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Abstract

The kinetic theory of charged test particles in a neutral gas, in the presence-of static and uniform
electric and magnetic fields, is reviewed. The effects of inelastic processes and reactions are included.
The general space-time development of the swarms is considered and the relation between the non-
hydrodynamic and hydrodynamic developments is pointed out. The transport coefficients are
identified as statistical averages over the configuration-space and phase-space distributions. The
evaluation of these averages by computer simulations is briefly discussed.

The main emphasis, however, is on the Boltzmann equation treatment of the problem. Transport
coefficients of any order are obtained as velocity moments of the solutions of the corresponding
kinetic equations derived from the Boltzmann equation.- These equations have similar structure
and may be solved by similar methods. Methods of solution are classified and examined in detail
for precise calculation of drift and diffusion. Illustrative examples are given.

Several representations of the Boltzmann collision integral suitable for use in these calculations
are examined. A discussion of the calculation of matrix elements and the relationship between
different matrix representations is given. Complete expressions to all orders in the Fokker-Planck
expansion and in the expansions for the operator components of the spherical harmonic decomposi-
tion in the differential form are given. - The advantages of using the adjoint of the collision operator
and the cold gas collision operator in these derivations and in applications are shown and utilized.
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Part 1.

Purpose
and
Scope

General introduction

Dear reader, take a long look at the table of contents and bear with us
in pity and sympathy, for we have the task of introducing this work and
commending it to your attention.

Our purpose is: Firstly, to give a consolidated account of the theory
and the scope of its applications. Secondly, and -equally, to assess
whether certain approximation schemes can produce results to the
degree of accuracy required by present day experiments.

The topics dealt with here are connected, from the point of view of
physics, in that they concern systems for whose description the kinetic
theory of dilute gases should suffice. A majority of them are also con-
nected from a mathematical point of view because they are governed by
homogeneous or inhomogeneous linear equations involving basically a
single operator, which varies from system to system through its depen-
dence on a single function, namely the scattering cross section, and a
small number of parameters.

In the past [I]* these topics have been the subject of separate investi-
gations, many of which have been designated as theories. The search
for more reliable and accurate results has meant that such theories are
increasingly seen as special methods of approximating the solutions of
the Boltzmann equation, which embodies the relevant kinetic theory.
Even the computer simulations [2] and the related correlation function
methods, which have been regarded, with much justification, as indepen-
dent ways of implementing kinetic theory ideas, can also be accom-
modated in this point of view. The consolidation mentioned above is
made possible by, and can be best appreciated from, the same point
of view. ‘ ;

Most of this development of theory has been stimulated by the high
degree of accuracy of the data from experiments [3]. The theory is
called upon not only to provide accurate and reliable values to compare
with the data but also to account for, or predict, new phenomena that
may be observed at these higher levels of refinement.

The paper is a review in the sense that we go over much of the
ground covered in previous works and follow the suggestions made by
others in various streams of literature, to consolidate and enlarge the
conceptual and technical resources of the theory in this field. However,
we do not give a presentation, discussion or comparison of earlier works
in their original form. We have often found new ways of implementing
earlier suggestions and carrying them further. Our assessments and
discussions are then based on these findings. In the text, mostly the
references that we have actually used or found useful are given. In
the Notes, we give additional references and comments to communicate
the perspective at which we have arrived. We make the apology,
customary at this point, for omissions and inadequacies and we invite
correspondence regarding them from those who may be interested.

* Jtalic numbers in square brackets refer to notes of a historical and supplementary
nature which are collected at the end of the paper (p. 429).
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Organi-
zation

Part Il

K. Kumar et al.

We now turn to the organization of this paper. We are mainly
concerned here with the theory of swarms, that is, the motion of very
small numbers of charged particles through neutral gases, in the presence
of a static uniform electric field. This is a test-particle problem, some
aspects of which have been studied under the names of ‘foreign gas’,
‘weakly ionized gas’ or ‘thermalizer’ problems. In experiments the
space-time development of the charge number density is studied.

Part II, comprising Sections 1-7, deals with the space-time develop-
ment of the (charge) number density n(r,¢). Section 1 introduces the
notion of swarms, points out the features of theory applicable to other
systems, such as certain forms of plasma, and indicates the extent to
which space-time dependent electric and magnetic fields may be
included. The experiments can identify a state of steady or stationary
transport, the so-called hydrodynamic regime, in which the number
density n(r, t) satisfies a differential equation with constant coefficients.
These coefficients are the transport coefficients. Section 2 gives a formal
phenomenological description of this regime and identifies the transport
coefficients as moments of the number density in the stationary state.
Section 3 shows the relationship of the transport coefficients to the
stationary time-correlation functions. The connection with the linear
response theory and computer simulation is pointed out. The remaining
sections, 4-7, give the Boltzmann equation treatment of the problem.
In Section 4, kinetic equations for the hydrodynamic regime are derived.
The transport coefficients are obtained as (velocity) averages of the
solutions of these equations. These derivations are based upon the
assumption that the solution of the Boltzmann equation has a certain
form. We therefore collect, in Section 5, the information available about
the solutions of the Boltzmann equation. We point out the sort of infor-
mation still needed to secure the foundations of the theory and the need
to bring the existence theory itself into closer contact with experiment.
This naturally leads us to the consideration of the non-hydrodynamic
regime. We take it to be the situation that precedes the establishment
of the hydrodynamic regime. It has been studied by computer simula-
tions and in terms of the initial-value problem of the Boltzmann
equation. Section 6 briefly touches upon this problem.

In the vicinity of boundaries the velocity distribution is different from
that in the bulk. Depending upon the interaction between the charged
particles and the neutrals, the effect of boundaries can extend to large
distances. This is also a non-hydrodynamic effect, but is usually not
considered as such because sometimes it can be taken into account by
using transport coefficients that depend upon the size of the apparatus
or upon the density gradients. The theory can then be presented as a
modification of the hydrodynamic* theory, and this is briefly dealt
with in Section 7. The theory of phenomena close to the electrodes

* It should be noted that the term hydrodynamic is used here in a special sense:
the conditions it refers to could not be further removed from those obtaining in
liquids.
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Part I

and boundaries (Lowke et al. 1977) and the theory of the Huxley-
Townsend experiment (Huxley and Crompton 1974) are also related
to this class of problems and require further attention, but these are
not dealt with here.

In Part II, the collisions are described only formally. In particular,
they may include reactions. The difference in the equations and inter-
pretation of averages with or without reactions is pointed out at
appropriate places. ,

To solve the equations developed in Part II one needs the collision
operator in a concrete form. The demand for accurate solutions
requires corresponding accuracy in the representation of this operator.
This in turn requires a good understanding of the way the operator
depends on parameters and functions.

Part III, comprising Sections 8-14, is devoted to the collision
operator. The presentation and some of the results are new. In
Section 9, the basic integral operator form is introduced. Its properties
as a function of the gas distribution are pointed out and some properties
with respect to translations are proved. These properties are of great
importance for the development of subsequent sections. In Section 10,
the collision operator is expressed as a power series in the mass ratio
Lo = my/(m+mg) with coefficients that are differential operators. In
Section 11, the spherical harmonic components of the collision operator
are expressed in terms of a series of differential operators. We thus
have two ways of expressing the collision operator in differential form.
These expressions are complete in the sense that the general terms are
given explicitly. The expressions for adjoints of these operators are
also given. It is shown that the use of adjoint operators leads to essential
simplifications in calculation. These sections are presented in some
detail since this matter is not available elsewhere in the literature. The
situation is different with respect to matrix forms. Several different
representations have already been used in the literature and others are
possible. Therefore, in Section 12, we consider the general properties
of matrix representations. This is a part of the general theory of
three-dimensional polynomial systems and the transformation theory
of linear operators and is well known in the abstract. Here we have
worked out the specific consequences in relation to our particular
problem. Thus, the polynomials based on a gaussian weight function are
emphasized and the problems of calculating with these are discussed.
With the exception of those in Section 12d(ii), we have stopped short
of giving explicit expressions for the matrix elements. References to
the literature are given where such expressions may be found. In com-
plex situations like the one under study here, models have an obvious

" attraction and utility. Section 13 exhibits some model collision

operators.
The collision operators treated in Sections 9-12 involve only elastic
scattering. The corresponding treatments of the operators that include

inelastic scattering due to structure in the gas molecules are outlined

in Section 14.
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Part V
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After this preparation we turn, in Part IV, Sections 15-23, to the
most important applications, namely the calculation of drift velocity
(or mobility) and diffusion coefficients. In the examples considered,
inelastic processes are excluded. In Section 16, the mobility and diffusion
equations, taken from Section 4, are written in a more convenient form.
Two linear operators are identified, one that occurs in the equations
of mobility and longitudinal diffusion and another that occurs in the
equation for transverse diffusion. These are simply related to the
collision operator and can be constructed by the methods described in
Part ITII. Now, with operators so given, in principle the whole arsenal
of numerical methods for solving linear equations may be deployed.
Indeed, several different methods have already been tried and these are
surveyed. The method of most general applicability is that of moment
equations (Section 17). In setting up procedures for solving these
equations, information available from the solution of model problems
(Section 18) is often useful [4]. Expansion of the distribution function
in terms of orthogonal polynomials is a convenient way of arranging the
moment equations. Among these polynomials, the ones orthogonal
with respect to an isotropic gaussian weight function give rise to
equations that are particularly rich in symmetry. There is only one
parameter in the weight function and very good results may be obtained
by proper choice of this parameter (Section 19). A general gaussian
weight function can include drift as well as anisotropy. There are then
more parameters to choose. The expansion in terms of polynomials
orthogonal with respect to such weight functions is considered in
Section 20. In both these sections (19 and 20), we investigate the best
way of choosing the parameters that enter the solutions through the
polynomial system. If a large enough set of polynomials is used the
solution should not depend on the parameters at all; the problems
implicit in this are discussed, along with the choice of basis sets in
Sections 17, 19, 20 and 23. Brief accounts of non-polynomial methods
(Section 21) and computer simulation studies (Section 22) are included.
This part closes with a short discussion comparing different methods
(Section 23).

In the presence of reactions or inelastic collisions, drift and diffusion
can still be calculated by the methods described above by suitable
modifications to the collision operator and the equations. However,
in addition there are new measurable quantities, namely the reaction
rates and equilibrium constants. The theory of reaction rates in the
presence of unidirectional reactions and that of transport of charge
in systems in chemical equilibrium is discussed in Part V, Sections 24-26.
Section 26 implicitly contains the calculation of equilibrium constants.

The cold gas [5] occurs quite often: in Section 18(c) as part of a
solvable model; in Section 21 to illustrate the use of non-polynomial
expansions; and, above all, throughout Part III as an important
auxilliary in analysing the structure of the collision operator. Various
forms of the collision operator for this case are derived in Appendix 2.



Charged Particles in Neutral Gases 349

Notation

Different Parts of this paper have been provided with their own
introductory sections and can be read independently. To a lesser extent
this is also true of the longer sections. The notation is introduced as
the need arises. Some symbols are necessarily used with different
meanings in different sections but this should cause no confusion unless
one insists on hurriedly mixing up disparate sections. A general guide
to notation and frequently used formulae is provided in Appendix 1.
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Part II. The evolution of a swarm
1. Introduction (II)

For the purposes of this theory a swarm is defined as an ensemble of independent
charged test particles moving in a neutral background gas. The motion of the
particles is determined by the forces exerted by external electric and magnetic fields
and collisions with the gas molecules, which may lead to reactions. The ensemble is
to be interpreted as arising from a large number of identically prepared gas systems
each with one test particle. The swarm is then described by the one-particle (six-
dimensional) phase-space distribution function f(r, c, t).

In experiments a swarm exists as a small collection of particles in a neutral back-
ground gas. The definition above is justified from a physical point of view if the
charged particle number density and current are taken so small that both the mutual
interactions between the charges and the influence of the swarm on the neutral gas
distribution can be neglected. This can be tested experimentally. Mathematical
Justification is obtained by treating the whole system as a mixture and taking the
limit of low charge densities (see also Section 5).

Swarm experiments are a well-recognized category [6] in atomic and molecular
physics. Their results have been analysed to yield information about the underlying
collision process, and, in principle, the differential cross section for all relevant
processes can be inferred. Examples of such experiments are: the drift tube measure-
ments of ion and electron drift velocities and diffusion coefficients, in the presence of
homogeneous electric fields; afterglow and diffusion cell measurements of the decay
of charge densities, usually in the absence of fields; and ion-cyclotron resonance
experiments performed with an AC electric field and a constant magnetic field.

Our discussion will be mainly directed towards the analysis of drift tube experi-
ments. However, the methods we discuss have wider applications. For example,
application to some situations in discharge—and plasma—physics is possible.
Specifically, these are the situations where the processes are dominated by collisions
with the neutrals and the charge-charge interactions can be taken into account
through space-charge fields acting as external fields, that is, when the fluctuating
microfield is unimportant. A typical example is ambipolar diffusion in the positive
column of a glow discharge (Rutscher 1977; Hirsh and Oskam 1978; Meek and
Craggs 1978).

Throughout this Part the electric and magnetic fields are assumed uniform in space
and constant in time. Specialization to uniform and constant electric field and zero -
magnetic field is made only in the applications considered in Part IV. Small modifi-
cations of the theory sometimes suffice to include space-time dependent fields. In
particular, weak AC fields may be treated as perturbations. Existence theorems are
known in the case of more general space-time dependence of fields (Section 5).

The phase-space distribution function f(r, ¢, t) contains all the information about
the swarm behaviour but it is not directly measured. In the majority of experiments
what is actually measured is a current incident upon some electrode. However, it is
convenient to think that the charge density, that is, the distribution function in
configuration space, defined by

n(r,t) = ff(r, ¢, t)de, ' )

is the measured quantity.
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The analysis of measurements of n(r, t) proceeds by first making some assumptions
about the nature of the function n(r, #). On the basis of these assumptions, the experi-
mental data are processed to yield values for other quantities such as transport coeffi-
cients, which are themselves usually thought of as the measured quantities. On the
other hand, a theoretical analysis based on the same assumptions relates these
quantities in the first instance to the distribution function f(r, ¢, t), typically as some
averages over some parts of this distribution function. Then, a knowledge of the
distribution function in terms of the cross section finally relates the cross section to
measured quantities. '

Sections 2-7 below provide the details of what has been sketched above. Another
description of their content was given in the General Introduction (Part I).

2. Time Development of Number Density: Hydrodynamic Regime

The problem of a hydrodynamic description of a swarm is similar to that of a
dilute neutral gas. The latter has been widely discussed (see e.g. Uhlenbeck and Ford
1963; Dorfman 1974; Wood 1974). The difference between the two problems
arises for two reasons. Firstly, because of the presence of fields, certain transport
coefficients (e.g. the anisotropy of the diffusion coefficient and ©®) become important
for the swarms, although they vanish identically for neutral gases. Secondly, whereas
for neutral gases the effect of higher hydrodynamic coefficients is significant only at
higher densities, where divergence difficulties arise in calculations (Dorfman 1974;
Wood 1974), for the swarms the higher hydrodynamic coefficients, at Burnett and
super-Burnett levels, are accessible even at very low densities (again because of fields)
and the divergence difficulties are not encountered. Thus, the hydrodynamics in the
present context has a different content than is normally associated with the term.

The hydrodynamic description is a phenomenological description of the time
development of the number density n(r, 7). One does not refer here to the distribution
function f(r,c, t). The description is applicable in a stationary state, that is, when the
memory of the initial state f(r,c,0) has been lost and the distribution function has
become a functional of n(r, t) as far as its space-time dependence is concerned.

The starting point of the hydrodynamic description is the continuity equation for
the number density,

a,n(r, 1) +V (nu(r, 1)) = (8,1(r, 1))con - ’ Q)

It describes the change in n(r,?) due to a convective particle current nu(r,) and a
production term (0,7(r, 1)) One now assumes that both these quantities can be
expressed as power series in the gradient operator V with constant coefficients, and
obtains the transport equation form of (2),

(6= % o 0 (=)t =0, )
K=o |

The constants ®* are tensorial transport coefficients of order k, and ©® indicates a
k-fold scalar product. The ®® can be taken to be symmetrical under permutation
of space indices, since their antisymmetrical parts are lost in the scalar multiplication.

Fourier expansion of the quantities in equation (2) followed by a power series
expansion in the wave number gives rise to the same results [7].
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Equation (3), truncated at k = 2, is familiar as the diffusion equation

on+W.Vn—-D:VVn = —an. 6]
We identify W = o) as the drift velocity, D = ©® as the diffusion tensor and
a = —w'® as the reaction rate. This equation itself is often called the continuity
equation.

As the tensor D is real and symmetric, the coordinate axes can be chosen to lie
along its principal axes. The fundamental solution P(r,t) of equation (4), i.e. the
(unbounded) solution obtained with n(r,0) = §(r), is then given by

P(r,t) = P, P, Pyexp(—at), (5a)

with
Pi = (ZﬂD”t)—%eXp{—(ri—Wit)2/4Diit}, i = ],2,3 ; (Sb)
or, in tensor notation,
P(r,t) = {det2nD 1)} "*exp{—(r— Wt).(4D 1) .(r— Wt}exp(—at). 6)

We now exhibit the transport coefficients @* as time derivatives of the moments
of the density. Let y(r) be any function of r and

Wy = N f W@ n(r, 1) dr, (7a)

N=N(@) - f n(r, ) dr. (7b)

Assuming that n(r, ) together with its derivatives vanish at the boundaries of the
domain of integration, we obtain from equation (3) the following equations for the
time development of the averages {y(r))

dN/dt —0'” N =0, (8a)
d<y(r)y/dt — kZI o® V) Y(r)) = 0. (8b)
If Y(r) is a polynomial of order j in r, then in equation (8b) only the transport

coefficients of order k < j occur. Taking successive moments we have, with
r* =r—<{r),

0@ = —« = d(log N)/dt, (9a)
o = W = dry/dt, \ (9b)
0@ =D = (1/2) d{r* rey/dr, (%)
o® = (1/3)d{r*rerey/de, (9d)
©@ = (1/41) d((F* r* 1 15 — 3(r* PE5(r 1) dr (%)

Since the transport coefficients are constant in time, the corresponding averages
must be linear in time. If a transport coefficient vanishes then the corresponding
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average must be constant in time. Thus, there emerges a significant difference between
the truncated equation (4) and the general transport equation (3). This can be illus-
trated by considering the deviations from the gaussian-shaped fundamental solution
(6) of equation (4). The first two deviations, called respectively ‘skewness’ and ‘excess’
or ‘kurtosis’ are given by the quantities (r¥3)/(r¥?y3/2 and {<r’i*y/(ri?)? =3} (see e.g.
Abramowitz and Stegun 1965, p. 928). Equation (3), via (9d) and (%), predicts a time
dependence ~t~*and ~t ! respectively for these quantities, while from equation (4)
a much faster asymptotic decay, ~¢ ~%?and ~¢ 2, is predicted. Measurement of such
deviations can therefore provide information on the magnitude of related coefficients.

It appears that ®®, which corresponds to the Burnett-level hydrodynamics,
should be measurable in swarm experiments (Skullerud 1974; Whealton 1975). The
coefficient ®®, corresponding to the super-Burnett level, would require further refine-
ment of technique. In the hydrodynamics of neutral gases, because of the absence of
fields, ®® vanishes identically as do all @ for odd j, and the calculation of @
is beset with difficulties.

The hydrodynamic description presupposes a stationary velocity distribution and
small relative gradients Vn/n of density. It is therefore not expected to apply to situa-
tions involving fields that vary strongly in time or space or when density gradients
are large. At material boundaries the gradients will always be large, and proper
boundary conditions for the transport equations should always include a kinetic
treatment of the boundary layer. However, in practice such layers can often be
neglected and well-behaved solutions can be obtained for the transport equations.
Such solutions are useful in many ways but cannot always be relied upon near the
boundaries.

3. Transport Coefficients and Time-correlation Functions

The averages defined by equations (7) can be formed for any n(r,t). Thus, in
general, the right-hand sides of equations (9a)—(9¢) define time-dependent quantities
®®(¢). The hydrodynamic regime is expected to arise after sufficient time has elapsed.
This expectation may be expressed in the form

lim o®(t) = o™ = const. (10)

t— oo
Then, for large times the hydrodynamic equations (3), (8a) and (8b) are satisfied with
constant coefficients ©®.

Note that by virtue of the relation (1) between s(r,¢) and f(r, ¢, t), the averages
(7a) and (7b) are also phase-space averages:

Qp(r)y = N1 fw(r)f(r, c,t)dedr, ' (11a)

N=N@) = ff(r,c,t)dcdr. (11b)

We now outline methods of constructing such averages and their use. Let a particle
be released in the gas at a point r, with velocity ¢, at a time #, and let its position
r and velocity ¢ be noted at a later time z. Then by repeating the process a large
number of times with identically prepared gas systems one can form a conditional
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probab‘ility function II(r,c,t|rg, ¢, t,). The distribution function f(r,c,t) arising
from an initial distribution f(ry, ¢y, #,) is given by

firen) = f 118, €, £, €01 10) f(For €0, 1) g dry (12)
The probability function has the property that for 7, < ¢’ < ¢

O(r,c, trg, o, ty) = [H(r, e, t|r, et , ¢ t' | ry, co, o) de’ dr'. (13)

In developing this point of view further one is led to examine more carefully the
meaning of ensemble averages that define I1. In particular, when models are used,
attention has to be paid to the magnitude of the smallest subintervals into which a
given time interval can be idivided. Formally, from here one can make contact with
the path integral and intregal equation representations of the development of the
distribution function (Notes [8], [9]).

