Stationary Cold Gas 

(a) Fokker-Planck Expansion 

We introduce the Fourier transforms 

j(k) = f exp( -ik. c)f(c) dc, (AI7) 

f(c) = (2n)-3 feXP(ik.C)i(k)dk, (AtS) 

J(f) = (2n)-6 f exp(ik.c) J(k,k')j(k') dkdk', (A19) 

J (k, k') = f exp( - ik • c) J( exp(ik' • c)) de. (A20) 
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For the stationary cold gas, we have 

J(k,k') = I (j(co)exp(i(k'-k).c){l-exp(ik.(c-c'))} d~, (A21) 

with 
d~ = ga(g,x)dj'dgdG. (A22) 

The integration over dG in equation (A21) may be carried out immediately. We 
introduce a vector h == (h, /(, co) by 

c-c' == 110(g-g') = 110 h, 

h2 = 2g2(1- COSX), cos/( = g.b = hJJ2g, 

(A23a) 

(A23b) 

and make the plane-wave expansion ofthe exponential in the braces in equation (A21): 

exp(il1ok.h) = L l1~n+/(-!-h)2n+/Y~)(h)z~n/J(ik). (A24) 
nlm 

This may be taken as a definition of the quantity Z. The mass dependence of 
equation (A21) arises entirely through the term in the braces and is made fully explicit 
here. 

We may now write 

J(k,k') = L l1~n+1 z~n/J(ik) P~l)(k-k') (nlm =ft 000), (A25) 
nlm 

P~l)(k) = - I exp( -ik .g)(-!-h)2n+1 Y~)(h) g a(g, x) do' dg. (A26) 

Substituting this into equation (AI9) and noting that the k' integration defines a 
convolution, we have 

J (f) = L l1~n+l 7L~IJ('I'~l)(c) f(c)) . (A27) 
nlm 

The tensor differential operator 7L is obtained by replacing ik by dJdc in the expression 
for Z defined by equation (A24). We do not require the explicit form here. The 
tensor 'I' is obtained from equation (A26) as 

'I'~l)(c) = (2n)-3 IeXp(ik.c)ip~l)(k)dk = - Icth)2n+1Y~)(h)ga(g,X)dj'lc=g. 
(A28) 

The integration in equation (A28) is performed by taking the z axis along 9 (== c) 
and noting that in this coordinate system the azimuth of hand g' is the same. The 
result is 

- 2n Y~)(c) I cth)2n+ I PI(cos /() e a(e, x) d(cos x). (A29) 

The angular integration can be separated by expanding 

00 

a(e,X) = L {(2A+ 1)J4n} aie) Picos x) (A30) 
A=O 

and introducing the variables 

x = cosx, y = cos/( = {tel-x)}! = hJJ2e. (A31) 
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We note further that 
00 

bel-x) = L t(2A+l)P;.(x) 
,1.=0 

and, at x = 1, Y = 0 so that from equations (A28) and (A29) we have 

op~l)(c) = Y~)(c) °Pn'(c) , 

°Pn,(C) = LC2n +l+ 1u(,1.)(c)a*I' 
A 

(A32) 

(A33) 

(A34) 

(A35) 

where we have added the superscript '0' at this point to emphasize that these 
quantities are for the stationary cold gas. The coefficients a~1 are discussed in the 
next subsection of this appendix. The quantity U(l) was defined in equation (59) 
of the text; see also Note [12]. 