We now have a procedure for constructing f(r, ¢, t), and therefore n(r, t) and the
averages (7) or (11) for any given system, from which an ensemble may be generated.
This procedure can be implemented in various ways. First of all, it can be implemented
experimentally, since the probability function has been defined operationally.
Secondly, it can be implemented numerically once the underlying particle dynamics
are given in a suitable form. Note that no reference has been made to Hamiltonians
or Liouville operators, although if the dynamics are governed by them and they are
convenient for the purpose, they may be used to construct the IT function or the
distribution function. Finally, kinetic equations, in particular the Boltzmann
equation, may be used to obtain the distribution function and the averages formed
from it.

If the gas system, including external fields, is time independent then the time
dependence of the IT function is determined by the difference r—¢,. If in addition the
system is also spatially uniform, the space dependence is similarly determined by the
difference r—r,. - Then there is no loss of generality in assuming that all the test
particles are released at the origin at time zero. In other words, one takes

S (ro, co,t0) = d(ro) f(co) at to =0.

The procedure may then be phrased in terms of releasing particles at the origin at
time f, = 0, with the velocities chosen stochastically to conform to an initial dis-
tribution f(cy), and obtaining the number n(r, t) of particles arriving at the point r
at time ¢. Further, even the explicit reference to n(r,?) may be eliminated, if the
averages are constructed from the formula

OO = lim s~ T w(n(0). (14

where s is the number of trials. At the ith trial a particle is released at the origin with
the velocity chosen as above and its position r(¢) after a time ¢ is noted.

This last procedure is the one actually followed in experiments and in computer
simulations. When the gas distribution is also stochastically simulated, r,(t) itself is
the result of a similar averaging process and the left-hand side of equation (14) is
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then a result of two averaging processes. By constructing @®(¢) from such averages
one can study non-hydrodynamic behaviour and the approach to the hydrodynamic
regime. In applications, reactions are frequently absent and only the drift and
diffusion @) and ®® are studied; references will be given in Section 22.

The coefficients ®® for k > 2 can be expressed as integrals over time-correlation
functions of the velocity by noting that r is the distance travelled in time ¢, so that it
can be expressed as

t
r=r() = f c(t)de. (15)
0
For the case of diffusion one starts with the relation
t t
r* Py (1) ==f f dt’ dt” {c*(t") c*(t")), © (16a)
0JO
with
c*t) =c(t)—W(r). ‘ (16b)

For stationary distributions the time correlation in the integrand of equation (16a)
can depend only on 7 = |¢'—t"|. Accordingly,

¥ r*}(t) = 2t J: {e*(0) e*(t))(1 —7/p) dr, a7
and by ¢quations (9¢) and (10), D = lim D(?),
D) = J: {c*(0) c*(7)) dr. (18)

For a general discussion of time-correlation functions, reference may be made,
for example, to the texts by Egelstaff (1967) or McQuarrie (1976). Formulae similar
to (18) involving higher correlation functions may be found in the articles by Dorfman
(1974) and Wood (1974). Most commonly, the time-correlation formalism is used in
the linear response theory of Green and Kubo, where systems only slightly perturbed
from thermodynamic equilibrium are considered. The unperturbed distribution
functions are then known, and given by the Hamiltonian of the system. The
Hamiltonian also defines the time-evolution operator, i.e. the Liouville operator.
There is considerable literature based on this theory about the conductivity of solid
systems (see e.g. Huberman and Chester 1975). An interesting application to mobility
in gases has been made by Braglia and Dallacasa (1978). However, in the presence of
strong fields, which is the usual situation in swarm experiments, the simplifications
of the linear response theory cannot be used. The stationary distribution obtained in
these situations cannot be directly related to the Hamiltonian or to the time-
evolution operator. ,

To make some further points about the nature of the time-correlation functions
and to give an instance of the linear response argument, we derive now a correlation-
function expression for the differential mobility tensor

K(t) = 0W(1)/0E, : (19)
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where E is the electric field. The acceleration a suffered by a particle of charge ¢ and
mass m in the electric field E is given by

a = (g/m)E. (20)
We use the definition (14) and write
W@ = lims™' Y ¢(). 21
s i=1

Now, for any ¢’, with 0 < t' < ¢,
ci(t) = ei(et), 1—1"). (22)

If a small change da is made in the acceleration at time ¢z’ and it persists for a small
duration d¢’, then the change in ¢,(¢) due to this perturbation is obtained from equation
(22) by replacing ¢,(t') by ¢(t') +adt’. To first order

5, W(t) = dadt’ lim s™* Y. {def1)/oe(t)}. (23)
s> 00 i=1
The meaning of the average (23) is as follows. The velocity of the particle,
released at the origin at time zero with a velocity chosen to conform to some initial
distribution, is measured at ¢’ and an infinitesimal change dc;(¢") is made. The change
dc(t), caused by this in the velocity c¢,(¢) at a subsequent time ¢, is then measured and
the ratios are formed. In terms of the phase-space average this means that

{0e(t)/0c(t)y = J {e(t)/0c(t)} f(r',c',t") d¥' de’ . 24

A similar interpretation is needed for the averages in equations (16)—(18), connected
with the diffusion tensor. Indeed, for any many-time correlation function, the earliest
time has a special significance.

Using the stationarity property, the space-averaged distribution

fle)=N"1 ff(r, c,t)dr (25)

and T = r—1’, we can write the average (24) as

#(0) = Ge(0f0e) = [ (ee(oae) f@) de. 6)
Using partial integration, and assuming that the boundary terms vanish, we have
g(v) = —<{{d(log f(e))/dc} (7)) . 27

" Returning now to equation (23), one argues that if the infinitesimal force m da acts
during the whole interval O to ¢, the resulting change in W(¢) will be obtained by
adding all the contributions arising from the infinitesimal intervals d¢’. This is the
linear response argument, but note that the change da is imposed on an ensemble
already subject to an acceleration field a. We thus have '

AW(t) = oa. Jt dr g(1). (28)
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Hence from equations (28) and (19) and (20),
K0 = (am) [ gdr, 29)

where g(7) is given by equations (26) and (27).
Note that when the distribution function f(c) of equation (25) has the form of a
distorted Maxwellian,
f(e) ~ exp{—(m/2k)c*.T ~1.c*},

with T the temperature tensor and ¢* = ¢— W, as defined above, equations.(18) and
(27) give the result
D(t) = (k/9) T.K(7). (30)

In the limit # > oo this becomes a set of relations between the appropriate hydro-
dynamic coefficients. These are known as the generalized Einstein relations and have
been widely discussed in the literature [10]. The Einstein relation itself is the limit
E - 0 of equation (30) and it holds exactly since the distribution is then in fact
Maxwellian. The generalized relations cannot be exact but they hold remarkably
well [10]. Why they should be as good as they are, is to some extent understood but
perhaps a better explanation should be given. However, in view of the above deriva-
tion, explanations starting from distribution functions of nearly Maxwellian form
cannot be very illuminating. It should be noted that the differential mobility is not
particularly easy to measure or calculate. Although the generalized Einstein relations

~ are interesting and useful in making estimates, they are not important at the level of
accuracy aimed for in this paper.

4. Boltzmann Equation: Kinetic Equations for Transport Coefficients
The Boltzmann equation for our problem has the form

{0, +¢.0,+a.0.} f(r,c,t) = =Jf(r,c 1), (31a)
a = (q/m)(E +cxB), Jf = —(0f]0t)con - (31b,¢)

It is a continuity equation for the six-dimensional phase-space distribution function
f(r,c,t). The electric field E and the magnetic field B are both independent of r and
't. The particles have charge ¢ and mass m. The collision operator J is treated in
detail in Part III. It is a linear operator which acts on f only through its ¢ dependence;
that is, it is a local operator in r and ¢ corresponding to the assumption that both the
range and the duration of collisions are negligible. The operator Jdepends functionally
on the neutral distribution and the scattering and reaction cross sections. When the
neutral distribution is isotropic and the colliding particles are unpolarized, J is
rotationally invariant, i.e. its eigenfunctions are proportional to spherical harmonics.
If reactions are present the operator J may be split into a particle-conserving part
JPC and a reactive part JR. The latter is usually of a much simpler form than J*€,
but its presence may nevertheless introduce nontrivial complications in the solution -
of the Boltzmann equation. The reactions considered here are irreversible reactions
of the type A+ B — C+ D, and it is assumed that only the charged species 4 with the
distribution function f(c) is measured. These will be called unidirectional reactions
(Section 25). Further details of this operator are not needed in this section.
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If available, a solution of equation (31a) would provide answers to any questions
that may be asked about the behaviour of the system in the hydrodynamic or the
non-hydrodynamic regime. In the hydrodynamic regime, complete knowledge of such
a solution is not required. Rather one takes the distribution function in a form
appropriate to this regime as a sum of certain components and derives simpler kinetic
equations for these components from equation (31a). The ‘observable quantities’ of
this regime, i.e. the transport coefficients, are then obtained from the solutions of these
simpler equations (for further discussion see Section 5 and Note [11]).

The basic hydrodynamic assumption (Section 2) is that the number density
satisfies equation (3) and the space-time dependence of the phase-space distribution
has the form (see Note [7])

f(r,e, ) _ 20 £f9(c) ® (=V) n(r,1). (32)

The functions £(c) are tensors of rank j and © indicates a j-fold scalar product.
The space-time dependence of f(r, ¢, #) is thus functionally determined by n(r, 7). In
order that equation (32) be properly normalized and consistent with the definition
(1), we have, using equation (7a)

%) =N"1 f f@re,t)dr, (33a)
[ro@de 1. (33b)
ff(")(c) de =0, k#0. (33¢)

Substituting equations (3) and (32) into (31a) and for every k equating the coeffi-
cients of (—V)*n(r, t) on both sides, we obtain the hierarchy of kinetic equations

(@.0.+NfP = -0 fO, (34a)

k
(@.0,+f® = cf* V) = Y oPf¢ D k0. (34b)

Jj=0

These equations are to be solved successively by starting from (34a), the equation for
the space average of the phase-space distribution function f(¥(¢). Equation (34a)
defines an eigenvalue problem and, corresponding to the assumption that the hydro-
dynamic regime is the long-time limit, one associates the lowest eigenvalue w® with
the reaction rate « = —'®. In the absence of reactions this eigenvalue is trivially
zero. The eigenfunction belonging to the appropriate eigenvalue is the required
solution f?(¢), to be normalized according to equation (33b). The equations (34b) are
inhomogeneous equations. A better appreciation of the structure of these equatlons
and their relationship is obtained by introducing the linear operator

¥ =a.0,+J+® (35)
and the tensors ‘

bP = —@®f Opef*k-D_ Y o) fk=D, (36)
j=1
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Equations (34a) and (34b) then become
L1 =0, ' (37a)
Z 10 =p®, k+#0. (37b)

Integrating with respect to ¢, recalling equations (33b) and (33c) and noting that
only the reactive part J® of the collision operator contributes to this integral, we have

o® = — fJRf(O)(c) de, (38a)
o® = fcf(k_“(C) de — J‘JR £9(c) de. (38b)

These equations give the transport coefficients in terms of the solutions of the kinetic
equation sets (34) or (37). Since a solution of the homogeneous equation (37a) can
always be added to f® without altering (37b) a condition is needed to make f®
unique. This is provided by equation (33¢) and leads to the proper definition of the
transport coefficients given by (38b). An eigenvalue problem needs to be solved only
for determining the reaction rate —®'® and the space-averaged distribution ().
Once these are given, all @® for k > 0 are determined without solving any further
eigenvalue problem.* '

Note that when reactions are present the calculation of a transport coefficient of
rank k requires solutions of the equations up to order k. In the absence of reactions,
solutions of equations to the order k — 1 suffice for the same purpose. Thus, in the
latter case, with w(® = 0, the drift velocity @ or the mobility is determined by
~equation (37a) and the diffusion tensor ®® by equation (37b) for k = 1. These will
be called the mobility and diffusion equations respectively. Part IV below is devoted
to their solution and applications.

Note further, that by virtue of equation (38b) with k = 1, the drift velocity o
is a velocity moment of the space-averaged distribution function f* only in the case
where no reactions are present.

5. Boltzmann Equation: Existence Theorems and Spectral Properties

In this section we formulate some questions which need to be answered in order
to secure fully the foundations of the methods described in the rest of the paper. In
this connection a number of mathematical works, which come from different streams
of kinetic theory literature, become relevant. However, at the time of writing, these
works are not yet in a form where they can be adopted or easily modified for direct
use in the problems that concern us. We shall eschew technical details and describe
the problems and results in an informal way.

* The second term on the right-hand side of equation (38b) may be written as
f JRR® de + o®0©, with AP = f® L o® fO

and equation (37b) may then be looked upon as an equation for A% which does not involve an
eigenvalue problem.
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(a) Steady state and existence theorems

The basic assumption in transport calculations is that after some suitable time the
distribution function can be written in the form (32), that is, as

f(r,e,t) = nr, 1) £fO(e) +Vn(r, ). fV(e) + ...

This is the assumption that makes it possible to derive transport coefficients which
are independent of time. The state described by such a distribution function is some-
times called a steady or stationary state. This is to be taken informally—we are not
making any allusions to any stationary random processes or stationary ensembles
that may underlie the phenomena.

The problems underlying this assumption are quite similar to those underlying
the justification of the Chapman-Enskog procedure and the existence of transport
coefficients for ordinary gases (Grad 1949a, 19495, 1960; Uhlenbeck and Ford 1963).
The present problem is simpler in the sense that the reason for neglecting the non-
linearity is very strong. It may be noted that there are two possible sources of non-
linearity: the direct one due to ion-ion interaction and the indirect one due to the
possible alteration of the neutral distribution by the ions and its reaction on the ion
distribution; both are very small because the ion density is very small compared with
the gas density. If the definition of the swarm given in Section 1 is adopted the non-
linearity is excluded in principle. .

On the other hand, the presence of the field term and the particular arrangement
of equations are significantly different from the Chapman-Enskog development of
neutral gas transport. A discussion of these equations along the lines of references
quoted above is not available in the literature [/1].

. Thus, while there is no definite proof that the distribution function has the form
(32), the agreement of the theories based on this form with experiments is already
so good that it requires explanation. In other words, the form (32) has to be true in
some sense and the task of mathematical theory is to make precise what this sense is.

Further work in this direction may well benefit from the existence and uniqueness
theorems recently proved by Drange (1978). Specifically, Drange considers the
Boltzmann equation (31a), and allows the electric and magnetic fields (E and B) to
have space-time dependence, subject to some technical restrictions. The equation is
solved by successive iterations. An essential part of the procedure is to split the
collision integral into a multiplicative and an integral operator, for which some cutoff
procedure is necessary. In an earlier paper Drange (1975) studied several cutoff
procedures. His work concludes by showing the existence and uniqueness of the
solution to equation (3la) for a class of potentials which include the power law
V(r) = Vor™® (s > 2) and the hard-sphere potential. These papers are heavily
abbreviated and we have not been able to unravel the argument sufficiently to comment
on its content. But it is evident that the structure postulated in equation (32) is out
of the reach of such methods.

There are some indications that the solution of the Boltzmann equation (31a) may
have a different structure from that postulated in equation (32). Recent experiments
on H™" ions in helium have shown a novel situation, namely that a small group of
ions travels as if it has suffered no collisions (these are called the runaways) and a
larger group travels as if governed by ordinary time-independent transport coefficients
" (Howorka et al. 1979; Lin et al. 1979a). Loosely speaking, this suggests that the
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solution of equation (31a) should have a decaying part of the form (32) and a smaller
part corresponding to free transport. This situation needs to be studied in relation
to the velocity dependence of the cross sections.

(b) Position—independent Boltzmann equation and mobility equation

The position-independent Boltzmann equation is the name given to equation (31a)
when the term involving the spatial gradient is omitted, that is, to the equation

0.f +a.0.f =J(f). (39)

This equation has an interesting relation to the mobility equation (37a). Let B =0
and E be independent of r and ¢, and let f; be a solution of equation (31a) for some
given initial distribution f, ; then if there exists a limit

lim f, = f(c), (40

t— 00

the limit function satisfies the mobility equation
(g/mE.o.f = J(f). (41)

If one writes down the formal time-dependent solution of equation (39) (see e.g.
Cavalleri and Paveri-Fontana 1972, or references quoted by them) and compares it
with a related solution for equation (41), one sees that the existence of the limit (40)
involves questions about the manner in which the memory of the initial state is lost.

Equation (39) has also been considered by Molinet (1977). He considers the initial
value problem and proves the existence and uniqueness of the solution for power
law potentials of the form 4r~* (3 < s < +oo) and for hard-sphere potentials.
Some technical restrictions are placed on the initial distribution f,. The existence of
the limit (40) is, however, not proved.

Molinet (1977) bases his proof on an iterative method applied to an integral
equation derived from (39). The solution whose existence is proved satisfies equation '
(39) only in a generalized sense (i.e. almost everywhere). The integral equation used
and the estimates of iterates depend upon an angular cutoff used to put the collision
operator in a suitable form. The bounds on the iterates are time dependent, being
proportional to exp{2a(t—7,)}. The method thus breaks down as ¢ — co. The
iterates also depend on the masses (Molinet 1977, equation 4.49) and become ineffec-
tive if the ion and gas masses are equal.

It is well to recall at this point that Wannier (1953, Section IID) has argued that,
particularly for the.equal mass case, the distribution function actually has a
singularity. -

It is clear that further work is needed on the solution of equation (39) if this is to
be used to prove the existence of the solutions of the mobility equation (41). On, the
other hand, it is possible that equations (39) and (41) are not to be related in the way
indicated. A solution of (41) necessarily satisfies (39) but such a solution may not be
reachable from any solution of (39) in the limit. ‘

Finally, we note that Cavalleri and Paveri-Fontana (1972) assume the existence
of a steady state (i.e. of the limit 40) and from this derive a necessary condition for the



362 K. Kumar et al.

suppression of runaways. If, however, the runaways coexist with ordinary transport
in some sense, then more refined analysis will be needed for the connection between
equations (39) and (41).

(¢) Representation of operators and their spectrum

We expect that further work on questions outlined in previous sections will justify
the use of mobility and diffusion equations in the form used in this paper. Even then
some mathematical questions remain and we now turn to them. In calculating the
mobility we solve the equation ‘

' ZfO=0. (42a)

That is, we are seeking the eigenfunction of the operator % belonging to the eigen-
value zero. In calculating diffusion we seek to solve the equation

LY = b0, (42b)

and this calls for a knowledge of those eigenfunctions of the operator % which are
orthogonal to the eigenfunction belonging to the eigenvalue zero.

At the time of writing there is no information in the literature concerning the
eigenvalues or eigenfunctions of the operator . as such. Of the two operators whose
sum it is (equation 35), a.d, has a continuous spectrum and its eigenfunctions are
not square integrable. There is considerable literature on the operator J, the collision
operator, but most of it is in connection with the linearized Boltzmann equation
in the pure gas problem or in neutron transport theory. The operator that concerns
us here is the one used in the so-called foreign gas problem.

Much of the work on the linearized collision operator is based upon splitting the
operator into a multiplicative operator and an integral operator:

J(f) = vf=K(f). 43)

This requires the introduction of some sort of cutoff in the collision cross section to
make the two parts of the operator well defined (e.g. Grad 1963; Cercignani 1967;
Drange 1975). This procedure is inconvenient for numerical work since it corresponds
in some sense to representing a small quantity as a difference between two large
quantities. From the literature it is easy to get the impression that for analytical work
such a procedure is essential. This is, however, not the case: Pao (1974) has been
able to establish the spectrum of linearized collision operators without using any cutoff
procedure. He proves that for the class of power law potentials V' (r) = Vor™5(s > 2)
the linearized collision operator for the pure gas has a purely discrete spectrum and
that its eigenfunctions exist, are square-integrable and form a complete set for such
functions. It is to be expected that Pao’s technique will also be applicable to the
foreign gas collision operator. The main difference will be in the dependence of the
spectrum and eigenfunctions on masses.

For the hard-sphere case more detailed information is available in the works of
Yan (1969), Jenssen (1972), Klaus (1976), and the references quoted by them. In
particular Yan shows the close connection that exists between the pure gas linearized
collision operator and the foreign gas collision operator. The relationship to the
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operator occurring in neutron thermalization studies may also be seen from his work
and the papers quoted by him. It appears (Jenssen 1972; Klaus 1976) that the spectrum
for the hard-sphere case differs from that for the power law case in possessing a
continuous as well as a discrete part. Furthermore, strong evidence is provided to
show that the spherical components J;, for / > 3 possess no discrete eigenvalues.
There is no information on eigenfunctions. Again, these results are proved for a pure
gas linearized operator, but may be expected to hold also for the foreign gas collision
operator in view of the work of Yan cited above.

Although no precise information is available in the literature, the spectrum of the
collision operators for more realistic short-range potentials may be expected to be
purely discrete. However, in calculating transport coefficients of practical interest
one often works not with potentials but cross sections, which are available from other
sources, sometimes from ab initio quantum mechanical calculations. Such cross
sections may not correspond to a simple classical potential scattering. What is needed
therefore is a study of the operators in relation to typical behaviour of cross sections.

Returning to the operator £, we may infer that it will have both a continuous
and a discrete spectrum. It is not possible to say what the eigenfunctions will be. The
question of interest is: to what extent do the moment equations, to be discussed in
Section 17, capture the significant part of the operator equations? Or, in other words,
to what extent are the operator equations well represented in terms of the matrix
equations and other forms used elsewhere in this paper? No direct answer to these
questions is available. But matrix representations are used in related problems such
as that of sound propagation and are used also in the investigation of spectrum
questions, as for instance in the work of Jenssen (1972). The relationship of the sound
propagation problem to the problem of this paper was discussed earlier by Kumar and
Robson (1973).

6. General Space-Time Development: Non-hydrodynamic Behaviour

Non-hydrodynamic effects most often occur on short time scales and/or near the
boundaries. They are difficult to measure because just in these regions the effects due
to imperfections of geometries, contact potentials and reflection coefficients are the
most difficult to control. In the search for significant and reproducible results most
experiments are designed to minimize these effects (see e.g. Huxley and Crompton
1974, Section 10.3). Thus, in the first instance, the interest in the non-hydrodynamic
effects is a negative one. The investigations, both theoretical and experimental, are
carried out to delimit the phenomena so that they can be safely eliminated from the
experiments to obtain the more reliable (hydrodynamic) information. This situation
is often compared with the corresponding one in connection with the boundary layer
problems in fluid dynamics. On the other hand, in discharge tubes and phenomena
near electrodes as well as in some diffusion cell experiments (i.e. in those exhibiting
diffusion cooling) the non-hydrodynamic behaviour is all important, although some
of these problems can be treated with small modifications of the hydrodynamic
scheme. ,

From the discussions in the previous sections it is evident that the non-hydrodynamic
behaviour can be studied by constructing the time-dependent quantities ©*(¢) defined
in Section 3, from computer simulations or from the Boltzmann equation, by direct
numerical solution of the space-time dependent Boltzmann equation, or by other



364 : K. Kumar et al.

computer-based investigations designed to answer particular questions. As an
example of the last kind, we mention the work of McIntosh (1974). He studied the
space-time development of a highly localized pulse of electrons, and noticed a
‘pear-shaped’ component in the density distribution n(r, #). He obtained evidence in
the time development of this component which indicated a non-hydrodynamic
behaviour. This component is associated with the coefficient ®® in hydrodynamic
theory. The example serves to emphasize that the hydrodynamic and non-hydro-
dynamic effects can have similar appearance and, in order to distinguish between
them, particularly careful attention needs to be paid to the time development of such
features.

Dii (1) [Di (<)

t (a/ \) 2

Fig. 1. Ratio between the time-dependent values (seeequation 18) and the hydrodynamic values
of the transverse (D,,) and longitudinal (D,.) components of the diffusion tensor shown for
two choices of the initial velocity distribution f(c, # = 0), namely &(c) and f(c,0). Here J(c)
is the distribution in which all particles are given the velocity zero and f(c,0) is the stationary
distribution that is finally achieved. A cold gas model with hard-sphere interaction between the
ions and the neutrals is assumed. The mass ratio m/m, is unity. The mean free path
A = (no0)~*, with no the gas density and o the total cross section, is a scale parameter, and
a is the magnitude of the acceleration of the particles in the z direction. The cold gas assumption
means that the gas particles are stationary but subject to recoil (see Note [5]). (Diagram
after Skullerud 1977.)

Numerical solution of the Boltzmann equation for the initial value problem with
an initial distribution of the form

f(r,e,0) = 5(r) () (44)

is an instance where non-hydrodynamic behaviour can be studied without the com-
plication of boundary effects. For this purpose a suitable form of time-dependent
configuration-space functions has to be found in terms of which the space-time
dependence may be expressed. It is then possible to solve for the space-time depen-
dence by using polynomial expansion methods, rather similar to those used for finding
the velocity dependence (cf. Section 17). In fact, the velocity dependence is also deter-
mined at the same time in a coupled calculation. These methods have been used both
for the electron and the ion problem (Skullerud 1974, 1977). Among other things,
a more precise understanding of the problem treated by Mclntosh (1974) was obtained
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in this way. Fig. 1, taken from Skullerud (1977), shows the relaxation of time-depen-
dent diffusion coefficients towards their hydrodynamic values. The precise shape of
the curves before the hydrodynamic values are finally established is sensitive to the
cross sections. In particular, for some models, oscillations around the final hydro-
dynamic values may occur. Apart from such information, these curves provide a
vivid illustration of the difference between the physical mechanism underlying the
transverse and longitudinal diffusion coefficients, at least to those who are able to
follow the relevant details. Similar curves for ®® are available in the references
quoted. Two further conclusions from these works may be noted to illustrate the
motivation and use of such studies. These are: (1) that @? effects should be
measurable, and (2) that the transport coefficients relax rapidly towards their hydro-
dynamic values, and these can be found experimentally by difference measure-
ments even when the non-hydrodynamic corrections to the pulse shape are quite large.

Similar questions for the case of electrons have been investigated by computer
simulations in somewhat greater detail and good accounts are available in the works of
Braglia (1977), Braglia and Baiocchi (1978) and Lin and Bardsley (1977). For the case
of ions, the velocity and energy relaxation were studied by Lin ef al. (1977) using both
the simulation techniques and low-order Burnett expansions. The transition to the
hydrodynamic regime has also been illustrated quite clearly by obtaining an explicit
analytic solution of equation (31a) for a model collision operator (Robson 1975).

One of the earliest investigations of non-hydrodynamic effects to attract attention
was the work of Thomas (1969) and of Thomas and Thomas (1969). They calculated
the time-dependent reaction rate a(t) = —w'®(z) for an electron avalanche using
the two-term Boltzmann equation as well as Monte-Carlo simulations and showed
that it oscillated about the hydrodynamic value that was finally achieved. More
recent work by Sakai et al. (1977) and Tagashira et al. (1977) is noteworthy for putting
this problem in a broader framework.

It has not been our intention to summarize the discussions or findings contained
in the works mentioned, but only to pick out the common underlying themes in the
investigations of the general space-time behaviour.

7. Effect of Boundaries

As observed in the General Introduction (Part I) and in the previous section the
influence of boundaries may lead to large gradients and therefore non-hydrodynamic
effects. These will occur when the relevant mean free path becomes comparable with
the dimensions of the system, as in the Knudsen gas limit in rarefied gas dynamics.
For a perfectly absorbing boundary surface S, the proper boundary condition is

flr.e,t) =0 (45)

for r lying on S and cos@ = ¢./ > 0, where # denotes the unit vector normal to S
and directed inwards towards the gas. However, the Boltzmann equation (31a) is
generally difficult to solve with such boundary conditions, and to date little work
has been done in this direction. Fortunately, there is a wealth of experience in neutron
transport theory and rarefied gas dynamics on which to draw (e.g. Williams 1971)
and it would seem logical that the next step would be to apply these methods to ion
and electron transport problems, as far as possible.
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Various approximations to the condition (45) exist in the literature:
(i) The integrated boundary condition (Robson 1976¢)

f c*de f2 cos 0 f(r,c,t)sinf0 df = 0 (46)
0 0

is a statement that the net particle flux away from S vanishes. It is deficient from the
physical point of view since it can lead to an f which has a negative as well as a
positive part. Another suggestion in the same vein is to take

n(r,t) =0 (CH))

at a point obtained by extrapolating the density profile to a distance approximately
equal to the mean free path , behind S. The relevant macroscopic length scale
is determined by the length L of the vessel and, since we have L > A, equation (47) is
frequently assumed to apply on S itself, and becomes a boundary condition
(McDaniel 1964).

(ii) Lowke et al. (1977) have argued that for the electron case where the two-term
approximation f = f© + f® cos 0 applies, the condition (45) can hold at only one
particular angle. They take it to be § = {n. Assuming, as before L > A, this leads
to the condition

fO®,e,t) =0 on S. (48)

This is consistent with equation (47) but is a much stronger condition.

We believe that none of the forms (46), (47) or (48) will be satisfactory in general.
On the other hand, the half-range expansions familiar in neutron transport theory
(Williams 1971, Ch. 11) should allow direct implementation of the correct boundary
condition (45), and may well be useful in future work.

It is interesting to discuss boundary effects for the simplest case where E = 0.
For the electron problem, because of the smallness of m/m, a distinct separation of
time and space scales for energy and momentum transfer occurs. Thus, if 4 is the
mean free path for momentum transfer, then the mean free path for energy transfer
is A, ~ (mo/2m)*) and it may happen that

A<L  but A, 2L, (49, b)

as, for example, is the case in the Cavalleri experiment (Huxley and Crompton 1974).
The condition (49b) may be thought of as resulting in a good ‘thermal contact’ between
electrons and the container walls: high energy electrons are lost preferentially by
diffusion to the walls, leaving the bulk of the electrons at a temperature lower than
that of the gas (‘diffusion cooling’). On the other hand, from the condition (49a)
it follows that the extrapolation length is small: it has therefore been assumed in
previous work that equation (47) applies on the boundary walls (Parker 1965;
Leemon and Kumar 1975; Robson 1976a).

The condition (49b) also indicates a non-hydrodynamic behaviour for the electrons,
with density varying substantially across the container, which is itself of the order
of 1, in size. Nevertheless it has been shown in the works cited that in the long-time
limit where large gradients are still present the density » obeys a diffusion-like equation

onjot + D V?n =0, (50)
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where D, is an effective diffusion coefficient which depends upon the geometry of

the container, as well as on the cross sections and gas parameters. The deceptively

simple appearance of equation (50) should not obscure the fact that it is generally

applicable under both large-gradient and weak-gradient (hydrodynamic) conditions.
To look at the problem in the hydrodynamic regime

2,1 Vn|n ~ AJL <1, 51)

we employ equation (3), recognizing that all odd ©® vanish and the other
coefficients are scalars for zero field, that is,

on =Y o® (V¥ n. , (52)

k=1

Periodic boundary conditions then lead to the result
Vn =A"2%n,

where A ~ L is the so-called diffusion length (McDaniel 1964), and hence equation
(52) can be written as
on =Y {0®/A**2}V?n, (53)

k=1

which is of the same form as equation (50): the sum is effectively a series expansion
of D, which will converge under these conditions. The expansion is in terms of the
parameter ,/L, since we have ©®® ~ (1,)**~% (Robson 19764). Clearly, in the limit
of high gas pressures and large enclosures, 1,/L — 0 and equation (53) becomes

o,n = 0V, ‘ (54)

which is the usual diffusion equation, with the (geometry-independent) diffusion
coefficient D = »'®. Equation (50) therefore encompasses a whole range of
behaviour of the electrons, from the large-gradient non-hydrodynamic regime to the
opposite extreme indicated by the conditions (51).

The nonzero field situation has been discussed by Lowke et al. (1977). Apart
from a possible inadequacy in their assumed boundary condition mentioned above,
we note that they have defined the diffusion equation to be exact and therefore have
to allow the diffusion coefficient to vary with position, which is contrary to normal
practice.

An approximate treatment of boundary value problems, valid for both ions and
electrons where gradients are not too large, is to solve equation (54), with the
coefficients ®® found from boundary-free calculations (Skullerud 1974; Robson
1975) in, conjunction with the boundary condition (47). This sort of analysis was
outlined above for the diffusion cooling, field-free situation. It should also be useful
for nonzero fields and will provide a consistency check on any more sophisticated
theories. ' '

However, as mentioned before, we feel that the most satisfactory approach will
be to do away with the full range (0 to m) expansion in angular variables and adopt
the half-range expansions (0 to 37w and 37 to n) so often used elsewhere in transport
calculations. This should account for the sharp changes in angular distributions
which occur near material walls, as required by the condition (45).
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Part III. The form and substance of the collision operator
8. Introduction (IIT)

In this Part (Sections 8-14) we study several alternative forms of the Boltzmann
collision operator J for ion-neutral interactions. Although our motivation is a
practical one, namely to facilitate the computation of the moments of J for use in
transport calculations, we have found that it is important to pay attention to the
symmetries of the operator, in order to understand its structure and to bring out its
dependence on parameters. The discussion is organized accordingly.

We treat in detail the collision operator for elastic scattering (Sections 9-13) and
point out the modifications needed for including inelastic processes due to the
internal structure in gas molecules (Section 14). For the latter we use the semiclassical
form of the operator suggested by Wang-Chang and Uhlenbeck. The same operator
in the case where both the ions and the gas molecules have internal structure is treated
in the following paper (Kumar 1980a; present issue pp. 449-68).

In all cases J is a linear operator. Its action on a function f(c) of the ion velocity e,
not necessarily the distribution function itself, is usually given in the form of an
integral operator (Section 9). From this we derive its representation in terms of
differential operators (Sections 10 and 11), and as an infinite matrix (Section 12). It
is possible to go from any one of these forms to another. Thus one may use the differ-
ential forms to obtain matrix representations, or from any given matrix representation
one may obtain the kernel of the integral operator. All these forms have been used
earlier in approximations suitable to different circumstances. Our aim is to develop
general expressions which may be used to carry the particular approximations to higher
orders and also to show the relationships between different procedures so that one
may effectively compare the efficiencies of the different methods to a given computa-
tional accuracy. Such use of the formulae developed here is implicit in the work
reported in Part IV below.

In the integral and differential forms, the expressions for the collision operator
are essentially unique with possible rearrangement of terms in the series representing
the differential forms. However, in the matrix form there can be several represen-
tations depending on the system of basis vectors chosen. Usually, these come from the
system of orthogonal polynomials in terms of which the ion distribution is expanded.
The polynomial system introduces new parameters. The matrix elements of the

~collision operator then depend on these basis set parameters or b-parameters for
short. The proper choice of these b-parameters is important in applications. Their
special role in calculations is discussed later in Sections 19 and 20. In the discussion
of matrix forms in Section 12 we concentrate mainly on the relationship between
different matrix representations and some technical points in the calculation and
arrangement of matrix elements. References are given to the literature where explicit
formulae for the matrix elements in particular representations may be found.

It may be noted that matrix representations are not limited to orthogonal polyno-
mial bases. It is possible to use non-orthogonal polynomials or even non-polynomial
bases. Particularly, in the latter case, no general prescription for calculating the
matrix elements of the collision operator can be given (see, however, Sections 17 and
21).

The differential operator form has been developed in two ways. The first, the
Fokker-Planck form (Section 10, Note [/3]) is an expansion in powers of the velocity
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gradient operator .. It is appropriate for the case of heavy ions. The second form is

obtained by first making a spherical harmonic decomposition of the collision operator

and then developing differential operator forms for the spherical components of the

operator. This expansion is suitable for light ions and has been most extensively used
‘for the case of electrons (Section 11, Note [14]).

In the past, the Fokker—Planck expansion (also called Kramers-Moyal expansion
in stochastic theory literature), usually carried only to the second order, has been
expressed in terms of tensor coefficients. However, the tensors always occur in some
scalar products. By using the axial symmetry of the operators with respect to the
direction of the vector ¢, it is possible to obtain an expression in terms of scalar
operators involving only the powers of the differential operators V2 and d/dc.

The main reason for developing general expressions in differential form is the
convenience in calculating the moments of the function J(f). The operators are
expressed by a series such that to get the moment with respect to a polynomial of
degree n only the first n terms of the series are needed. For the Fokker-Planck case
the operator series is actually a power series in the mass ratio u, = m,/(m+m,) and
the polynomials in question are polynomials in ¢. In the case of spherical harmonic
decomposition each spherical component of the collision operator is a scalar differen-
tial operator arranged in a series. The nth member of the series has a leading term
~(upo)* with u = m/(m+m,), although the series is not a power series in (uuo).
The calculation of moments is facilitated by using the adjoint J of the collision operator
J. Hence expressions for the adjoints are also given. For further remarks on the use
of the adjoint operator see Section 17a. ‘

The derivation of differential operators is often motivated by noting that in
collision with a neutral at rest the change Ac in the velocity and the change Ae in
the energy are

Ac ~ yge, Ae ~ ppge. (5%5)

It is then said that the former is small when p, is small and an expansion of the
collision operator in powers of Ac does lead to a power series in p, (the situation is
plasma physics is somewhat different; see Note [/3]). The second quantity Ae is said
to be small for small u and low-order expansions for spherical components of J
have been obtained in the same way by expansion in powers of Ae. It is evident,
however, that these quantities are neither parameters nor small, except in some
average sense. Furthermore, even accepting the vagueness, in the case of Ae the
smallness argument by itself is not sufficient to justify its mode of application: Ae
being small if either u or u, is small. In our derivations we make no use of this
argument. We are primarily guided by the symmetry of the problem and our moti-
vation in obtaining suitable expansions for calculating the moments. Towards the
end of Section 11, the difference between low u and low yq, situations for the spherical
harmonic decomposition is pointed out.

In our treatment an essential role is played by the operators corresponding to a
cold stationary neutral gas [5], for which

Joleo) = ngd(eo). ‘ (56)

This provides significant simplification, in that the ¢, integration can be carried out
immediately. Mathematically, the cold gas approximation corresponds to the zeroth
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order term in a certain series expansion of the collision operator. Physically, the
approximation corresponds to the situation where the ions are driven through the
gas by an electric field so strong that the thermal motion of the gas molecules may be
neglected. That is to say, the cold gas approximation should become exact in the
high field limit. Hence one looks for an expansion in which the cold gas approximation
occurs as the first term. : ,

For all that, our interest here is not in the cold gas approximation itself but in
the expressions suggested by it, in the information provided by the expansions about
the structure of J and in their utilization in calculating transport coefficients to greater
accuracy.

We consider here only the collisions described by a differential cross section
(g, x) whose angular dependence is carried entirely by the polar angle y between
the initial and final relative velocities g and g’, with

cosy =g.4'. (57)

Note that apart from central forces, this includes the case where scattering is from
unoriented molecules and an averaged cross section may be used. The differential
cross section always occurs with a Legendre polynomial and integrated over all
angles, i.e. in the form of partial cross sections ¢,(g) defined by

+1

olg) = 2n f o(g. ) P(cos z) d(cos 7). (58)

In classical séattering there is a singularity in (g, ) in the forward direction and the
partial cross sections are not well defined. However, the combination

+1

c(g) = oo(g)—ag) = 2x f o(g. ) {1~ P(cos 1)} d(cos 1) (59)

is usually well defined; the exceptions being in cases such as Coulomb scattering,
where well-known ‘cutoff” procedures have to be employed to ensure convergent
integrals.

All formulae concerning elastic scattering have been arranged so that the cross
section always occurs in the form o‘”(g). For inelastic scattering a slightly modified
function plays the same role. This avoids those cutoff procedures (cf. Section 5),
which are introduced solely for the purpose of making the partial cross sections for
clasical scattering well defined. The quantities 6("(g) are the most naturally occurring
forms in our context and it is desirable in general to work with quantities associated
with an orthogonal function (see Note [12]).

9. Integral Form

The collision operator J acting on the ion distribution function f(c) has the basic
definition '

J(f) = f{f (€) foleo)— f(€) foleo) } g o(g, x) 4§’ deo (60)
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where the explanation of the integral is the usual one. It is sometimes convenient
(cf. Section 5, equation 43) to write

1) = W) f© —K(f), (61a)
with

We) = f Foleo)g 0(g, 1) dd’ de, (61b)

K(f) = f 1) folet)g olg. 1) dg' deo, 610)

where v(c) is the so-called collision frequency. To make v and K well defined, in the
case of classical scattering some cutoff has to be prescribed.

The operator J defined above takes a function f(c¢) into another function, say,
f(e), J:f = f(c) = J(f) and depends on the gas distribution fy(c,). It is therefore
an operator functional of f,(¢,). We indicate this by

J() = J(fol; ). (62)

From the definition (60) it is seen that this can be written as a convolution

J(U:S) = f FoP) T ([5(eo—V)I: £) dV . 63)

The operator on the right-hand side will be called the moving cold gas operator.
From this we can calculate the collision operator for any neutral gas distribution by
using equation (63).

Since ¢ is a constant vector inside the integral (60) we can replace de, by dg and
express the arguments of the distributions inside the integral in terms of ¢, g and ¢':

¢ =c—g;, ¢ =c—pulg—9); co=c—ug—1uog, (64

with g, = my/(m+my) and u = mj(m+m,), as before.
Let T be the translation operator, defined by

Tf(e) = fle+V), Tfo =flcot+V); (65)

then from equations (60) and (62)
TJ(fo): f) = J([Tfo]; Tf), (662)
” J(AT Yol f) = T7HI(1fol; T) v (66b)

This is a fundamental relation between the collision operators corresponding to
different gas distribution functions related by translation. In particular, we have the
relation between the operators for moving and stationary cold gas distribution
functions:

J([8(eo— W1 f) = T~I([8(co)]; TS ) - (67)
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The adjoint X of any operator X is defined by

f O X(f)de = f 7% (¢) de. . @®

Hence from equation (60)
10) = [ fteo) {0061 o)} o10.1) di' des. (©9)
In addition, since T = T ! equation (67) gives

J([3(co=W); @) = T~1J([8(eo)); T). (70)

This is a consequence of the following relation, easily derived from the definition (68),

~ o~ ~

[xvz)~ = ZYX, (71)

where, for longer expressions, we use the notation [4]~ = 4.