Now we find the scalar form of the operator in equation (A27), that is, we carry 
out the summation over the index m and show that, for an arbitrary function f(c), 
we have 

I 

L Z~'](Y~)(e)f(c)) = snl(J(c)). 
m=-I 

It is more convenient to first show the adjoint relation 

I ~ ~ 

L Y~)(e) Z~l]( <p(c)) = snl( <p(c)) . 
m=-/ 

Note that the operator relation corresponding to equation (A24) is 

exp( V 0 a c) = L (1- v)2n + I Y~)( V) Z~l] . 
nlm 

Since T = T- 1 we have 

(A36) 

(A37) 

(A38) 

(A39) 

In equation (A37) let <p = exp(ik 0 c) and use the relation (A39) and the fact that 
from equation (A24) we have 

(A40) 

The summation over m in equation (A37) is now an application of the addition 
theorem of spherical harmonics. One gets 

snl( exp(ik 0 c)) = (-y {(21+ l)j4n} N;, PI(e ok) (ik)2n+1 exp(ik 0 c). (A41) 

The operator form is obtained by noting that 
_ [tl] 

(ik)'PI(eok) = L arl (coikY-2r(ik)2r (A42) 
r=O 

and replacing ik by djdc. Since eo djdc = djdc we have 

~ [tl] 

snl = (-)'{(21+1)j4n}Nn1 L arl (djdc),- 2r V'2(n+r). (A43) 
r=O 
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It is important to note that terms in c in equation (A42) come from the spherical 
harmonic in equation (A28) which is not operated upon. Hence they have to be 
kept to the left of differential operators in the substitution ik --+ djdc. 

From the adjoint relations 

[c.(djdc)]- = -(djdc).c = (djde+ 2je) , (A44) 

where [A]- == A, one gets 

snl = --liP" a \72(n+r) - + - . 21+1 [til ·(d 2)1-2r 
4n nl r.f-o rl C de e (A45) 

The forms given in equations (81) and (83) are obtained by substituting equations 
(A36) and (A45) in (A27), and similarly for the adjoint operator. 

(b) Coefficients a*1 

These coefficients are pure numbers defined by equations (A35). Since the 
coefficient of P ;.(x) is a polynomial in x of degree n + I, it follows that 

for A> n+l. (A46) 

From the coefficient of the highest power one may derive 

(A47a, b) 

It is evident from equation (A35) that 

(A48) 

When I = 0, the use of the identity (Erdelyi et al. 1953, p. 214) 

(l-xt = 2" ± (-y 2r+1 U~r) P (x) 
r=O n+r+l (~n) r 

(A49) 

in equation (A35) gives 

n ~ A. (A50) 

The general coefficient may be expressed as a linear combination of the coefficients 
with I = O. Using the relation 

in equation (A35), we have 

[til 

a*1 = I arl a*+I-r.O, 
r=O 

(A5l) 

(A52a, b) 
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The coefficients satisfy the recursion relations 

;. 21-1;. 1-1 ;. 
ani = -Z- an+ 1,1-1 - -Z- an+ 1,1-2' (A53a) 

(A53b) 

These may be verified by reducing the index n in equation (A35) with the help of 
the following identities obtained from the recursion relations for the Legendre 
polynomials: 

I 2(21-1 1-1 1-1 1_2 ) Y PzCy) = Y -z-y PI- 1(y) - -z-y PI-iy) , 

The coefficients satisfy the sum rule 

n+1 =I 0; 

= 1, 11 = 1 = 0; 

which may be verified by using equations (AI5) and (A35). 

(A54a) 

(A 54b) 

(A55a) 

(A55b) 

To find numerical values of the coefficients, one would naturally use equations 
(A46)-(A48) and (A50) where applicable. For other coefficients there are three 
possibilities: (i) direct evaluation of the integral in equations (A35); (ii) use of 
equations (A50) and (A52); (iii) use of the recursion relations (A53). The sum rules 
(A55) provide a useful check on the calculations. 

(c) Differential Operators for Spherical Harmonic Decomposition 

The argument here is similar to that in subsection (a) of this appendix. We present 
it in an abbreviated form. Consider the Fourier transform 

fF ==. J exp( - ikc2) c1 + 1 J?(f) dc2 . (A56) 

From equations (101) and (60) this can be written as a three-dimensional integral: 

fF = 2 f f~I)(c)<5(co){y~l(c) cl exp( -ikc2) 

- y~l(c')c'lexp( -ikc2 )}g a{g, X) dGdgdg'. (A57) 

The delta function is removed by G integration giving 

G = J1g, c =g, c' = J1g + J10 g' . (A58) 

The integration over the azimuth of g'. can be performed by taking 9 along the 
z axis and noting that the azimuth of c' and g' are the same in this coordinate system. 
Then we have 
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and the integration over angles of 9 can be performed, leaving only the integration 
over dg == dc' and d(cos X). 