10. Differential Forms: Fokker—Planck Expansion

The usual form of the Fokker-Planck expansion is

J(f) = ; (8/0¢)" © (A"(e) f(©)), ' (72)
where A"(c) are tensors of nth order, the symbol © indicates an nth order scalar
product and (0/0¢)" is a product of n operators 0/0c;, i = 1,2,3. To make it explicit
one must supply # indices on the tensors and take account of the combinatorial
problems that arise.

If the tensors are regrouped so as to transform like the spherical harmonics, the
expansion (72) takes the form

J() = ; pe" 2P () f(0), (73)

where the mass dependence coming from the velocity change has been made explicit;
Z is the tensor differential operator independent of interactions, defined in
Appendix 2a (see also Appendix 3, p. 447); and the ¥ are tensor functions which
contain all the information about the gas distribution and cross sections. The ¥
may also depend on other vectors (besides c¢) if they occur in the problem, for instance,
through an anisotropic f,. Thus

Pal(e) = RO([fol; o). (74)

These tensors for arbitrary gas distribution may be expressed in terms of the
corresponding quantities for the cold gas. We are then able to give compact
expressions for these quantities to any order.

If °P{") are the tensors for stationary cold gas then

Pa(e) = Pa([6(co)]s €) = YID(E)°P(c). (73)

This relation follows since ¢ is the only vector in the problem. Explicit expressions
for °¥,(¢c) in terms of cross sections are derived in Appendix 2a.
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Applying the relations (67)—(73) and noting that Z commutes with T, we have
Ya([8(co— V)]s €) = T™1oW(e) = “WyD(e— V). (76)
With equation (63) this gives, for an arbitrary gas distribution,
v 0) = [£0) TR A a7
It follows that when f; is isotropic
([ fols ©) = Y@ ¥al[fo]; ©).- (78)

In particular for a Maxwellian gas distribution (setting the number density n, equal
to unity for the present) we have

Fo(P) = wo(V) = @220 exp(=322 VD), @2 = molkTo,  (19)
f Fo(PYexp(= V. 8 dV = exp(— 105 V2), (79b)

!Pnl([WO]; C‘) = eXP(—%O‘EZ vtz)olpnz(c) . (790
Here V2 is the Laplacian and

1d,d Ii+1)
- 7€

i i (80)

If we substitute equation (78) into (73) then the sum over m indices can be carried
out directly and we have for isotropic gas distributions

4y = 3 S0 f©), (81)

where
s =2l4—:;1f\7,3 izl(]) aerf(”+')(-(;1—c+ %)l—zr, (82a)
a, =27y ), N2 =2n*2n'T(n+1+3), (82b)
and [4/] is the largest integer less than or equal to /. The adjoint operator is given by
T@) = 3 i 05H@), (83)

where
It is shown in Appendix 2a that the stationary cold gas functions °¥,, are given by
Vo) = Y oo, (852)

where
di =10 [ PROR@ sy = (-0} @
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The coefficients a?, are pure numbers and the ¢¥)(c) were defined in equation (59).
Some properties and special values of the coefficients a?, are given in Appendix 2b.
In particular it may be noted here that

at, = for A>n+l, (86)

so that the upper limit in the sum in equation (85a) need not be written down; it
is automatically enforced by the properties of a?,. Further, from equations (85b)
we have al, = J,, so that

°Poole) = 0. €))

Equations (81) and (82) give complete Fokker—Planck expansions of the collision
operator and its adjoint for isotropic gas distributions. The functions ¥,, for a
Maxwellian gas are given by equations (79¢) and (85a). For other isotropic distribu-
tions these are to be calculated from equations (77), (78) and (85a). In Table 1 we
give explicit expressions for the adjoint collision operator for a stationary cold gas
to fourth order (see also Appendices 2a and 2b).

In the above formulae the dependence of the operator on the parameters of the
problem is explicitly seen. The mass-ratio dependence appears entirely through the
factor ud"*! and verifies the usual statement that the Fokker—Planck expansion is
appropriate for the case of heavy ions m > myg or py < 3.

An important feature of the formulae (83) and (84) for J is that §" is a homo-
geneous differential operator of degree (2n+/). It therefore annihilates all poly-
nomials in ¢ of degree less than (2n+/). To calculate the moment

f $(0) J(/(©)) de = f £©J(4(0)) de (88)

with a polynomial of degree N in vector e, it is necessary to take only those terms in
equations (81) or (83) for which (2n+/) < N. Higher terms in these expansions make
no contribution to this moment. The highest ¢‘*’ that can occur in this calculation
corresponds to A = N ‘

Finally, we note a property of the adjoint operator that is useful in the calculations
of transverse diffusion coefficient. It may be verified from equations (83) and (84)
that

J(cd(0) = cJ($) +K(9), (89)
where K(¢) is an isotropic operator given by
R(¢) = IZMZ”” ?,.(0)S1H@), ' (90a)
& 21+1-— el l——2r A\ e
S = - I (50b)

The similarities between J and K are evident. There is a similar relation for the
operator J but the adjoint of K does not enter in it. In fact,

Jed) =cLi(¢) implies Li(cf) =ecJ(f) (©1a)
Jef) = cLy(f) implies  Ly(co) = cJ(9). (91b)

and
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Table 1. Adjoint collision operator to fourth order for stationary cold gas
(See equation 84)

2+l n 1A ak Function °%,; Operator* 3™
0 0 0 0 1 0 —
1 o 1 o0 1 —1c?e™V —2D,
1 -%
2 1 0 o0 L —1c%™ 2v?
1 -%
2 0 2 0 1 _136W ic3e® 2D2—2V2
1 Y
2
2 i
3 1 1 0 1 H—1oM+1g®) —#D, V2
1 1
2
2 5
3 0 3 0 3 =26V +26P—309) —iD? +4D.V?
1 -3
2 H
3 -3
4 2 0 o0 1 (— oWt Lo®) AV*
1 Y
2
2 5
4 12 0 Px (=430 + 50D —3%50) DI VE—#4VE
1 -1z
a0
2 P
3 =%
40 40 4 (-l 4ie®_ioOiqe®) D! -3DIVE LAV
1 -3
2 3
3 -%
4 15

A In this table we have used the abbreviations D, = d/dc, D? = d?/dc? etc.

The operators L, and L, are obtained by making small modifications in the operators
J and J; namely, to get L, from J replace (d/dc) by (d/dc + 1) in the expression for
S" and use equations (83) and (84); to obtain L, from J replace (d/dc +2/c) by
(d/dc +3/c) in the expression for S™ and use (81) and (82a) (see also Section 16a).

11. Differential Forms: Spherical Harmonic Decomposition
The action of the collision operator on irreducible tensors of the form

[ie) = Y@ f(c) 92

can be expressed in terms of certain scalar operators J, or J(n,/;/,1].), which act
only on the scalar function f(c). These expressions are called the spherical harmonic
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decomposition of the collision operator. In this section we give complete expressions
for these decompositions for an arbitrary gas distribution function, as well as for
special cases which are important in applications. It should be noted that the f(c)
here are not the ion distribution functions but functions which may occur in the spheri-
cal harmonic expansion of them.

It is known that the spherical harmonic decomposition of the collision operator
is diagonal when the gas distribution is isotropic, as for instance in the case of a
stationary cold gas or a Maxwellian gas. In these cases we have

(@) = Y@ I (). 93)

This equation may be taken as a definition of the scalar operator J,(f), which is called
a spherical component of J of rank /.

The spherical components in the case of a Maxwellian gas are related to those of
the stationary cold gas, but the relationship is not very direct. In fact, to find this
relationship one has to go through the case of a moving cold gas. It will be seen
that it is then no more difficult to treat the most general case.

The collision operator for the moving cold gas is not diagonal in the above sense.
The spherical symmetry is broken by the motion of gas, as explicitly shown by the
presence of the translation operator 7 in equation (67). Since there is only one
other vector, namely V, involved in the problem, the tensor decomposition is con-
veniently described in terms of the composite irreducible tensors

YO = 3 (1ymyLmy | Im) YEO(V) YO@), 99
mymy
where the (/; m, [, m, | Im) are the Wigner coefficients.
We write :
J([8(co=M)1; fAe) = ¥ @mv2mrthyubOgng i 1,11 f). 95)
nylyls

This equation defines the scalar operators J(n;/;l,1|.). They are taken to be
independent of the vector ¥ and therefore depend only on the cross sections and the
masses, there being no other parameter in the problem. The convenience of having
these operators is seen in that the tensor decomposition of any gas distribution can be
expressed in terms of these operators. Thus using the relation (63) and the definition

< V2n1+l'1 Yﬁ:)( f/)> — J‘fO( V) V2n| +1 Y'('::)( [}) dv, (96)

equations (94) and (95) give
J([fo:I; f(rln)(c)) = Z (475)%(’1 mylym,|Ilm)

nylilomymy
% (VZ’““‘AYf,f:)(V» Yﬁ;)(é)J(nl LLILS. 97

' The case of isotropic, i.e. spherically symmetric, gas distributions is particularly
important in applications. Fortunately it is also particularly simple in as much as
the averages (96) vanish for /; # 0. It is convenient to introduce new symbols for the
operators in this case. We set

J(f) = J(nOll| f). (98)
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For the Maxwellian gas (equations 79) we have
VY GDP)) = 81,0 0m,0 (4m) ™20y + DI (KT /mo)™. (99)

From equations (97) and (98) (f, = wy; equation 79a),

J([wol; £) = YL@ J([wol; 1), (100a)
i[woJi S) = 3 @net DU KTyfmo)" ). (100b)

The dependence of the collision operator on the parameter (kT,/m,) coming from the
Maxwellian distribution is made explicit in this equation. The operators J;' do not
depend on the gas distribution but only on the cross sections and masses.

The stationary cold gas corresponds to the limit 7, — 0, and hence to the first
term in equation (100b) )

J([3(co)l; f12(0)) = Y@ T2(f). (1o01)

Now we come to a most important result: we show that all the scalar operators
J(n, 1, 1, 1] .) needed for the general problem may be expressed in terms of the operators
J? which occur in the spherical harmonic decomposition (101) for the stationary
cold gas case.

For this purpose we need the tensor decomposition of the translation operator,
similar to equation (95) (see Appendix 3): '

T(f) = ; @myt vt Y B O T(ny 11, 1] f), (102)

where the scalar operators T'(n,/;1,1]|.) depend only on ¢. They are kinematic
operators needing no reference to the dynamics of collisions or distribution functions.
The tensor decomposition of 7 ~! may be obtained from equation (102) by replacing
Vby —V.

We define the adjoint 4 of a scalar operator 4 by means of the relation

J#@ar@)e e = [ (o) r00¢* e, (103)

and note that
ITy L L1 f) = (=) b T L 11 1), (104)
with [ = (21+1)*. Using these relations in equations (67) and (95) one can show that

Jny i LI fy=" Y 6@2ny+1 —Qny+1 +2n]+1Y))
. ny'ly'ly'ng "1
X(—)%(lllfh"_h)(l’lOl/{ 0”10) ill ill’ iZW 1112]
A

x T(n’; 11, | JO(T(ny 1 151 f))) . (105)

The Wigner coefficient (/{0/{0]/; 0) and the Racah coefficient W in (105) arise
from the recoupling of tensors. The sum on the right-hand side goes over all. positive .
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integral values, and zero, of the indices as allowed by the § functions and the
restrictions on the /’s implicit in the Racah and Wigner coefficients. It is a sum over
a finite number of terms. Specifically, the é function implies that

(2n%,2n1,14,17) < 2ny+1y) (106)

and the Wigner and Racah coefficients imply that
L+1+1 even, (107a)
G=LI < B <@+ =11 < 13 < (+1, (107b)

where the more restrictive conditions take precedence. Further, from the properties
of the T operators, /{+1/;+1, and I{ +1;+1 are even; together with the relations (107)
this implies that /, 4+, +/ is even. That is to say, the operator defined by equation
(105) vanishes identically if /, +/7,+1 is odd.

When /; = 0, the expression (105) simplifies and we have

Ji(f) = J(nOL11f)
= ¥ 5(n—(n;+n';+l;))T(n;lgl;lu?,(T(n;l;l;u f))). (108)

ny’liny"ly’

We note that the sum is symmetric in n{ and n} and the sum over /; is restricted to
those values for which

I{+1;+1 even and 1=l <l <({+)). (109)

The meaning of operations on the right-hand side of equations (105) and (108) is
that the function f'is operated upon in succession by the three operators T, J? and T.
As an example of working with these formulae, note that in equation (108) if n = 0
then n} = n] = I{ = 0 and we have an identity since

TOOLIf) = é,1f (110)

For n = 1 there are three possible sets of indices (1 n{/{), namely (100), (010) and
(001). Correspondingly equation (108) gives

L) = T(lOlllJ,o(T(OOIlif))) +T(0011|J?(T(101l|f)))
+T(o1l—1z|J,°_1(T(o1l—1l|f)))+T(o11+11|J,°+1(T(011+1l|f))). (111)

Using the expressions for the relevant T operators given in Appendix 3, we find

1N = 4| T + 3592 - T (4 EE) 90 (- )]

R PYCRUEY R

This is the first-order temperature contribution for the Maxwellian gas as given by
equation (100b), expressed in terms of the stationary cold gas operators J;.
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We now give the expressions for the stationary cold gas operators as derived in
Appendix 2¢:

sy = et 3 L (E (a0 e o), (1132)
where
Bulc) = 1Y 6 (e b, © (113b)
with =0
b= 322+ D) [ (=0 PEm P dx, (113¢)
E=ptpox, 0’ =p5+p’ +2upox. (113d)

The coefficients b7, depend on the masses. Their properties are discussed in Appendix
2d. Tt may be inferred from equations (113c) and (113d) that

bk =0, A>n+l; ~ (114a)
bfl)t = 0, n—0, (114b)
= 0,0, Bo = 0. : (114c)

From equation (113a), for the two extreme limits we have
J(f) = caV o) f, n—0; (115a)
=0, o = 0. (115b)

The spherically symmetric component JJ(f) is distinguished in the limit g — 0 since
we have J§ = 0 but J? # 0 for / # 0. The components of the distribution function
for I # 0 thus decay in time and the distribution is dominated by its spherical com-
ponent / = 0. The spherical harmonic expansion is suitable in this limit, that is, for
electrons and light ions, since it leads to a separation of this distinguishing feature.
Further distinction between / # 0 components can only come from the cross sections
and the structure of the equations in which these operators are to be used.

In the opposite limit u, — 0 no spherical component is distinguished and this is
reflected in the fact that for heavy ions the spherical harmonic expansion has not
been used with.the same effectiveness.

However, smallness arguments of the above extreme form cannot be decisive in
choosing a form of expansion. In precise calculations where many contributions have
to be taken into account, the decisive requirement is that the formulae allow clear
and efficient management of the terms. The present development is directed at this
aspect of the problem.

We turn to the calculation of moments of these operators. The moments are
defined by integrals like (103) where A4 is a J; operator and ¢ is a polynomial in c.
The adjoint operators are of importance in this connection. If 4 and A4 are related by
equation (103) and 4 is of the form

A(f) = (d/d(cD)"f, (116a)
A(p) = (=)' et (d/d(cD))cd. (116b)

then
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Consequently, from equation (113a)

I _ v (=2uu0)" d \"( _
T = o 3 S0 (o) (1 000). (117)

It is seen that for ¢(c) of the form
$(c) = ' Ppl(c?), (118)

where ¢y is a polynomial of degree N in c?, one needs only terms up to n = N to
calculate the moment exactly (see Appendix 3). The higher terms make no con-
tribution to the moment of this polynomial.

The factor uu, is a measure of relative change in the energy of an ion in collision
with a stationary gas atom. The expansions (113a) and (117) thus bring out the impor-
tance of the energy change in the determination of spherical components. When the
relative energy change is small a good representation of the collision operator is
obtained from only a few terms in these expansions.

Since equation (108) is symmetric in n}y and n} we have

'yl

JN$) = Y s(n—(nj+n{+1)) T(ni L HI(T(ny 1 léll¢))) - (119)
Now it is a property of the T operators that

T(ny 1, lzl|cl¢N(C2)) = 2y (c?), ~ N'<N, (120)

where ¢y- is a polynomial in ¢? of degree N’. From this it follows that in calculation
of moments with ¢ given by equation (118), the expansions (117) of all operators
occurring in (119) need be carried only to » = N. This is an important property,
which also holds for the operators J(n, [; 1,1].), the proof being essentially the same.

To summarize this section: The simplest case is that of the stationary cold gas.
The spherical harmonic decomposition of its collision operator is diagonal. The
spherical components are the scalar operators J; given by the equations (113) and
derived in Appendix 2¢. The tensor decomposition for the general gas distribution
is given by equation (97) in terms of the scalar operators J(n, /; [, 1| .). These operators
are constructed in terms of the cold gas operators J? and the scalar kinematic
operators T'(n, [, [,1].) by equation (105). Expressions for the T operators are given
in Appendix 3. For a spherically symmetric gas distribution the decomposition is
diagonal in / and expressed in terms of simpler operators J; given by equation (108).
A more detailed expression for J! is given by equation (112). For the Maxwellian
gas, the decomposition in terms of J}' is an expansion in powers of the parameter
(kTo/m,) (equation 100b). The adjoints of scalar operators are defined by equation
(103), T by (104), J? by (117) and J7 by (119). The role of these expansions in the
calculation of moments is noted following equation (118).

12. Matrix Forms: Properties and Principles

In matrix form an operator can have different representations, depending upon the
choice of basic vectors. The matrix elements in different representations are different
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and depend on parameters related to the particular representation chosen, in addition
to the intrinsic parameters displayed in the integral and differential forms of the
operator given in the previous sections. Here we discuss general properties of these
representations, the connection between representations and some further points
related to the actual calculations of the matrix elements. Several different represen-
tations have already been used in this problem. We give references to the original
papers where the specific formulae for the matrix elements can be found.

(@) Representations and polynomial systems

The moments of the function W (c) are integrals of the form

fcc...cW(c) de. (121)

If W (e) is such that all its moments exist, then it is possible to construct a set of
polynomials p,(c) such that

f X)) W(©) de = 5y, (122)

where the asterisk denotes complex conjugation and the right-hand side is a Kronecker
delta. The polynomials p,(c) are obtained from the moments (121). They depend on
the function W (c) and thus on the parameters that may occur in it. The function
W (e) is called the weight function, and the polynomials are said to be orthogonal
with respect to this weight function in view of equation (122). This relation also
fixes the normalization of the polynomials.

In one dimension a given weight function and normalization fixes the polynomial
system uniquely but this is not the case in three dimensions. Thus, corresponding to
a gaussian weight function we may take the polynomials as products of three Hermite
polynomials in cartesian coordinates, or as Burnett functions in spherical polar
coordinates or as other polynomials appropriate in cylindrical coordinates. Further,
the index n on the polynomials is a composite index. Usually there are three
independent indices and the numbering of polynomials requires a convention. If
all three indices are shown, the delta function on the right-hand side of equation (122)
is correspondingly modified.

A function f(¢) of ¢ may be expanded in a set of polynomials {p,} in various ways.
If we take the form

fle) = W(©) ). ple) fu ' (123)
the numbers f, are obtained from equation (122) as
5= [Pr@s@de. (124)

These numbers, called expansion coefficients of f(c), are linear combinations of the
moments of the function f(c). The expansion (123) involves some assumptions about
the function f(c), the most obvious of which is that its moments should exist.
However, we do not go into this aspect of the problem but proceed formally as is
usual in Kinetic theory.
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The function J(f), generated by the operator J acting on f(c), may be expanded
similarly. The corresponding expansion coefficients are given by the integrals

f PEOT() de. (129)

The moment equations of kinetic theory are obtained in terms of such integrals.
These integrals may be expressed as linear combinations of the moments of f(c) or
Ju if we use the expansion (123). We then have the matrix elements of the operator J
given by

T = f PEOT (W (©) po(©)) de. (126)

The matrix elements so defined depend on the polynomial system {p,}. One speaks
then of a representation of the operator in the basis {p,}, or just {p,} representation.
The matrix elements depend on the parameters and the weight function W (c). For
a given weight function there can be different representations dépending on the
polynomial system chosen. The form of the matrix depends on the convention
chosen to enumerate the basic polynomials. The matrix elements define the connection
between the expansion coefficients of the two functions fand J(f), given by equations
(124) and (126), and thus depend on the assumptions implicit in the expansion (123).

Using the expression (60) for the collision integral in equation (126) and the usual
manipulations, we have

I = [ 1oeo) W@ (p@)=pe) 07 (1272)

where d7” is defined in equation (A22). The adjoint matrix element is given by

P = Ta = [ 1 WORO (@ -p) 0. (270)
This may be put in the form
Jom = fpn'(C) (foleo) W (e) pi(e) —folea) W(c') p(€)) Ay (127¢)
The right-hand sides of equations (127a) and (127¢) are equal if ‘

Joleo) W(e) = foleo) W(c). (128)

This is the functional equation that occurs in the proof of the H-theorem and has the
unique solution that both f,(¢,) and W (c) are Maxwellian distributions at the same
temperature.

Thus the matrix J,,. is self-adjoint if W (c), the weight function used in expanding
the ion distribution f(c) in equation (123) is a gaussian with the same temperature
parameter that occurs in the gas distribution fy(¢,). This defines the so-called one-
temperature representations. Note that the one-temperature representations may
still differ depending on the choice of polynomial system chosen. It is found that the
matrix elements are easiest to calculate and simplest in appearance if Burnett functions
are used. If no further qualification is made here, the one-temperature representation
will be taken to mean the one-temperature Burnett-function representation.

The self-adjoint property by itself is not essential. It has been found that there are
advantages in using representations in which the matrix is not self-adjoint.
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(b) Connection between different representations

Consider two weight functions W, (¢) and W,(c) and associated polynomial
systems {p,(c)} and {p,,(c)}. The polynomials are linearly related,

phe) = X A" p3(0). (129)

Then from the orthogonality relation (122) we have

4 = [ 1@ Wi @pae) de. (130)

This defines the transformation matrix 4. If d;(n) and d,(v) denote the degrees of
polynomials p,, and p,, respectively, then it is clear that the sum in equation (129)
is restricted to such values of v that d,(v) < d,(n). It is therefore a finite sum. In other
words, we have the general property of matrix A that

A™ =0 if  dy(v) > dy(n). (131)

Hence the matrix may be arranged in blocks characterized by d,(n) and d,(v). In
such an arrangement it will be lower block triangular; that is, all elements of the
blocks in the upper triangle will vanish.

We also have the relation

Wa(e)pa(e) = Wi(e)p1,(c) A™ . (132)

In contrast to equation (129), the sum in (132) is, in general, an infinite sum.
The matrix A4 is invertible,

Pae) = X (A7) pi(0), (133a)
Wy(©) punle) = Y Wae) p2y(€) (A7), (133b)

and the matrix 4~ is also (block) lower triangular. Using these relations in equation .
(126) we see that matrices J; and J, representing the operator J in two representations
are related by a similarity transformation

Jo=AJ, AL, (134)

It should be noted that in view of equation (133b) the matrix multiplication (134)
involves an infinite sum.

The property of self-adjointness is not preserved in going from one representation
to another unless 4 is unitary; that is, unless A1 = 4'. This is the case for
which transformations between different polynomial systems belong to the same
weight function.

(i) Mixed Representations

The representations considered above use the members of the same polynomial
system in two places in equation (126). These may be called pure or unmixed represen-
tations. A mixed representation is defined as

Iy = f PEAE) T (Wy(©) prale)) de. (135)
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At least formally, the operator J may be recovered from its matrix representation as
follows. Writing

J(f) = f J(e,¢) f(e) de', (136a)
we have
J (C, C/) = Z Wz(c) p2v(c) Jvn pfn(c’) . (136b)

Pure representations are the ones most commonly used but in certain circumstances
the mixed representations may prove more convenient.

(¢) Choice of polynomial systems: gaussian weight functions

The first requirement on the polynomial system is that it should be possible to
calculate readily the matrix elements of the collision operator in it. The collision
operator is such a complex entity that this simple requirement limits us to those
systems in which the polynomials are orthogonal with respect to a gaussian weight
function of the general form

w(x) = («*/2m)3/ (det t) exp(—302x?), (137a)
with ‘
x=1.(c—W), o = m/kT, (137b)

The factor «® has been introduced for the sake of convenience. The temperature T’
is an arbitrary constant not necessarily related to the gas temperature Ty, t is a
real nonsingular tensor and W is a real vector. The polynomial system thus depends
on the parameters «, W and 7.

The reason for the pre-eminence of gaussian weight functions is that the integrations
indicated in equations (127a) and (60) can then be carried out; mainly because
with such functions it is possible to separate the relative and centre of mass
variables.

As discussed in Sections 17, 19 and 20 different choices of polynomial systems
are useful in different regions of the parameter values: apart from the masses of
ions and gas atoms one also has to consider the gas temperature and cross sections,
and above all the strength of the electric field. Although the field strength makes
no appearance in the collision integral itself, it has a decisive influence on the ion
distribution.  Since the matrix elements J,,. determine the relation between the
expansion coefficients of J(f) and f, the choice of representation is influenced by the
electric field strength, significantly although indirectly.

Burnett functions ¢®”(x) of the vector variable x (Appendix 1) are polynomials
orthogonal with respect to the weight function (137a). The normalization is fixed by

f B0 $O(0) $Ox) de = 3116, S (138)

The index v stands for the triple (v, /, m).
We now give a summary of polynomial systems which have already been used
in calculations:

(1) One-temperature representation. This is defined by

o = mkT,, 1=1, W=0, (139)



Charged Particles in Neutral Gases 385

where T, is the gas temperature and the gas distribution is Maxwellian at this
temperature. This is the representation most often used and is implicitly present in
earlier works that do not use matrix language (e.g. Kihara 1953; Mason and Schamp
1958; Kumar and Robson 1973; Whealton and Mason 1974).

(2) Two-temperature representation. This is defined by
o = m/kT, T =1, W=0, T#T,. (140)

Such a representation was systematically applied to these problems by Viehland and
Mason (1975), who also calculated the particular matrix elements. A different
calculation of matrix elements and a critical study of some properties of approximate
calculations in this representation is given by Forsth (1979). It is recognized by
Forsth (1979) and Lin e al. (1979b) that if the gas distribution is expanded in a
polynomial system orthogonal to a Maxwellian weight function appropriate to the
temperature T then some formulae of Kumar (1967) can be used to calculate the matrix
elements in this representation.

If the cold gas problem is treated by polynomial moment methods then one is
necessarily dealing with a two-temperature representation.

(3) Drifted three-temperature representation. This is defined by
o = m/kT, t = diag(z, 1, 79), W #0, T#T,. (141)

Lin et al. (1979¢) have calculated the matrix elements for a special choice of parameters
in a Hermite polynomial basis; certain symmetries of the problem are obscured by
the specialization they introduce. A calculation of matrix elements in a Burnett-
function basis is given by Kumar (1980a), along with the general case T # T,
W # 0, and 7t a real nonsingular (not necessarily diagonal) tensor.

(d) Calculation of matrix elements
(i) Use of Symmetries and Auxilliary Coefficients

In any representation the expression for matrix elements of a collision operator
will be complicated and therefore can be arranged in various ways. Special coordinate
systems and polynomial systems have often been used in the belief that they provide
a straightforward or unique way of carrying out the calculations. There is enough
truth in this belief but such derivations often obscure the symmetries and structure
of the expressions. From the theoretical as well as from the computational point of
view it is advantageous to carry the symmetries of the expressions as far as possible.
The expressions should be assembled in terms of other matrices or coeflicients whose
properties can be studied separately and which can be calculated in separate sub-
programs. As an example, note that one expands a function in terms of spherical
harmonics not because one expects it to be a spherical harmonic or even a sum of a
small number of spherical harmonics but because one knows how to manipulate
spherical harmonics in a convenient way. Considerations of this type have been
advanced to show that Burnett functions are the most suitable for calculating matrix
elements of collision operators. This remains true even for the most general case of
equations (137).

It is of importance to keep the cross section in one integral, which should be made
as convenient as possible since this is usually the most time-consuming part of the
calculations.
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Having emphasized the complexity of these calculations, let us also say that it is
possible to speak of a simplicity. The first point about simplicity is that it can be
recognized—that requires familiarity. In the present context to recognize simplicity
one has to familiarize oneself with the symmetries of the intermediate quantities that
go into the sums which produce matrix elements and also with the problems of
computation.

It may be noted that the principles outlined above have already been used in
Sections 9, 10 and 11 in the treatment of other forms of the collision operator.

The matrix elements for various operators may be calculated using the integral
or differential forms. However, it is found that the integral form is better suited to
calculation of matrix elements and is the one most often employed. We now turn to
a specific example.

(ii) Calculations based upon Cold Gas Case

The matrix element of the stationary cold gas collision operator in a Burnett-
function basis has the integral form

O] = f 6O ([5(eq)]: 90x) $(x)) de. (142)

Let [T(V)] be the matrix representation of the translation operator in this basis,

[T(M)]. = f(ﬁ(”)(x) (exp(V..0,) W(x) $ " Yx)) de. (143)

Then the matrix representation of the collision operator for the moving cold gas,
from equation (67), is given by

] =T I OIT )] | (144)

Comparison of this expression with equatioh (134) shows that this is also the matrix
representing the stationary cold gas in the basis in which x is replaced by

X =1.(c—W+V). (145)

The matrix representation for an arbitrary gas distribution is related to the cold
gas representation by means of a super-operator matrix & which is characterized by
~ four indices:

1w =2 &[T O]y, (146)

Viva

From equations (63) and (144) we then have

PYVviv2 J‘[T(V)]v_\ul [T( V)]v:v'fO( V)dv. (147)

For the Maxwellian gas (equation 79a), the integration may be carried out after
expanding the matrix elements in powers of ¥, and the results may be expressed as
a power series in the parameter («/a,). We quote the result for the special case T = 1
and W = 0 which corresponds to a two-temperature expansion. The matrix elements
for the cold gas itself are derived in Appendix 2e.
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Since we have
YO,y = 011 Om [T Wy » (148)

we only need the elements of &% for which /; =/, and m;, = m,:

g = ZO (@/20)*" & (2ny s (1492)
where
:5;‘;)"”2 = 01y Om < (2ny LRGN for Iy =1,, my =m,, (149b)
with
oL 2n+ 1)1 1
yz;nl),vwzz, = (——-n2 )! Z( » +v'+v2+135(n (V3+V4+13))
N, N
x {a(l; 15 1)}2 i vk N2 (149¢)

vil3 V413 3
vl szl1

v; and v, being given by
2v3+1y = 2v,+ 1, —(2v' +1), 2v,+1; = 2v+1—-Q2v, +1), (149d,e)

and ¢ (/; ;1) and N,, as given in Appendix 1.

The sum in equation (149¢) is finite and in many ways similar to those encountered
in previous sections. The values of /; are restricted by the requirements that / and /;
couple to form Iy with /+/; +/; even and that the values for v; and v, given by
(1494, ¢) are greater than or equal to zero. If either of the requirements is not met
there is no contribution to the sum. The consequence is that for given (vv'/) and n
" there are at most (n+1)* sets of values of (v, v,/;) for which the quantity defined
by equation (149¢c) does not vanish. Thus in the nth order of the expansion defined
by equations (146) and (149a), a given matrix element [J}],,- requires, in general,
(n+1)* elements [J?],,,, of the cold gas collision operator. For small values of
(vv’l) this number would be smaller. These relationships may be summarized as
follows. :

Let [, =Il-r, I3 =|rl,|r|+2,..,n, with r=nn-1,..,—n.
Forr <0, v =v,v—1.,v—(n+r), v, =v+nv+m-—1),.,vV—r.
Forr >0, v =v—n,v—(n—1),...,v—r, v, = Vv,V +1,..,vV+(n—r).

If any of the numbers (v, v,/;) becomes negative there is no contribution.

It should be noted that if the restrictions /, = /, and m, = m, are not used the
expression for & ,,, will involve the recoupling coefficients W etc. It is instructive
to compare this expansion of matrix elements with the operator expansion (100b).
The parameter occurring there is (kT,/m,) which has the dimension [L>T~?]; each
term is dimensionless because the differential operators have the correct cancelling
dimensionality. In the present expansion the parameter (x/a)® = (m To/my T) is
dimensionless. But T is an arbitrary scale provided by the polynomial system. The
smallness of this parameter is therefore not, by itself, very meaningful. As with the
operator expansion (100b), reference has to be made to the functions operated upon
and the magnitudes of their derivatives.



388 K. Kumar et al.

(iii) Matrix Elements and Collision Integrals

In this section we have given the general properties of the matrix elements and the
relation between different representations and one example of a more specific nature.
These are not available elsewhere in the literature. The actual evaluation of matrix
elements remains a technical problem of some complexity even after a choice of
representation has been made. Even to reproduce some of the formulae will require
series of definitions and a lot of space. A recourse to the original papers is therefore
necessary at this point.

As equation (127a) shows, a matrix element is a collision integral and thus all the
enormous literature on evaluation of collision integrals could be relevant here. There
are a variety of techniques and notations. The references given here on this topic
are not exhaustive but should be adequate for the purpose at hand.

A comparative study of cartesian and spherical tensor notation may be found in
the paper by Kumar (1966). The matrix form of the Boltzmann equation in a
Burnett-function basis with isotropic weight functions was given by Kumar (1967).
This latter work includes expressions for matrix elements and an explanation of
technical points in the use of Burnett functions. A more limited study covering some
of the same points has been made by Aisbett et al. (1974).

A technical point of some importance in calculations with gaussian weight functions
is the proper treatment of the quadratic form in the exponential. This was first
recognized in the work by Suchy (1964; see also Weinert and Suchy 1977). The
transformation matrix connecting polynomials orthogonal with respect to gaussian
weight functions is discussed in the second following paper by Kumar (19805,
present issue pp. 469-79). ;

Other references to particular matrix representations are given in Section 12¢.

13. Model Collision Operators

Qualitative or semiquantitative information about transport processes can some-
times be found by solving the Boltzmann equation with a simplified model collision
operator. The models to be described here fall into three categories: scattering
models, truncated expansion models and relaxation models.

The scattering models are functionally simple angular cross sections a(g, y) together
with the exact collision operator. Three of these models will be mentioned.

The constant mean free time model assumes a cross section inversely proportional
to the relative velocity, that is,

a(g,%) = (90/9) (g0, X) » (150)

where g, is an arbitrarily chosen reference speed. Special cases of this model are
the Maxwellian and the polarization potential models, corresponding to repulsive
and attractive r ~* potential interactions respectively. The adjoint collision operator
J is particularly simple with a cross section of the form (150) and, for any polynomial
¥(e), J¥(c) can be expressed analytically as another polynomial of the same order
in ¢ (Maxwell 1866). It can be further shown that the one-temperature Burnett
functions are eigenfunctions of the collision operator in this case (see e.g. Kihara
1953). Consequently, in any gaussian-based representation the collision matrix will
be lower triangular. This suggests that for a general potential interaction the matrix
_ elements in the upper trianglé may be small, and decrease away from the diagonal.
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This assumption has been used to set up approximate procedures for solving moment
equations (see Section 18d below). ]
The hard-sphere model assumes a constant angular cross section

a(g,x) = 0o/4n (1s1)
and consequently constant and equal transport cross sections
eV =gy—0, = a,. (152)

The kernel K (e, ¢’) in the integral representation of the collision operator (equation
61c) can be found analytically in this case (Pidduck 1915):

, mc? oof mo \* (mo+m\?
K(C’”)CXp(szo) _?(2nkTo) ( 2m, )

! mo (lexe\* mo—m . _ Mo (mo_m )
x|c—c'|e"p{2k:ro(|c—c'|) ) — (") le—elt] 153

In the solution of the Boltzmann equation, this does not lead, however, to essential
simplifications, and the hard-sphere model exhibits all the principal difficulties
encountered in calculations with more realistic potentials.

The idealized resonant charge transfer model has been used to describe approxi-
mately collisions between particles with identical nuclei, and it assumes that charge
(electrons) can be transferred without any noticeable accompanied transfer of momen-
tum. If the motion of the charged particle is followed, this corresponds to elastic
scattering where the velocities of the collision partners are interchanged, i.e. where
the scattering angle is close to =:

(0e) =€), olg.n) = 28D limseos g ~cosze). (154
Xo—m
The collision integral then reduces to
Jf(e) = f(o) ffo(co)g 0.(9) deg —fole) ff (co)g o(g) dey . (155)

Two special cases of this can be noted. Firstly, for the case of a cold gas, the second
term reduces to a J-function source term at ¢ = 0, yielding

Jof(c) = co,(c) f(c) kT, =0, ¢ #0). (156)

Secondly, for a charge transfer cross section o,(g) oc g~ ! (constant mean free time),
equation (155) reduces to a relaxation-type expression

Tf©) = (f—fo@}r™,  ©={co )}t =const.  (157)

The forms (156) and (157) allow analytical solutions for f(c) to be obtained in certain
cases. '

The truncated expansion models may be obtained from the differential forms of
the collision operator, given in Sections 10 and 11. They can be used with arbitrary
cross sections a(g, x), and are most useful at extreme mass ratios.
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The Lorentz gas model assumes a vanishing mass ratio u = m/(m+m), in which
case the spherical harmonics decomposition of the collision operator reduces to
(cf. equations 115)

Jl(f) = ca®() fi, 1#0; (158a)
Jo(fo) =0, 1=0. (158b)

The model describes satisfactorily the relaxation of anisotropies for an electron swarm,
while the energy loss is not accounted for.

The quasi-Lorentz gas model keeps the Lorentz gas model expression (158a) for
J, but expands J,, to first nonvanishing terms in mass ratio and gas temperature, to
account for energy loss and to ensure relaxation towards a Maxwellian. This gives
Davydov’s expression for J,:

I = 5 (000 i) + 2 @ V@) (159

The quasi-Lorentz gas model is fully satisfactory for describing elastic collisions
between electrons and neutrals.

The Rayleigh gas model assumes a small mass ratio u, = my/(m+m,) < 1, and
neutral velocities much larger than ion velocities, ¢, > ¢. To second order in u,,
one then obtains, for example from equation (73), a Fokker—Planck expression with
constant coefficients of the form

Jf ={{Velef) +*TIm)VS f}. (160)

A quasi-Rayleigh gas model has been used (e.g. Wannier 1953; Smirnov 1967)
~ to describe collisions with p, < 1, but where the assumption ¢, > ¢ cannot be made.
The essential modification to equation (160) is obtained by expanding the coefficients
¥..(c) (equation 74) to first order about a characteristic velocity cs.

The relaxation models make explicit assumptions about the form of the velocity
distribution ‘after a collision’, the physical meaning of the term ‘collision’ seldom
being quite clear. The most well known of these models is the BGK model (Bhatnagar
et al. 1954) where the distribution is taken to relax towards a Maxwellian one at the
local gas temperature with a phenomenological time constant 7. This gives rise to a
collision term of the form (157), arrived at for the idealized charge transfer, constant
mean free time model! The physical implications of using the BGK model for other
cases seem unclear.

14. Inelastic Collisions and Reactions

The foregoing results must be modified when inelastic collisions take place.
Relative speeds g and g’ before and after a collision are different in an inelastic collision
and some symmetry is therefore lost in the analysis. These effects can largely be
incorporated through a modification of the cross section formula (59) and the
integrals in which they occur.

Reactions, including phenomena such as attachment in the case of electrons, can
usually be treated more simply. For the unidirectional reaction

ion + neutral — products,
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one can express the collision operator in the form

J*(f) = v*f, (161a)

where
Vo) = f Folee)g a*(g) deq (161b)

and o* denotes the total cross section for all reaction channels. This effect is simply
additive; that is, the right-hand side of the Boltzmann equation is

([dfldt)een = =J(f) =T*(f), (162)

where J(f) denotes the nonreactive collision operator. It is the effect of inelastic
collisions on this latter quantity which is of most interest here.

We may use the semiclassical model of Wang-Chang et al. (1964) to generalize
equation (60) to the case where the ions and molecules have internal structure. The
inadequacy of this model for dealing with degenerate internal states (e.g. angular
momentum states) is well known (Waldmann 1965). However, we assume that any
errors arising in this way are small (Ferziger and Kaper 1972). For simplicity, we con-
sider the case where only the neutral molecules have internal degrees of freedom, the
ions still being treated as point particles. This is appropriate for electrons or atomic
ions, but not for molecular ions.

Let i denote the quantum number (or set of quantum numbers) characterizing the
internal molecular states, the corresponding energy being E;. The distribution of
molecules in these states is Maxwell-Boltzmann, that is,

Soieo) = no;w(%, o), ; (163a)

no; = (no/Z)exp(—&i/kTo) (163b)

where

is the number of molecules in state i and

Z= Z exp(—&;/kT,) (163¢)
is the partition function. The Wang—Chang et al. (1964) generalization of equation
(60) is then :
J(f) =Y, | (f(©) folleo) =f(€) fo,(c0)) g o(if; gx) dg’ e, (164)

i,j
where 6(ij;gy) is the differential cross section for the scattering channel in which

the internal state of the molecule changes from i to j and the relative speed from
g to g’, where by conservation of energy

im.g* +e; = 3mg") +e;, (165)
and m, is the reduced mass. The microscopic reversibility relation
(9"?0(ji;9'x) = 9%0(ij;92) ‘ -~ (166)

is used in deriving the identity

f¢(e) J(f)de =} | f(e) folleo) ($(e)—d(e)) g o(ij; gx) dg'dede,,  (167)
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for any function ¢(c). We now consider how the results of previous sections are
modified. ‘

(a) Fokker—Planck expansion

We proceed from the identity (167). Equation (72) still applies in the same form,
but the coefficients are defined differently; for example,

A =<(Ac) =} | foleo) Acg a(ij; gx) g’ de . (168)
i,j ) .

Since momentum is still conserved in a collision (G’ = G), equations (64) still apply.

It is shown in Section 10 and Appendix 2a how the general term in the
Fokker-Planck expansion could be calculated for elastic collisions.  The generaliza-
tion of that analysis to include inelastic collisions is not difficult: instead of cross
sections ‘¥ defined by equation (59) we have the quantities

oM (g) = Z71 ) exp(—ei/kTo) {oo(ij; 9) —(9'/9)* ** a,(ij3 9)} , (169)

where the o,(ij;g) are partial cross sections, defined for the differential cross section
o(ij; gy) in analogy with equation (58). Notice that the cross sections (169) appear to
have a temperature dependence; we shall comment further on this observation below.
For the cold gas limit, which now not only implies that the molecules are at rest but
also that they are in their internal ground state, equation (169) gives

M) = Y {oo(ij;c) —(c'l)*  Fayij; o)}, (170)

=1

and instead of equations (85) we then have the generalization
} n+l n . :
Plc) =Y Y 6M () ant (171a)
A=0v=0

where the a), are pure numbers defined by

= T (V@A D)@Y +1) NEN L
nl & P,p+p 22"+l47'£(21+1) N%l

(1010 10)2, (171b)

with P = 2n+1, p = 2v+Aand p’ = 2v'+ 1. Because of the ¢ function there is only
one sum in equation (171b). It can also be verified that these coefficients vanish for
A > I+n. Evidently, a relationship exists between these coefficients and the
coefficients a*, of Section 10 and Appendix 2b, but we will not go into that.