From equations (A58) we have 

c .c' = ~/tJ, 9 . g' == cos X == x, 

In terms of these variables equation (A57) becomes 

ff = f exp( -ike2) el+1 f(e)[1 - 2ntJl PIWtJ) exp{ike2(1-tJ2)}] 

xc cr(e, X) dxde2 . 

(A59a) 

(A59b) 

(A60) 

Expanding the exponential in the square brackets, noting that fl + flo = 1 implies 
1- tJ2 = 2flflo(1- x), and introducing the function 

f+1 
cPntCe) = -1 (1- x)n{ bno - 2ntJl PI(~/tJ)}e2n+ 1 cr(e, X) dx, (A61) 

we may write 

ff = n~o (2~0)n (ik)n J exp( -ike2)cP ntCe) el+ 1f(e) de z. (A62) 

Comparing this with equation (A56) we recognize that 

JNn = e -(1+ 1) f (2flflot (~)n(cPntCC) cl+ 1 f(c») 
n=O n! d(e ) 

(A63) 

To put equation (A61) in a more useful form, we note that the first term contributes 
2necro(e)bno . Since at x = 1 we have tJIPtC~/tJ) = 1, we may write this term as 

2necro(c) f-+11 (1-xtb(1-x)tJIPtC~/tJ) dx. 

Substituting in equation (A61) and using the relations (A30), (A31) and (A32) we get 

00 

cPntCc) = e2n +1 L crP'}(C)b*I' (A64) 
'<=0 

The coefficients b*l are discussed in the next subsection. 

(d) Coefficients b*l 

These coefficients are defined by 

(A6S) 

where ~ and tJ are given by equations (AS9b). In contrast to the coefficients a*l 
discussed in subsection (b) of this appendix, these coefficients depend upon the masses 
and, in general, are polynomials in fl and flo. There are, however, many similarities. 
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Using equation (A54b) we may alter the index n as for a~1 to give the recursion 
relation, similar to (A53b), 

(A66) 

In place of the relation (A54a) we have 

I () (21-1) 1-1 . 2(1-1) 1-2 rr PI ~/rr = ~ -1- rr PI-1(~/rr) -rr -1- rr PI-2(~/rr), (A67a) 

and then follows the more complicated recursion relation 

A 21-1 ( A A) I-I ( A A) bnl = -1- bn,l-l -flo bn + 1.1- 1 --[- bn,I-2 -2flflo bn+1,1-2 . (A67c) 

Note that this does not reduce to equation (A53a) for any simple choice of fl'S. 
In general the relation between the two coefficients is complicated. However, it 

is seen from the definitions that 

bA = 2naA = (_)A2n 2),+1 (n~A) (A68) 
nO nO n+),+1 (~n) 

The coefficients b~1 may be expressed in terms of coefficients with I = 0 by using 

(A69) 

and the binomial expansion for the ~ and rr factors with 

~ = I-flo(1-X), (A70) 
to obtain 

(A71) 

For numerical computations it might be better to evaluate the integral (A65) or work 
with the recursion relations (A66) and (A67c). 

From a consideration of the highest power of x in the coefficient of P ;.(x) in 
equation (A65) one obtains 

b~tl = (-2tfl~(~I)!e~!;I); (A72a) 

b~1 = 0, ), > n + l. (A72b,c) 

We have the limiting cases 

b~1 = 1(2),+1) f:11 (l-x)nPtCx)Pix)dx, fl = 0; (A73a) 

= !(2A+l) f:11 (l-x)np;.(x)dx (= b~o), flo = 0; (A73b) 
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and the sum rule (cf. equations A55) 

n+l=l=O; (A74a) 

= 1, n= 1 = O. (A74b) 

(e) Matrix Elements in Burnett-function Representation 

As pointed out in Section 12c for the cold gas a Burnett-function representation 
is necessarily a two-temperature representation. A gas temperature To of zero cannot 
be used to define a weight function for Burnett functions. 