Equations (170) and (171) are the only changes to the cold gas formulae of Section
10, the form of the differential operator being otherwise maintained. Notice that the
entries for ¥,,(c) in Table 1 would have to be modified according to equation (171a);
in particular, the quantities ¢‘** do not necessarily vanish for A = 0 (unlike their
elastic collision counterparts 6*) and must therefore appear. We can consider the
elastic collisions separately by splitting off the j = 7 terms in equation (164):

Ja(f) = Z J(f(c) foeo) —f(€)) foilco)) g o(ii; gx) 4§’ de, . (172)
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This is formally equivalent to scattering of ions from a mixture of neutral gases;
that is, the excited states i of the neutral molecules effectively behave as different
species (see Note [15]). :

Alternatively, we can write equation (172) in the condensed form

Jo(f) = no f(f (e) w(ato, €o) —f () W2, c5)) g (g To) dR deg, ~ (173a)
with a temperature-dependent cross section
olgr; To) = Z71 Y, exp(—&/kTo) o(ii; g7) .- (173b)

Only in the special cases where (i) the neutral molecules exist in one level only and
(ii) the scattering cross sections are the same for all quantum numbers, that is, when

o(ii;gy) = a(g9,%), _ (174)

is this temperature dependence removed, and a(gy; To) = a(g,x). It is worth noting
that equation (60) and the subsequent analysis are based upon such assumptions.

(b) Imelastic collision term for Lorentz gas

The spherical harmonic decomposition outlined in Section 11 is specially suited
for electrons (or light ions) for which u = m/(m+m,) < 1. We noted there and in
Section 13 that the scalar part of the elastic collision operator vanishes in the Lorentz
gas limit u — 0, corresponding to a vanishingly small energy change for infinitely
heavy molecules. On the other hand, energy exchange can occur with even infinitely
heavy neutral molecules possessing internal degrees of freedom. It is possible to
start from the Wang-Chang et al. (1964) collision operator (164) and show that the
scalar part of the spherical harmonic decomposition of J(f) in the limit ¢ — 0 is

Jo(fo) = (2/me)* Z {nOi[ efo(e) ao(ij; &) —(e+e;) fole+e) oo(ifse+e;)]
+no{ efo(e) 0o(jis €) —(3—3ji)f0(3—8ji)ao(ji;3“8,':)]}, (175)

where ¢ = mc? and g;; = ¢;—e¢; > 0 is the energy exchange in a collision. This is
essentially of the same form as the expression of Frost and Phelps (1962) who
modified Holstein’s (1946) work to allow for ‘superelastic collisions’, that is, colli-
sional de-excitation of the molecule represented by the second term in square brackets
in equation (175).

The time-reversal symmetry relation (166) allows us to write equation (175) entirely
in terms of excitation cross sections:

(€=es) oo/l e=ep) = eli/3e).

If the states are degenerate, statistical weights g; of the appropriate states i have to
be incorporated in the cross sections, that is, g4(ij;€) — g;04(ij; &) and the g, are to
be interpreted as averages over internal states.

Frost and Phelps (1962) also considered a differential form of equation (175)
obtained by Taylor expansion of the terms on the right-hand side about . This is
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essentially an expansion in ¢;;, a parameter that is small when the energy levels of
the molecules are closely spaced, as sometimes happens for the case of rotational
levels. In general, however, the usefulness of this expansion is not clear and it is
probably better to use equation (175) or the more general form (164). The latter
* formis, of course, necessary when one wishes to go beyond the Lorentz approximation.

(¢) Matrix forms

For the electron case, matrix elements have been given by Lin et al. (1979b).
General formulae for the case in which the charged particles as well as the gas
molecules have internal structure are given in the following paper (Kumar 1980a).
The effect of inelastic collisions appears only in the interaction integrals and the
cross sections through which the matrix elements are defined.
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Part IV. Technique and precision in the calculation of
drift and diffusion

15. Introduction (IV)

This Part of the paper (Sections 15-23) is devoted to the most important application
of the theory, namely the calculation of the drift velocity (or the mobility) and the
diffusion coefficients for ions and electrons in a uniform electrostatic field. Magnetic
fields and reactions are excluded. The ions and the gas molecules are assumed
structureless; that is to say, inelastic effects are also excluded. However, such effects
due to the structure of gas molecules can be included by constructing the collision
operator according to Section 14: no other modification of the methods is necessary.
The modification needed in order to deal with the case of a mixture of neutral gases
is pointed out in Note [/5].

Transport coefficients of higher rank can also be calculated by the same methods.
The only modifications required are in the details of inhomogeneous terms and in
the operators that determine the anisotropic parts of these coefficients. These will
be evident from the work in Section 16. There are no new questions of principle
at these levels.

The collision operator is taken in one of the forms discussed in Part III and we have
the problem of solving the kinetic equations derived in Section 4. These are homo-
geneous or inhomogeneous linear equations. We give a brief survey of the techniques
available (Section 17) and discuss in detail those which have been actually used
(Sections 19, 20 and 21). We are interested in those techniques which are capable
of yielding accurate results. The standard for this is set by experiment [3] where at the
present time the best results give mobilities to within 0-19; and diffusion coefficients
to within 19, apart from possible systematic errors.

The accuracy of a calculation based on a given method, scheme or theory—the
words are interchangeable in current usage—depends on the mass ratio, the gas
temperature and the field strength, for a given collision model. A method or theory
is said to break down in a range of these parameters if the desired accuracy cannot
be achieved. Properly speaking, such a breakdown is not of the theory but of the
method of solving the equations in a calculation with limited time and effort.

The choice of a method of solution should be made in relation to the expected
form of the solution, the information one wants from it and the ranges of parameters
that need to be covered. Physical and mathematical considerations along with the
information from known analytic solutions of model problems (Sectlon 18) are useful
in this connection.

Moment methods, in the form of a polynomial expansion of the unknown function,
can be applied in fairly general circumstances and are the ones most often used. They
are described and their effectiveness is discussed in Sections 19 and 20. In special
circumstances, when more is known about the nature of the solutions or when the
collision operator is simple, non-polynomial methods (Section 21) may be used. When
applicable, they are capable of producing better results.

Computer simulation (or Monte Carlo) methods [2] are a means of obtaining the
transport coefficients from the correlation functions and averages discussed in
Section 3, without the use of kinetic equations. Comparison of results from these
two independent approaches has been very useful in the development of methods for
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precise calculation of transport coefficients. Section 22 gives a brief survey of the
literature on computer simulations.

In the special problem dealt with in this Part, the only preferred direction is the
one provided by the electric field E, that is, by the acceleration a = (¢/m)E suffered
by the particles. The kinetic equations and the transport coefficients therefore
have cylindrical symmetry about this direction, @ = E. In particular, the drift velocity
W and the diffusion tensor D then have the form

W=Wi, D =D di+D(1—dd). (176)

Thus there are three transport coefficients to consider: the drift velocity W, the
longitudinal diffusion D; and the transverse (or lateral) diffusion Dy. The drift
velocity is often expressed in terms of the mobility K, which is a scalar quantity in
this problem defined by

W = KE. (177)

It may be noted that it is the drift velocity W and not the mobility K that is the true
transport coefficient according to the definition in Section 2.

The experimental results are expressed in terms of the reduced electric field E/n,
where n, is the number density of neutrals, specified in units of townsends
(1Td =1072' Vm?). The drift velocity W (ms™!), the reduced mobility ny K
(mTd™*s™!) and the reduced diffusion coefficients 7, D (m~'s™!) depend on the
neutral number density and the acceleration only through the ratio a/n, = (q/m)(E/n,).

In the next section we simplify the relevant kinetic equations by using the cylindrical
symmetry noted above and prepare the way for the subsequent sections.

16. Equations for Mobility and Diffusion

- We shall take the equations for mobility and diffusion from Section 4, equations
(37a) and (37b). Since reactions are not present, »'® is zero and the operator £ of
equation (35) becomes

¥ =a.0,+J. (178)
For any function f(c) we have
J;Sf f(e)de = 0. : (179)
The equation for mobility or drift velocity is the scalar equation
Zf® =0,  with f fO(e)de =1, (1802)
and '
W={)= fcf(o)(c) de. (180b)

The equation for diffusion is a vector equation for the vector function f®(c):

LY =(c—W)f ), with ff“’(c) de =0, (181a)
and

D= fcf(“(c) de. (181b)
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Equation (181a) is consistent with the property (179) of the operator .#. The origin
of the coordinates in the velocity space is fixed by the requirement that the neutral
gas is at rest in this frame, i.e. by {¢,> = 0.

If a matrix representation of these equations is chosen then the orientation of the
coordinate axes is unimportant provided one uses the proper formalism. An orienta-
tion-independent form of the mobility equation has been given earlier by Kumar and
Robson (1973) (it was called a coordinate-free form, which is not strictly correct).
It may, however, be convenient to take the z axis along a.

To exploit the rotational invariance of the collision operator one uses spherical
polar coordinates ¢ = (c, 8, ) and the operator J, defined by the spherical harmonic
decomposition of J,

J(f(©) Y20, 9) = Y20, 9) J/(f(0)) . (182)

Then from equation (180a) £°(c) is independent of ¢, so that it can be expanded
in terms of Legendre polynomials as

FO) = 3 f19(c) Pcos ). (183)
1=0

Using equations (182) and (183) and noting that J, is independent of the normalization
of the spherical harmonics, one finds that the equations leading to mobility become

dg,(l))—l ©(©) +J, /) +d§2)+1 D) =0, (184a)
with
l d I-1 I+1(d [+2
0) a =1 0  _ R I
iz “21—1(dc c ) i1 “2z+3(dc+ ¢ ) (184b)
and
f f8%c)ctde =1, (184c¢)
O .
W =1 f A FOe) de. (184d)
0 .

For the longitudinal or the z component of the vector £ the right-hand side of
equation (181a) is independent of ¢. Consequently, we may use the expansion

0 =f"e) = ¥ fiP(c)Pcos0). (185)
=0
The equations leading to the longitudinal diffusion coefficient D then become

dig- 1 i85 (e) + I f(0) +difs [ (e) = biP(o), (186a)

with
biP(e) = IRI-1)" e ffO =W O +(1+ DQRI+3) " ef), (186b)

and
J S8 e)e* de = 0, (186¢)

0
Dy =1 f A1) de. (186d)
0

The two transverse components of equation (181a) may be converted into two
complex-conjugate equations for the functions /&) +if(". Since W is along the
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z axis, the right-hand sides of these equations are therefore ~exp(xig). The two
equations then reduce to one equation for the transverse component ™ of f®
defined by

SO +ifD = fPexp(+ig). (187)

The appropriate expansion for (@ is

S = 3 £ P(cosh), (188)
=1

and the corresponding equations leading to the transverse diffusion coefficient Dy are

dir 1 S 0(e) +J, f0) +di 1 £ () = biP(0), (189a)
with
diry =(=0)I""dQ,,  dih, = +2A+D)7 D, (189b)
b)) = QI-1)7 e 00 - QI+ e f D), (189¢)
and ‘
Dy = %J A M) de. (189d)
0

The condition corresponding to (181a) is automatically satisfied for f™ since -
equation (187) vanishes on integrating with respect to ¢, and the term corresponding
to / = 0 does not occur in the expansion (188).

The equations above are given in the normalization most frequently found in the
literature. The normalization enters through the expansions (183), (185) and (188)
and may be easily changed if required.

The preceding equations are particularly convenient when J; is taken as a
differential operator (Section 11) and the number of / values needed is not large.
One then has a coupled system of differential equations for functions f; of a single
variable ¢. The difficulties in numerical integration of such a system arise from the
need to adjust properly the boundary conditions (or the starting values) for the
different functions f;(c) and from the presence of higher derivatives in the operators J,.
The equations of this form have been most successful in the electron problem [16],
where in most cases the distribution function is nearly isotropic and only the terms
I =0 and 1 are usually needed.

The left-hand side of equation (184a) shows that the operator % is tridiagonal in
the / indices. By a further expansion of the ¢ dependence one can put the operators
d©® and J, in matrix form, to obtain block tridiagonal matrix equations.

If the distribution function deviates substantially from spherical symmetry and the
decomposition (183) is not to be used, one can still preserve the advantages of cylindri-
cal symmetry by taking the z axis along a and using cylindrical coordinates
¢ = (¢r,¢,, ). One now defines the operator #,, by the relation

Z(f (e, c.) exp(ime)) = exp(im@) L (f(cr, c.)) (190)
and obtains the equations
L fOcr,c.) =0, % = %, (191a)

W= fczf(o)(c-r, ¢y de; (191b)
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L fOer,e) = (.= W) e, ), (192a)
D, = [efOer.c de: (192b)
LrfPer,c) = e f®,  Lr= 2y, (193a)
D=1 chf(T)(cT, c,) de. (193b)

These equations are the most appropriate to use with the Fokker-Planck type of
differential form of the operator J, in the case where the distribution function is
expected to deviate substantially from spherical symmetry.

(@) Operator for transverse diffusion equation

To obtain an explicit form for £ note that from equation (190)
Lrf= &1 f=2c-[e) L(cs flen), (194a)

ce = +(i/y2e,tic) = F(yDerexp(+io). (194b)

Using equations (81) and (82) for J in (194a) and (178) together with the following
identities which hold for any function g of ¢:

cren -, (&) <l o

with J; defined in analogy with equation (194a), one can write

with

Py =adloc, +Jr, (1962)
If) = ¥ S, (196)
[ 1=2r
S,l'fl _ 2l+1 N Z e TVZ(n+r)<§c+ %) c.Fl . (1960)

Other symbols in equations (196b) and (196¢) are defined in equations (78) and (82).

The operators Z,, for m > 1 will occur in anisotropic parts of higher order
transport coefficients and may be constructed in the same way (see remarks at the
end of Section 10). It will be noted that the operator J; above can be calculated by
a simple modification of the program that calculates J.

17. Methods of Solution: Moment Equations

In this section we make some general observations regarding the methods of
solution for the equations derived above. Omitting the elaborations of symbols, we

have equations of the form
Pf=b, (197)

where, in particular, b may be zero. Such an equation may be converted to an integral
equation [9] and solved by iteration (Section 5), or by Monte Carlo methods. Apart
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from these two methods, all other methods of solving these equations may be seen
as special cases of the weighting function or Galerkin method (see e.g. Hildebrand
1956; Prenter 1975). The latter have been the most successful in applications although
there are indications that problems in numerical implementation of the first two
methods may also be overcome (G. L. Braglia, personal communication).

The Galerkin method may be briefly characterized as follows: one takes two sets of
linearly independent functions ¥ = {y,(c)} and ® = {¢(c)}, with i,j = 1,2, ..
and assumes that

d imax b
1@ = ¥ &, (198)

Then using the functions from the set ¥ one obtains a set of linear algebraic (i.e.
matrix) equations for the unknowns ¢&;:

'*2: &, Z9) = (Y, b), (199a)
where for any functions g(c) and A(c)
@) = [g@ o) de. (199b)

These equations should be supplemented by the normalization or other conditions
on f(c), and hence on ¢;, which ensure that the system is uniquely solvable. ‘

The choice of basis sets ® and ¥ is guided by one’s expectations about the form
of the solution. Typically one is interested in the moments (¢, f) and (ce, f) and has
some idea of their magnitudes. One also knows something about the asymptotic
behaviour of f; and may expect to see properties similar to those exhibited by known
analytic solutions of model problems. If a singularity is present in f, the sets should
be primarily chosen to incorporate its effects.

Roughly speaking, the set ®@ is chosen to represent the function f as adequately
as one can and the set ¥ is chosen with regard to the moments of f which one wants
to know accurately. The optimal choice of basis sets is determined to a large degree
by the practical requirement of being able to calculate the matrix elements of the
collision operator occurring in . Only in the case of very light ions and electrons
is the collision operator simple enough to admit a high degree of flexibility in this
choice. In the general case, it is all a compromise. One is commonly limited to the
sets

@: wx)di(x), ¥ dix), (200)

where the ¢(x) are polynomials orthogonal with respect to the weight function w(x)
which is a gaussian in x, with x a linear function of e. This choice has the drawback
that it tends to place undue weight on the less important parts of the function f
The equations so obtained are linearly related to the moment equations (Note [Z17])
familiar in most kinetic theory work. The use of orthogonal polynomials somewhat
simplifies the equations and is particularly useful in calculation of the matrix elements
of J (see Part IT and Kumar 1980a, 1980b).

It may be noted here that representation of f(c) by its values given in a finite
number of points together with a prescription for interpolation between the points
is quite a regular basis set expansion in the sense used here.
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The equations above are written in terms of the vector variable ¢, but the same
general remarks, with appropriate changes, apply as well to the equations of the
previous section in terms of other variables, such as ¢, ¢y and c,.

The results obtained from such a calculation, particularly the first few moments
which are physically important, should be seen to be independent of the choice of
the basis set. Their independence can be tested by calculating the quantities with
successively larger sets, i.e. by increasing i,,, in successive stages. If the calculated
values do not change one speaks of converged values. This is, of course, not the true
mathematical convergence, but for all practical purposes these numerically con-
verged values can be taken as the true results of the theory. On the other hand,
little reliance can be placed upon a calculation of this type if such a (numerical)
convergence is not demonstrated. When converged values cannot be obtained it
usually means that an inappropriate choice of basis sets was made.

It is convenient sometimes to take basis functions which depend upon some
auxilliary parameters. We shall call such parameters the b-parameters. The basis
sets are then altered by altering the b-parameters. It is found that the rate of con-
vergence, or indeed whether the convergence is at all achieved, depends upon the
choice of the b-parameters. How to make this choice is an important question in
such calculations, and has to be discussed for each particular type of set separately.
Evidently, the results from smaller sets depend upon the b-parameters. They may,
therefore, be chosen from physical considerations, but since they cannot be allowed
as adjustable parameters in the final results it is all important to show that con-
vergence is achieved. The role of basis sets and the b-parameters is that of scaffoldings
which must be removed (by ensuring convergence) before the structure can be
recognized as being truly free standing.

Usually, the lower moments will converge before the higher ones. In view of the
-coupling of equations, the part f© of the distribution function that determines the
mobility must be sufficiently accurate before the equation for diffusion can be solved.
In particular, at least the second moment of f(%), that is, the mean square random
velocities, needs to have converged before a meaningful calculation of the diffusion
coefficients can be attempted.

(a) Use of adjoint operator

When the set ¥ consists of polynomials of maximum degree k, it is convenient
to calculate the matrix elements in equation (199a) in the form

G LY =Wy, £ ¢). (201

The adjoint of the operator a.d, is —a.0, and that of the collision operator J,

which was developed in Section 10, has the form

N

r]

o0 [
J= 3% i 2 A0 (€.0) > (V2), (202)

where the 4,,(c) are linear combinations of ¥,,(c) (cf. equations 83 and 84). These
functions depend on the cross sections but are independent of the basis sets and may
be tabulated once for all in a calculation involving any basis sets and any values
of the electric field.
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When the y; are polynomials of maximum degree k then, no matter what the
other functions ¢;, the left-hand side of equation (201) can be calculated without
any approximation by retaining only the first k terms in equation (202); that is to
say, one effectively has a finite k-term expansion of the matrix element. It will be
noted that this simplicity is not available if the right-hand side of equation (201) is
evaluated. This economy in calculational effort enables us, in Section 20 below, to
go to much higher orders than have been previously considered.

Similar techniques can be used in the calculation of transverse diffusion where the
adjoint of the operator .#; should be used. In working with the spherical harmonic
decomposition, the adjoint operators J, can be used to effect similar economies.

18. Solutions of Model Problems

Model collision operators were discussed in Section 13. Here we show how some
of them can be used to obtain analytical expressions for the velocity distributions and
the transport coefficients. One hopes that the solutions of real problems would have
some of the features shown by these expressions. Four model problems are con-
sidered: in the first two cases (a and b), the results although analytic are approximate ;
in the last two (c and d), the results are exact solutions of the model problem.

(a) Quasi-Lorentz gas model

This model has been treated in detail in the literature and only a summary of the
basic equations and results is given below. One assumes that the mass ratio is very
small, m/m, < 1, that only elastic collisions occur and that the stationary distribution
function is nearly isotropic. In the spherical harmonic decomposition (equations
183-6) the terms with / > 1 are omitted, and simplified forms of the spherical com-
ponents of the collision operator, J, and J; (equations 100) are used. The kinetic
equations (184a) then reduce to the two coupled equations

a(d/de +2/0) [ +Jo [ =0, (203a)
a(d/de)f§O +v W O =0, : (203b)

where v(c) = nyco®(c) is the collision frequency for momentum transfer. From
this one finds Davydov’s expressions for f{* and f{®:

79 = Aexp( = 20 " {(ap 0 +3kTy/mo) e ac), (2042)

SO = —(apV)df§/de. (204b)

Expressions for the velocity distributions f(c) and f™(c) associated with diffusion
are found in a similar way, and one finally obtains from equations (183)—(189)

W = (u(e)y = {c™2d(c3a/yV)/dc), (205a)
Dy = {3y, (205b)

1

©° 3(a/y)1(c)
_ -1 7
Dp =Dy +a fo (a/yV)? +3kT,/m,

cf§°Xc)

(——2c(a/v(1))2 + )I (c¢)dc, (205¢)
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where

I(c) = J: {v(c) =W} f§9c) ' de’. (205d)

(b) Quasi-Rayleigh gas model

This model describes the motion of heavy ions in a light gas, and it is obtained
by expanding the elastic collision operator J to second order in the mass ratio
Lo = mof/(m+m,). The mass ratio expansion of J is given by equations (81) and
(82). Insertion of this expansion into equation (180a) gives a Fokker—Planck type of
equation, which can be written in the form

Veoll€ +8 Posl /) +p0{Ve Vi (62 ¥or fO) +3VI([Y10+ P02l V) = 0, (206)
where & is the electric field parameter:
& = {q(m+mg)/mmq}E[n, = (q/m,)E[n, . (207)

The coefficients ¥,;(c) were defined in Section 10. Their behaviour for large ¢ may be
seen from Table 1, while at small values of ¢ they vary as ¢'. Those occurring in
equation (206) are always negative.

To bring out clearly the behaviour as ¢ — 0, we write the ¥,; in the form

'Pnl(c) = - in(c) ~ =c in(O) > c—0, (2083)
~ —ctitg (o), c— 0, (208b)
which defines the quantities Q,,(c) and o,,(c). Specifically, one finds for ¢ —» 0

001(0) = ’IBQQ(I’I)(kTo/mo)’ 010(0) = (3kT,/m0)Q04(0), (209)

where QUD(kT,/m,) is one of the usual ‘Q integrals’ of kinetic theory. Inserting
the forms (208) into equation (206) we get

Ve (le Qo1 =811 @) + 116 (V. V 2 (c€ Qr f©)
| +3VH([Q10+¢?Qolf @)} =0. (210

We modify this equation to make it separable, and to ensure the correct Maxwellian
solution for & — 0.

For small fields, one can assume ¢* < 3kT,/m,, use for Qy; and Q,, their values
at ¢ = 0, and neglect the c>Q,, terms. With these approximations, however, one must
also replace uo = mg/(m+my) by my/m, to get the correct zero-field solution. The
resulting equation and its solution are

V.. ([e Qp:(0) —E11?) +(kTo/mo)Q61(0) Vi©® =0, (211a)
W =<c) =¢&/06(0), (211b)
FOe) = Aexp{—(mo/2kTo)c—W)*}. (2110

Equation (211c) gives the true Rayleigh gas solution. The distribution of random
velocities is unchanged by the field, while the drift velocity can become much larger
than the random velocities.
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When the drift velocity is large (W? > (c— W)?) another approximation can be
made to equation (210). Firstly, we determine W from (210) to the lowest order p,:

W e =EQ(c). 12)

We then expand the coefficients in equation (210) to the lowest nonvanishing order
in (c—c.), to obtain the separable equation (still with my/m substituted for pg)

Q01(f(°)+é e ) MO/m(Qm C*Qoz) P2

fO\  my/m (32f(°)
+Qo1(f(°) +¢y gcy ) 0/ (Qw c? Qoz)?

+(0or e o) (7o +@-ed ‘Zc(o)) 2 010 +262 Qo) ;’;;O) —0, (1)

where Qy; = dQ;(c)/dc and the coefficients are to be evaluated at ¢ = ¢,. We then
have the following results:

+ct (c,—ea)?
100 = Ao~ S = ey (14

with
2 2 5(2)
(el =2 Qo o Qozc:’w T (214b)

2 (2)(1)
((cz—c)2> _ mo/m Q1o +2¢i 902 . mo/m ct(1— a(l)/a ) '
3 Qo1 +¢Q01 e 2 14+3d(Ine™)/d(Inc)

(214c)

Equations (213) and (214b) are seen to subsume the weak-field equations (211a) and
(211b).

As the distribution (214a) is gaussian, the diffusion coefficients are related to the
differential mobility K through the generalized Einstein relations (equation 30; see
Note [10]), K., is equal to the total mobility K = {c,)/E, since without approximation
as E, - 0 we have 0W,/0E, = K, while

, K., = {c,)/0E = K{1+d(InK)/d(InE)}.
This gives
DT = Dxx = (m/q)<c§>K (2153)

Dy, = D,, = (m/q){(c,—co)*>K{1+d(InK)/d(In E)} . (215b)

(¢) Cold neutral gas, idealized charge transfer model

This model is represented by the collision operator J f(c) = nq co(c) f(c), where
o(c) is the cross section for charge transfer. With this form of the collision operator,
the drift equation (180a) or (191a) becomes essentially one dimensional, yielding the
solution

FOe) = Ad(c,)d(c,)exp ( —(ne/a) f:zf ca(c) dc) . (216)
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Insertion of this into the diffusion equation (192a) gives
FP(e) = a™H {3(c? <)) —<e e, —Le} [ VAe), (217a)
Dy = a <) =3 e + KDy, (217b)

where the averages {c7) are to be evaluated with the distribution (216). The lateral
diffusion coefficient is zero.

The form of the distribution (216) has more general interest than indicated by the
model used. The very high energy tail of a velocity distribution will always (except
at extreme mass ratios or very small fields) be expected to be strongly peaked in the
forward direction, and populated nearly exclusively by direct acceleration of particles
from lower velocities. The collisions will then represent a pure loss term, as in the
present model case. The shape of the high energy tail will therefore be expected to
be similar to that in the distribution (216), with o ,(c) replaced by some effective total
cross section. The singularities represented by the delta functions will, of course, be
ameliorated in a real problem.

Further discussion of the charge transfer problem may be found in the studies by
Sena (1946), Wannier (1954, 1966),- Smirnov (1967), Fahr and Miiller (1967),
Skullerud (1969) and Lin and Mason (1979).

(d) Constant mean free time model

This model was defined in Section 13, where its relation to the Maxwell and
polarization force model was pointed out. For cross sections appropriate to the
model (cf. equation 150) the constant mean free time t and a function II (y) may be
defined by the relation

nogo(g,y) = I (). (218)

On introduction of the collision frequencies v, for / = 1,2,3,..., by

Vv, =neg2m f{l —Py(cos x)} o(g, x) sin x dy

=112 ~“{I—P,(cos;()}ﬂ(x) siny dy, (219)

it can be shown, for example by the moment method of Wannier (1953), that the
following relations hold exactly:

W = aluyv, = qE/m,v,, m<02> = 3kTo+(m+mg)W?*, (220a,b)
mlc?y = kTo+%(m+m0)W2/{1+(2m/m0)v1/v2} , (220c)
Dy /K = (m|q)(c,—W)?, _ Dy/K = (mq)c3y. (220d, ¢)

The mobility given by
K =W/|E = g/m. v, (221)

is a constant, independent of the field. Equations (220d) and (220e) are the generalized
Einstein relations [/0]. Note also that all moments {c... ¢} can be calculated exactly
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for this model (e.g. Ferrari 1978). Another exact result for the model is the theorem
of Wannier (1953), which connects the time-averaged distribution function f(®(c)
with its high-field (or cold gas) limit /(c):

fO%) = Jw(a,lc—v 1) () dv, (222)

where o® = m/kT, and w(a,c) is the Maxwellian at T,. In other words, it is
necessary only to obtain the high-field solution and the general solution follows from
the convolution above.

The usefulness of the model derives from the fact that most real ion-molecule
potentials are dominated by the polarization force (~r ~°) at large distances, so that
for low relative speeds we have a(g,x) ~ g~!. Hence, for low T, and low E/n,—
the so-called ‘polarization limit’—an ion swarm may be expected to conform to this
model. For this reason the model has received a great deal of attention in this
problem (McDaniel 1964; McDaniel and Mason 1973); elsewhere in kinetic theory
it is popular for its mathematical simplicity alone.

The model has been widely used in developing various approximations. It is
assumed that, in the general case when g (g, ) is not a constant, certain equations
valid for the model may be taken over with the replacement of (speed-independent)
averages by average values determined at the mean speed. The moment equations
simplified in this way yield the so-called momentum-transfer theories [/8]. A number
of authors (e.g. Kihara 1953; Mason and Schamp 1958; Viehland and Mason 1975,
1978; Lin et al. 1979¢) have developed successive approximation schemes for the
solution of moment equations, with the first approximation based on equations trun-
cated so as to have the same structure as those for the constant mean free time model.

19. Polynomial Expansions: Isotropic Gaussian Weight Function

This section contains a discussion of what, in the terminology of Lin et al. (1979¢)
is called a two-temperature expansion. One temperature is an intrinsic parameter of
the problem: it is the temperature T}, of the neutral gas. The other temperature T}
is introduced through the basis set. It is a b-parameter (Section 17), to be adjusted
to improve convergence. When T, = T, we have the one-temperature expansion.

In the terminology of Section 17, the chosen basis sets are

@ w(x, c) pl(ac), ¥ ¢M(xe), (223a)
where

w(a, ¢) = (a?/2m)%? exp(—La*c?), o = m/kT,. (223b)

The functions ¢™(ac) are polynomials orthogonal with respect to the isotropic
gaussian weight function w(x, ¢); they are effectively normalized Burnett functions:

oM (ae) = Ry(xa) YRXE), v =(v,1,m), (2242)
Ry(2¢) = Ny(oc/y/2)' S{2,Ga’c?), (224b)

N} =22 (v+ )/T(v+1+3), (224c)
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where the YL are spherical harmonics and the S{?, are Sonine polynomials. The
set ¥ consists only of polynomials

PV (ae) = (" (e))*. (225)

The use of the constant T, here is similar to that of Viehland and Mason (1975)
and Lin et al. (1979b). If differs from that of Viehland and Mason (1978) and Lin e? al.
(1979¢) in that the temperature T, here does not depend on the density gradients,
all gradient dependence having been eliminated in the decomposition (32) leading to
the equations (34). Further discussion of this point will be given in Section 23.

Table 2. Interpretation of coefficients in Burnett-function expansion of f®
(See equations 268a,b)

k vim kfpm Comment
0 000 1 Normalization
0lm %eDda Gives drift velocity
100 © 0322/ /6 Vanishes if 3kT, = m°{c*>
1 000 0 Consistency requirement (cf. eqn 181a)
0lm 1 eya Gives diffusion tensor”-?
100 13—a2c®)//6 Vector quantity ~E*

A This quantity is an average with respect to the vector function f(f$?).
B In the coordinate system chosen this quantity takes the form 4, D,, where
Do = Dy and D, = Dr (see Kumar and Robson 1973).

The functions f®(c), later generically denoted by f(c), are expanded about w(x, ¢)
in terms of the set @ as

£P(e) = Y wla, ¢) ¢ (ae) ', | (2262)

v

where, by virtue of the orthonormality of the basis functions, the expansion coefficients
are given by

O = f F®(e) M) de = < p™M(ac)) . (226b)

We note the conditions on the expansion coefficients and identify the transport
coefficients in Table 2.

(a) Structure of matrix equations

~ In view of the isotropy of the weight function the matrix elements of the collision
operator are diagonal in the / and m indices,

va’ = J\{v’all’émm’ H (227)
and the equations (199a) are tridiagonal in the / indices (cf. equations 184a, 186a

and 189a). To emphasize that we are dealing with the specific representation introduced
above, we use symbols slightly different from the ones used in Section 17.



408 K. Kumar et al.

Because of cylindrical symmetry (z axis along &) the equations are diagonal in the
m indices: in those for mobility and longitudinal diffusion one takes m = 0, and in
those for transverse diffusion m = 1. In each case one has a system of the form

J° de 0 o0 . . . 0 /7 [8°]
b Jt 4t oo . LA b'
0 d* J* d?
= : ], (2
0
it gLt gLt
(0 0 0 0 . 0 as gt Lee] Lt

where the f' and &' are column vectors, the J* are matrices and L is the maximum
allowed value of /. If v is the maximum allowed value of v then d’, and J' are
vs X v« matrices and f* and b' are column vectors with v. entries. The matrices d*
are diagonal and the @’ have nonvanishing elements only along a subdiagonal.

One exploits the tridiagonal nature, and the structure of the d, matrices by a
suitable adaptation of the well-known backward substitution method for tridiagonal
matrices. (A general method for solving block tridiagonal systems by backward
substitution has been given recently by Calimon and Ligon (1979).) Briefly, from the
last equation one obtains f“~! in terms of f* and b, then, from the last but one
equation, f“~2 in terms of fL, b and "1, and so on. In the end, from the zeroth
equation one has a . x v, matrix equation for f* and this is solved by standard
procedures. The method may also be used with other truncation schemes to be
discussed below. There is considerable saving in computation time compared with
a direct inversion of the whole matrix.

It is evident that in place of f* any other ! with 0 < / < L could have been chosen
and the system (228) converted to a set of v. x v. equations for that f*. In practice,
it is convenient to choose / = 0 or L. The fact that the system of equations in the
spherical harmonic decomposition of the Boltzmann equation (not just the Burnett-
function representation given above) can be reduced to a size effectively independent
of the number of / values included in the calculation seems to have been first indicated
by Wannier (1953). The application of iterative methods (e.g. Kihara 1953; Mason
and Schamp 1958; Viehland and Mason 1975, 1978; Lin et al. 1979¢) to equations
like (228) appears to offer no real advantage.

(i) Truncation Schemes

The way in which the matrices or the sets are enlarged, that is, the way one
chooses successively a larger number of allowed indices, is called a truncation scheme.
The choice of an efficient scheme is of some importance from the point of view of
limiting the computational effort.

For small mass ratios m/m, and low field strengths an independent truncation in
the / and v indices seems the most efficient, as the maximum / value is in any case low.

For mass ratios m/m, ~ 1, both the above truncation and a coupled truncation
I+v < n (Viehland and Mason 1978) have been used, the latter being probably
somewhat more efficient.
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For mass ratios m/m, 2 2, except at weak fields, with small basis sets both of the
above-mentioned truncation schemes tend to yield pathological values of the mean
square random velocities and diffusion coefficients. This can be overcome by using
a method due to Baraff (1964), where the relation between f=~! and f* is modified
to what it would be if the distribution function had a form ~d(cos@ —1). This takes
some account of the high anisotropy of the distribution function. It is a method of
truncating the equations but not in the same sense as defined above. When large
basis sets are used, which is necessary to obtain reliable and accurate results, the
precise form of the truncation scheme is not of importance, nor should it be.

For mass ratios m/m, = 3, the isotropic weight function expansion of this
section, in any case, converges too slowly to be useful. It may be said that the
method then breaks down. The expansion becomes inappropriate because in these
cases the anisotropy increases very rapidly with the field strength and the basis set
is inadequate to take account of it.

(i) Explicit Forms

At first sight the matrix equation for mobility is homogeneous. It can be con-
verted to the inhomogeneous form (228) by removing a row and a column (see e.g.
Kumar and Robson (1973) for the one-temperature case; the method carries over
to the general case unaltered). With the z axis taken along @ we have m = 0 and

bl - bi‘ = (“a/”0)5v0 511 L (2293)
di - d\,, = (afng) QI+ DRI+ 1} 6y 1 (229b)
db > db,, = —(aa/ng)v+21+1)*{ljQI+ 1)} 6,,. (229¢)

For longitudinal diffusion (m = 0), the d, operators remain the same as above but

b — b, = OfOP OOV L Y (101101, 0)(vl [ et vy 1) OF 110, (230)
vily
where the °7*? are the solution of the mobility equation obtained by using equations
(229) in (228). Note that the equation corresponding to (v = 0,/ = 0) does not
occur in (228) because it is lost in the process of converting the homogeneous equation
to an inhomogeneous one.

For transverse diffusion, the m =1 and m = —1 equations are equivalent.
Taking m = 1, then with the same °/" we have
b — bl = 21“ (1| 111,0) ] Joe™ T ||w, ) Of 1w (231a)
Vil

dy — dY,, = (aa/n) I+ 121+ 1D} 6, -1, (231b)
db > d\,, = —(aa/ne)Qv+21+ D> —1)*/(21+ 1)} 6‘,,;7‘_ " (231¢)

In eqilations (230) and (231a) we have the usual Wigner coefficients and

170 vty =t NV' ! NV

Ol e vy = (=) a6 ll)\/z(ép,_,_l,p-N—vz +5p,_1’pﬁ) , (232a)

with

p=2v+l, N3 =22+ 1)T(v+I1+3), &('ll) =('010|10)i"~'+3.
(232b)
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The formulae (231) and (232) may be obtained following the work of Kumar and
Robson (1973). The explicit forms for the matrix elements J' have been derived by
Viehland and Mason (1975, 1978), Lin ez al. (19795), Forsth (1979) and in the follow-
ing paper by Kumar (1980a). All the formulae are too detailed to be given here
(see, however, Part III, Section 12).

(b) Matrix elements J!,.: approximations

For small basis sets, typically (2/+v+v') < 8, the matrix elements may be
calculated exactly from the general formulae given in the references quoted above.
However, the required computational effort increases rapidly with the size of the basis
sets and it is not possible to go much higher in this way, except when T, = T,
But in the case of electrons we have m/m, < 1 and it is justifiable to retain terms only
to first order in m/m, in the formulae for J},.. It is then possible to go to very
much higher values of v and /. In the work of Lin et al. (1979b) values up to v = 29
and / = 6 occur.

1-5

W/a A (m/2kT)"

(=)
w

1+a/\m/2kT

Fig. 2. Mobilities (a) and longitudinal diffusion coefficients (b) calculated with a cold gas expansion,
for a unit mass ratio, and a hard-sphere interaction; 1 is the mean free path:

wf, weak-field expansion, with kT, = kTy; cg, cold gas approximation;
peg, perturbed cold gas expansion to second order in kTo/kT, (Burnett-function expansion with
lmax = Vmax = 8)

To go further, approximate expressions for J%,, may be used, provided one later
justifies the approximations. It has been noted (Section 8) that the cold gas approxi-
mation should be very good at high fields. There is a natural expansion of the general -
matrix element J . based on the cold gas matrix elements in powers of the parameter
(kTo/mg)/(kTy/m). When T, = T, this is, of course, an expansion in the mass ratio
m[myg. Since this parameter involves T, which is an (auxilliary) b-parameter (see
Section 17), the nature of the approximation involved may not be clear. However,
if, for some given value of the b-parameter, convergence is achieved with approximate
Ji, and the results improve in successive approximations, one has an acceptable
situation. Usually T}, will be close to the ion temperature, so that it is still meaningful
to speak of (kTo/m,)/(kT,/m) as an expansion parameter.

In Fig. 2, for m/m, = 1, we show the results for the drift velocity and the diffusion
obtained for the cold gas approximation (cg), the perturbed cold gas (peg) approxi-
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mation to second order in T,/T, and the one-temperature or the weak-field (wf)
expansion with T, = T,. The results show that whereas the ¢g approximation does
not produce good results at low fields, the peg approximation for mobilities seems
good over the entire range. Should the peg results prove reliable then, for longitudinal
diffusion, the entire range can be covered by using wf and peg approximations in
~ different ranges. Other work not presented here shows that for m/m, < 0-2 the peg
expansion alone suffices, that is, peg corrections are small also over the range covered
by wf, while for m/m, = 1 there remains a gap in the range which is covered neither
by wf nor by pcg (see also Skullerud and Forsth 1979).

1-05

(b)

n=10

wOw

0-95

KT, JkT,

Fig. 3. Successive approximations in a Burnett-function basis with isotropic weight function shown
as a function of the basis temperature Ty, for (a) mobilities and (b) longitudinal diffusion. A hard-
sphere cold gas model with a mass ratio mo/m = 1 is used. The curves are labelled by the order n
(= lpax = Vmax) Of the approximation. Normalization is provided by kT; = iml(c—W)?),
W = 1-1467(al)* and D, = 0-2202(aA®)*, with A the mean free path. Oscillations in a curve show
that the convergence is not uniform (nor is it expected to be).

(¢) Choice of basis temperature

A convenient scale for comparing Ty, is provided by the ion temperature 7, defined
by
3kT, = Im{c*. (233)

An initial estimate for 7, is provided by adapting the formulae for the constant
mean free time model (Section 184):

kTy ~ kTy +3(m+mo)W?, (234a)
where
W = afpuovi(9), {mmq|(m+mo)}g* = 3kTy +mo W2, (234b)

Fig. 3 shows how a range of T; can be covered using one value of T}, the example
- being that of a rigid sphere interaction and a cold gas, for which m/m, = 1. We have
plotted the ratio of calculated to converged values of transport coefficients as a
function of T,,/T;. It is clear that as long as we have T, ~ T, we can expect conver-
gence of the successive approximations. On the other hand, if we have T,/T; < 1,
as for example in one-temperature theories at high fields (7, = T, < T)), there is
no convergence.
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Thus while there is some relationship between a properly chosen T, and the ion
temperature 7; they need not be equal, and T, may be chosen to improve other
aspects of the distribution function. Thus, for example, in the work of Lin et al. (1979b)
T, has been chosen to optimize the fit over certain energy regions, namely the ‘tail’
of the distribution function when inelastic processes occur with high energy thresholds.
In the earlier work of Viehland and Mason (1975) the choice T}, = T; was made.
‘With this choice the expansion coefficient °f*? must vanish (see Table 2). This
so-called self-consistency condition provides one equation for determining T}, for a
given value of E/n,. In actual practice it is more convenient to take T, as the indepen-
dent parameter and to find the corresponding E/n, from equation (233) with T, = T:.
It is clear that such a choice of T}, is unnecessarily restrictive; for further discussion
see Section 23. ,

In the following section, we consider expansions involving more than one basis
parameter.