Specifically, we have the weight function 

W(IX,C) = (IX2j2n)3/2exp( --tIX2C2), IX2 = mjkT, 

and the functions ¢(V)(c) orthogonal with respect to it and normalized to unity. The 
matrix element is given by 

[J(O)]vv' = f J(co) W(IX, c) ¢[V'](IXC) {¢(V)(IXC) - ¢(Vl(IXc')} df. (A75) 

The integration proceeds as indicated in subsection (c) of this appendix. We have 

(A76a) 

with 
[i/O]vv' = L d~~, Vv~lv' , (A76b) 

At V1 

d~~, = NVI(V+l+-t)2A.+l f+1 (1-1'/2r-v'1'/2v'+IPl~j1'/)Pix)dx, 
Nv,I V1 2 -1 

(A76c) 

V¢:v' = foOO w(IX,g)Rv'I(IXg)RviIXg)g3 uP.l(g) dg. (A76d) 

The quantities ~ and 1'/ were defined in equations (A59b) and definitions of the others 
may be found in Appendix 1. 

The integrals Vv~I, of equation (A 76d) contain all the information on the cross 
sections and the parameter IX coming from the weight function. They are reduced to 
the interaction integrals V;v' occurring in other works if A. = I (cf. Kumar I 980a). 

The coefficients d defined by equation (A 76c) are independent of cross sections and 
the parameter IX. They depend only on the masses and are in fact polynomials in 
11 and 110' Other expressions for these coefficients may be developed along the lines 
of subsections (b) and (d) of this appendix. It follows from those arguments that the 
sum over both V1 and A. in equation (A76b) is limited to 0 < V1 < v and 
0< A. < v+v1+1. 

It may be useful to point out that, after the integration over centre-of-mass 
velocity, the azimuth of g' and angles of g, and application of the argument given 
below equation (A63) one obtains as an intermediate step between equations (A75) 
and (A 76) the expression 

[JIO]vv' = roo dg f + 1 dx W(IX, g) RviIXg) RvtCIXg1'/) P/(~j1'/) g3 Jo -1 

X {0'0 J(1-x) -2n u(g, X)}. (A77) 
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The g and x integrations are then separated by expressing Rvlrxgl1) in terms of 
RVII(rxg). 

Appendix 3. Tensor Decomposition of Translation Operator 

The translation operator T is defined by 

Tf(c) = f(c+ V) = exp(V.oe)f(c). (A7S) 

It is the generator of the three-dimensional Taylor expansion. Its adjoint defined 
by equation (6S) and its inverse are the same operators 

(A79) 

The tensor decomposition is not diagonal in I and is given by (cf. equations 92, 
94 and 102) 

TU~')(C») = I (41C)"!-vZn'+"y~'12(I)T(nllllzllf). (ASO) 
nl"lz 

The scalar operator T(nlll lzll.) depends only on c. Its adjoint T(nllllzll.) is 
defined by equation (103). The tensor decomposition of T- l is obtained by replacing 
V by - V on the right-hand side of equation (ASO). 

We have the identity 

(AS1) 

Using equation (ASO) on both sides and adjusting the Wigner coefficients occurring 
in the tensors using the relation 

(AS2) 

with? = (21+I)t,we obtain for the scalar operators 

f ~(c)T(nllll'llf)cZdc = (-)"(f'/f) ff(c)T(nlllll'I~)cZdC. (AS3) 

Comparing this with the definition (103) of the adjoint we have 

This was used in equation (104). 
Recursion relations for the operators may be obtained from the identities 

dT/dV = TV.oe • 

(AS4) 

(AS5a) 

(AS5b) 

(AS5c) 

We give only the relation that follows from the identity (AS5a) and allows us to 
completely reduce the nl dependence of the operators: 
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T(n111121If) = (N~112-2nlNn~I~)T(01112l1'vfnl f), 

'lU = (.!.. ~e2~ _ 1(1+1»)f. 
e2 de de e2 
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(AS6a) 

(AS6b) 

Equations (AS5b) and (AS5c) yield a step-down relation in 11 but this changes the 
other I values. 

The nl = 11 = 0 term on the right-hand side of equation (ASO) just picks the 
first term in the Taylor expansion (A 7S). Hence 

T(00/211f) = 1J llJ(e). (AS7) 

From equations (AS6a) and (AS7) 

T(nl 0/2/1f) = r 2n1 {nl! renl +1)/rH)} 1JIIJ'V'2i'1 f(e». (ASS) 

The formulae for /1 = 1, nl = 0, which may be obtained from the general formula 
(A91) below or from equations (A7S) and (ASO) using the gradient formula, are given 
by 

( 1+1 )t(d I) 
T(Oll+lllf)= 3(2/+1) de -c f· (AS9a) 

T(Olll-tlf) = (3(2/+1)f(! + I:l)f. (AS9b) 

These are related by equation (AS4) since [d/de]- = -Cd/de +2/c) (cf. equations 
A44). 

The tensor operator l[~] used in Section 10 and Appendix 2a is related to the 
translation operator by equation (A3S). Its action on irreducible tensors f~) may 
also be expressed in terms of the scalar operators T(nl/1!2!1.) and tensors Y~)(c) by 
means of equations (A3S) and (ASO). Similarly, the relationship of the operators snl 

of S~ction 10 to T(nl/1!2!1.) may also be found. 
We now give the general formula for the operators T(n1/1/2!1.). In place of giving 

the actual derivation we have to be content to simply note that the action of the 
translation operator on a scalar function and on a spherical harmonic c l Y~)(c) can 
be calculated directly. Then the general formula may be developed by using the 
relation 

(A90) 

It is evident that tensor recoup lings are needed and the final result involves Wigner 
and Racah coefficients: 

T(nl 11 12 11 f) = L 1J(2nl + 11 -(2n' + I' + 11)) 
n'I'Zt ' 

The e dependence in equation (A91) is contained in the last two terms. The 
operator Tn'l' is given by 

n'+I' N-2 ( d )n'+r( ) -I A, -I' n'-I',I' 2r -I 
Tn'I'(C fee») = 1 c L (' I' ),e d( 2) cf(c). r=I' n + -r. e 

(A92) 
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The effect of tensor recouplings is represented in the coefficients 

{l112111' ID = (4n)-t(111211') a(l' l~ 11) (}{I-/~ [' 12) al)l 1-11 I) 

-( II [2 I) -2 -2 - 2 
X W I_I~ I~ I' NOll N 0,1-11 NOI , (A93) 

where W is a Racah coefficient, t = (21+ 1}!- and the other quantities are defined in 
Appendix 1. The factors involving n eventually cancel out in equation (A91) but it 
is as well to carry them in the present form since they provide a check on the 
calculations. 

From the first two a's in equation (A93) the coefficient vanishes unless 11 + 12 + I 
is even; the same is therefore true for T(nl 11 12/1 f). 

The sum in equation (A91) is limited by the b function, with 

(A94) 

and it is therefore a sum of finite terms. The number of terms in the sum is further 
restricted by the requirements of the Wigner and Racah coefficients. 

Finally we note that from equations (A91) and (A92) we have 

where 2N' = 2N-2nl +1-/1-/2. Since /+/1 +12 is even and we have I ~ (/1 +/2), 
we conclude that N' ~ N. It follows that, for a polynomial CJlN(C 2) of degree N in c2 , 

(A95) 

where q>N'(c 2) is another polynomial in c2 of degree N' and N' ~ N. This property 
was used following equation (118) in considering calculation of moments. 
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