20. Polynomial Expansions: Gaussian Weight Function with Anisotropy and Drift

This type of expansion was introduced in the theory of swarms by Lin et al.
(1979¢) and was designated by them as a ‘three-temperature expansion’ (for earlier
applications in other areas of kinetic theory see Note [/7]). They used Hermite poly-
nomials and carried out the calculations with small basis sets. The analysis given
here differs from that of Lin ef al. (1979¢) insofar as the expansion parameters are
constants, independent of the density gradient (see Section 23). ,

The expansion is most appropriate to high mass ratios, where the expansion of
the previous section is no longer useful, and may be motivated with reference to the
results for the quasi-Rayleigh gas obtained in Section 18b. It is interesting to note
that Langevin (1905) also employed a gaussian with drift, although not in the context
of a polynomial expansion.

The three b-parameters in this problem are the transverse and longitudinal
‘temperatures’ T{" and T\ respectively and the drift velocity parameter W,, which
is directed along the field direction (z axis). By defining

. S (T%Cx, T%Cy, 1:lat-(cz_ Wb)) ’ (2353)
where

oty = mlkTD, oty = mlkTV, (235b)

o? = m/kT,, T, = QTP+ TM), (235¢)

2/t +1/1, =3, (2354d)

we have the weight function
w(e) = (13 ) W, ) (236a)

and, in the terminology of Section 17, the basis sets
D: wc)pM(ac), ¥: ¢M(ac). (236b)

Instead of T and T{", one may take « and one of the t’s as parameters.
The form of kinetic equations appropriate for this case are given by the formulae
(191a)-(193b), with £ given by the formulae (196). With these equations, maximum
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use of symmetry can be made and the basis polynomials need be functions of only
two velocity variables cp = (c2+4c2)* and c,. Nevertheless, the calculations in this
case are much more complicated than in the previous section. In general, no matrix
element of %, or % vanishes so that the block tridiagonal structure of the equations
of the previous section is lost, along with the advantages of backward substitution,
and the calculation of the matrix elements of the collision operator are now more
difficult. Thus we not only have three parameters instead of one, but they also occur
in more complicated equations.

In the applications below we again use the cold gas model, as was indeed done by
Lin et al. (1979¢). Our main interest is to see how the choice of parameter influences
the calculations so that inessential complications may be avoided in the future.

(a) Matrix elements

The calculation of the matrix element of the field term a.d, offers little difficulty
in any representation.

Matrix elements of the collision operator J have been given in a Hermite poly-
nomial representation by Lin et al. (1979¢) and in a Burnett-function representation
by Kumar (1980a). In either case, the general formulae contain many nested summa-
tions and the cross sections occur in two-dimensional integrals involving b-parameters,
so that most of the calculation has to be done anew for each new set of parameters.
Lin et al. (1979¢) were able to go up to the fourth order, but it may be difficult to go
much higher with these representations.

It is here that the use of the Fokker-Planck expansion for the adjoint collision
operator J (Section 10) according to Section 17a introduces essential simplifications
in the problem. The reason is not that the Fokker-Planck expansion is good at
these mass ratios but that, without approximation, the matrix elements can be
calculated by a shorter series. Further simplification comes from the appropriate
form of kinetic equations used (see above) so that polynomials in only two variables
crand ¢, may be used. The two-dimensional integrals obtained for the matrix elements
have been calculated with a Gauss—Hermite-Laguerre quadrature. We found that a
10x 5 point formula yielded sufficient accuracy.

(b) Choice of basis parameters

The use of a drifted gaussian weight function is appropriate when the ion velocity
distribution is mainly confined to a relatively small region away from the origin in
the velocity space. The distance from the origin is related to the field strength.
Similarly, the temperature parameters which determine the shape of the distribution
localized in this region will also depend on the field strength. We thus have three
b-parameters, which have to be chosen in relation to the field strength.

The most important parameters are W, and o> = m/kT,. They can be estimated
from the constant mean free time model in a way similar to that used for the isotropic
weight function (cf. equations 234).

The anisotropy of w(c) around ¢ = W, may be estimated by appeal to quasi-
Rayleigh gas expressions (Section 18b). Estimates are somewhat improved by
replacing mo/m by my/(m+m,) and evaluating the coefficients at ¢, = (W2 + 3k T,/m)*;
this is to compensate for approximations made in that model. However, these
estimates cannot be critical, that is, it is not necessary that the weight function have
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exactly the same drift and anisotropy as the true distribution function. Both the
one-temperature and two-temperature approximations are known to produce drift
and anisotropy in calculated distributions. Their failure at high mass ratios and large
fields shows only that it is difficult to produce large drifts and anisotropies, when
none is initially present. Thus, to correct the situation at high mass ratios it would
be sufficient if approximately right amounts of drift and anisotropy were introduced
into the weight function. In other words, a given choice of b-parameters will be
effective over a range of E/n, values. Further, it seems very likely that anisotropy
itself may not be so important. If a T} is chosen properly then it will probably not
matter what 7{" and T{" are, particularly if T, is greater than (7D, T(Y).

Table 3. Effect on convergence of choice of temperature and drift parameters in weight function
Here a hard-sphere cold gas model with a mass ratio m/my = 2-5 is used. The ‘order’ n of the
calculation in the Burnett-function basis is defined by # = lnay = Vmax. Converged values are
W =1-7069(a’)* and Dy = 0-2981(al®)?*, with . the mean free path. The parameter sets
(Wl W, To|Ti, TP|T®) are o = (1,1,0-586), B = (1,1,1), y = (1,1-5,1) and 6 = (0-75,1-5,1),
with kTy = Imdl(c— W), kTP = tml(c,— W)?> and kT{™ = tmic2>; T™O/T® = 0-586 is the

converged value used in the set «

Order W ®/|W for set D™D, for set

n o B y ) o B y [

2 0-9920 0-9919 0-9897 0-9883 1-187 1-168 1-238 1-193
3 0-9994 0-9998 0-9933 0-9951 0-992 0-989 1-015 0-902
4 0-9998 0-9996 0-9978 1-0008 1-018 1-026 1-023 1-028
5 0-9996 0-9995 0-9990 0-9988 0-998 0-995 1-004 0-986
6 1-0002 1-0002 0-9996 1-0000 1-000 1-006 1-001 0-989
7 1-0001 0-9998 0-9998 1-0002 1-000 0-999 1-001 1-006
8 1-0001 1-0000 1-0000 0-9999 0-986 1-005 1-000 0-997
9 1-0001 1-0004 1-0000 1-0002 0-999 1-001 1-000 1-001

The above expectations were confirmed by calculations on a hard-sphere cold gas
model with polynomial expansions to order n =9 with n =1, = v,.,. Several
mass ratios were used. The results for a mass ratio of 2-5 are presented in Table 3.
It was found that the convergence becomes better as the mass ratio increases,
provided suitable parameters are used. For m/m, > 4 answers obtained with quite
low values of n are already equal to the converged values to the required accuracy.
For smaller mass ratios increasingly larger n values are required.

21. Non-polynomial Expansions

As pointed out before (e.g. Section 17), the expected asymptotic behaviour of f(c)
should be taken into account in the choice of basis sets. In particular, if a singularity
is present or expected, the functions of the set should have the correct asymptotic
behaviour near it. In most cases precise information of this kind is not available.
One should then use functions which are flexible enough to represent arbitrary shapes
in different regions. Examples of such functions are cubic splines and finite difference
sets. The discussion in Sections 19 and 20 may be taken to mean that the sets based
on gaussian weight functions are not very flexible in this sense.

The difficulty with the more general type of sets mentioned above is that matrix
elements of the collision operator cannot be easily calculated for them. For this
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reason only special cases, where the collision operator is reasonably simple, have
been treated using such sets. Note that the sets mentioned above are non-polynomial;
the splines are represented by polynomials in a given range, but they are not true
polynomials.

The examples below show that, when applicable, such sets are capable of producing
very high accuracy.

(a) Modiﬁéd Bessel functions and non-integral moments

This method was devised by Wannier (1953) for the case of a cold gas and an

interaction potential ~r~". In this case

a(g, %) = 0(go, 1) (9/90)" = —4/n, (237a)
f S TS de = i (s Ty, (237b)
ey = f ¢ fde, (237¢)

where g, is an arbitrary (scaling) constant and J} is the /th spherical component of
the cold gas collision operator (equations 113). The constant «{® is defined by
equation (237b) and is obtained as an integral over the angular distribution in the
scattering.

In this case the moment equations obtained from the spherical harmonic decom-
position (184a—c) may be analytically reduced to equations connecting moments {c">,
with respect to the function f, only. The process of reduction determines new quantities
« and f in terms of the collision quantities x{”. The equations for the unknown
moments {c">, have the form (Wannier 1953; Skullerud 1976)

lil a;l)<cl—1+j(2+v)‘>o — ﬁ(l). (238)

=1

The exponent in the moment is, in general, non-integral because y is.
One can now expand f; in any basis set

fol©) = . oo, (@9

substitute in equation (238) and solve the equations for &;. The use of modified
Bessel functions for @; in the cold gas case, with m/m, = 1 and a hard-sphere inter-
action, was suggested by Wannier (1953). These functions give the right asymptotic -
behaviour for both large and small ¢, and the expected logarithmic singularity at
¢ — 0 is correctly represented. This in turn results in a drift velocity correct to five
significant figures, W = 1-1467(ad)?, from the fifth approximation onwards. A
Burnett-function expansion gives only four figures correctly even in the tenth approxi-
mation (L, = Vpay = 10) W19 = 1-1461(ad)®>. One of us (H.R.S.) has tried
several other basis sets for this problem, such as gaussians with different widths,

_ sometimes combined with modified Bessel functions and polynomial expansions,
and cubic B-splines. When the asymptotic behaviour is correctly represented the
convergence is always good.
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The results obtained by this method have been used as ‘bench marks’ against
which the results from other approximation schemes may be tested. The assumption
or hope is that an approximation scheme which is good for this model, and is
also applicable to a real interaction situation will give good results for the latter also.
The method described here, however, cannot be applied to real systems for the
reasons pointed out earlier in this section.

Table 4 compares the results obtained in this way with those from a Burnett-
function expansion. The Burnett functions were obtained from an isotropic weight
function with an ‘optimal’ choice of temperature kT, = kT; = 3m{c?). In the
Wannier-type expansion the functions ¢; were of the form

0; = c'Ky(mc?|2al), (240)

with K, the modified Bessel function of order zero. The calculations are for a hard-
sphere cold gas model with m/m, = 1, and . = (ny0) ™! is the mean free path.

Table 4. Comparison of successive approximations in two different expansion schemes
Here the results obtained from (x) an optimum Burnett-function basis are compared with those from
() a Wannier-type basis (equation 240). A hard-sphere cold gas model with a mass ratio m/m, = 1
is used. The parameter » determines the size of the basis set in the two expansions.” For the Burnett-
function basis # = Inax = Vmax and the corresponding set is used for the Wannier-type expansion.
The normalization is provided by W = 1-1467(al)*, Dy = 0-2202(aA®)* and Dy = 0-3202(a/3)%,
with A the mean free path. The values for D{® and D$? are too crude to be meaningful; between
n = 6 and 10 the change in numbers is very small

Order v wmw D™|D, D™Dy .

n o B o B a B

2 0-9692 0-9923 — — — —
3 0-9985 0-9989 0-876 0-998 1-016 0-992
4 0-9963 0-9998 1-023 0-998 1-004 0-996
5 0-9986 1-0000 0-991 1-003 1-001 0-997
6 0-9989 1-0000 1-000 1-000 1-000 0-998

10 0-9997 1-0000 1-000 1-000 0-999 1-000

(b) Special methods for electron transport

The quasi-Lorentz gas model (Section 18a) is fully satisfactory for electron
transport calculations, when only elastic collisions are of importance. When inelastic
collisions occur, the form of the collision operator is still quite simple, but analytical
solutions to the transport problem cannot be obtained.

If the collisional energy transfer rate is small compared with the momentum
transfer rate, a two-term expansion of the velocity distribution in spherical harmonics
will still be sufficient and, as in the quasi-Lorentz gas case, the kinetic equation can
be reduced to one equation for the isotropic part fy(c) of the velocity distribution.
This difference-differential equation can be solved by standard finite difference
methods (see e.g. Huxley and Crompton 1974; Kitamori et al. 1978; Tagashira et al.
1978).

If the collisional energy transfer rate is large, as is the case over certain energy
ranges in some molecular gases, the velocity distribution may become quite aniso-
tropic, and more terms must be retained in the spherical harmonic decomposition
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of the equations. A reduction of the system of equations to one equation for fy(c)
can then no longer be easily performed, and one will have to revert to expansions
involving the full distribution function f(c).

A general treatment of the electron problem in a Burnett-function representation
has been given by Lin et al. (19795).

A different approach, using a cubic B-spline expansion of the spherical harmonic
components fj(c) of the velocity distribution, has been used by L. C. Pitchford
(personal communication). The cubic B-splines are constructed by joining together
cubic polynomials defined in adjoining intervals. They are continuous functions with
continuous first and second derivatives, and are nonzero only in four adjoining intervals
(see e.g. Prenter 1975). The B-spline expansion will still lead to a block tridiagonal
system of linear equations (cf. equation 184a), but the subdiagonal blocks will be
band-diagonal, and not strictly diagonal as in the Burnett-function expansions. This
does not lead to substantial computational problems, however, as band-diagonal
matrices are quite easily inverted.

The B-spline expansions offer advantages especially when an accurate represen-
tation of the high energy tail of the distribution function is wanted. The convergence
properties of B-spline expansions are, in general, remarkably good and they do not
depend critically on any assumed form of asymptotic behaviour. The basis set sizes
needed in B-spline representations are large compared with ‘normal’ Burnett-function
basis set sizes, but the disadvantage of this is compensated by a considerably easier
matrix element evaluation. \

A finite element approach to electron transport calculations, without any spherical
harmonic expansion, has also been reported by Kleban and Davis (1977, 1978),
but this approach seems not to offer any advantages compared with B-spline and
Burnett-function methods (Lin et al. 1979b).

22, Computer Simulations

In computer simulations, the dynamic behaviour of one or several ions is followed
through a succession of collisions and free paths. Velocity distributions, velocity
moments and spatial moments are, in general, time-dependent quantities formed by
averaging the behaviour of a large number of independent ions. If stationary
transport can be assumed, as in drift and diffusion calculations, the same results are
found if time averages over the behaviour of one ion are formed, which is usually
more convenient.

The dynamic behaviour is modelled by choosing stochastically the lengths of the
free paths, the velocities of the neutral collision partners and the outcome (scattering
angles, energy loss) of the collisions, in agreement with probability distributions
obtained from the prescribed scattering cross sections and neutral velocity distribu-
tions. The modelling can be made numerically exact, avoiding approximations
involved in numerical integrations, by the use of a ‘null-collision technique’, described
by Lin and Bardsley (1977). \

The simulation approach—quite often classified as experiment by theoreticians
and as theory by experimentalists—is closely related to so-called free path methods
in transport theory. These methods are, in dilute gases, fully equivalent to a
Boltzmann equation approach, as shown in our context, for example, by Fahr and
Miiller (1967).
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The main advantages of the simulation approach are the conceptual simplicity,
the ease with which correlation functions and other “difficult’ averages can be calculated,
and the appearance of safe error estimates in the form of standard deviations. Draw-
backs are the need for quite detailed differential cross sections a(c, ), and the slow
improvement of the accuracy (proportional to [time]?) with increased computational
effort.

A good exposition of the simulation method as applied to ion transport problems
is given by Lin (1976), while applications to electron transport problems have been
discussed very satisfactorily by Braglia (1977), and Braglia and Baiocchi (1978).

23. Discussion

Let us begin by recapitulating the main points:

(1) Section 4 gives the derivation of kinetic equations and identifies the transport
coefficients as moments of the respective functions f* which are solutions of these
equations. Limitations of the theory are pointed out in Section 5 and Note [1]].

(2) The kinetic equations were obtained by eliminating the density gradients.
Their solutions are functions of ¢ and E only. (In Sections 15-20, we have used
f(c) as a generic symbol for the functions f*)(c) and it is not necessarily the distribution
function itself.)

(3) The business of solving the equations is separated entirely from the method of
deriving them.

(4) The choice of basis sets in expansions is an auxilliary to the process of solution.
The weight function chosen may in some sense represent the true distribution function
but that may be likened to a scaffolding which resembles the structure it helps to build.
Some of the parameters in the weight function will therefore be related to some
physical quantities, but they are not, in general, precisely those quantities.

(5) The examples given in previous sections are for a cold gas hard-sphere model
for different mass ratios. They are intended to be only illustrative. We point out the
features that are likely to survive in the calculations for realistic cross sections.

We believe that we have outlined an economical path through the complexities
of the problem from the conceptual as well as the computational point of view. It is,
of course, possible to obtain results without following this path, but whenever that
has been done, it has led to some complications. We illustrate this remark by an
example:

Suppose we make a polynomial expansion of the complete space-time dependent
distribution function, that is,

flr,e,t) = n(r,)w(a, ¢) Y. "N ae) fVr, 1), (241a)
where !

JO =<pM(ae)> . (241b)

The quantities of physical interest, the average velocity {(¢) and mean ion energy
3kT; = tm{c*), now depend upon space and time. They may be calculated from
equation (241b) by setting v = (0, 1, m) and (1,0, 0) respectively (cf. Table 2). Now
if one argues that the basis parameter 7T}, is equal to T, then «®> = m/kT, and we have

3 = aXc?). (242)
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In the hydrodynamic regime, all space-time dependence is carried by n(r,t) and its
derivatives, and we write

FO1) = ¥ O 0=V, (2432)
k=0
Tt =ntY TP O (-V)n. (243b)
k=0

Equation (242) is equivalent to f§'® =0, and by equation (243a) we have the
constraints
U — 0k =0,1,2,.., (44)

which provide the means for determining the coefficients T{* in equation (243b).

The transport equations are obtained by substituting the expansion (241a) into
Boltzmann’s equation, expanding all quantities, including o, in gradients of n(r,t)
and equating coefficients of (V¥)n. This is a possible scheme and has actually been
implemented for £ = 0,1 by Viehland and Mason (1978)* for the single b-parameter
situation outlined above and by. Lin et al. (1979¢) for several b-parameters. Their
notation is, of course, different. There are three points to be made: (1) no matter
what notation is used the fact that « of the weight function has to be expanded in
terms of Vn, generates lengthier expressions at all levels; (2) the constraints (244)
have to be imposed at all levels of approximation; (3) most importantly, one loses
the flexibility of being able to adjust the parameter «, which has been found so impor-
tant in computations (see e.g. Lin er al. 19795; Forsth 1979). Some criterion for
relating T}, to E/n, has, of course, to be provided, but this may be different for different
problems; for example, when inelastic collisions occur, it was found by Lin et al.
(1979b) that a T, which gave a good fit to the distribution function in regions of
dominant energy exchange provided optimal convergence of successive truncation
approximations.

These remarks concern accurate calculations with large basis sets. The original
motivation for introducing a Vr dependence in a seems to have been to obtain a
justification for qualitative formulae, such as the generalized Einstein relations [10].
For these purposes and low order calculations, the approach has some advantages.

With regard to future applications we can sum up our findings as follows.

(1) Formulae for drift and diffusion are given by equations (176), (180), (181),
(184),-(186), (189), (191), (192) and (193) and in Table 2; they are to be used as
indicated in conjunction with methods suited to particular representations.

(2) Accuracies comparable with or better than those from the currently available
experimental data (0-19 for K and 19 for D) may be achieved from the best
methods. Actual calculations will need larger basis sets than have been previously
used. The difficulties with the computation time, reported in earlier work, can be
largely overcome with proper management as outlined above.

* In this case equation (243b) takes the form T; = T3© — ;. Vn. Since the only constant vector
in the problem is E we have T\ ~ E, so that we may write T; = T;(1 —AE.Vn). That is to
say, the scalar temperature T; can depend on the density gradient only through its component dn/dz
in the field direction. Hence, the quantities A, in equations (33), (34) and (35) of Viehland and
Mason (1978) should vanish identically.
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(3) Gaussian weight functions provide basis sets adequate for most purposes if
the cross sections are well behaved. We have indicated how the parameters in the
basis sets are to be chosen, and the conditions under which these methods are
applicable.

(4) With polynomial moments, that is, when the set ¥ of Section 17 consists of
functions ¢, ce, ..., the use of the adjoint operator (Section 17a) will make it possible
to compute the collision operator matrix elements for many different types of functions
in the set ®. Thus one is no longer constrained to use gaussian-based sets ®. The
same computational method will also be suitable in the case of more unruly
cross sections such as those for the cases of charge transfer and electron—-mercury
interactions.
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Part V. The treatment of reactions

24. Introduction (V)

In the discussion of drift and diffusion calculations in Part IV it was assumed that
the number and properties of the charged particles were not changed in collisions
with neutrals. In this part, we remove this restriction and allow reactive processes
to take place. The term ‘reactive processes’ is here to be interpreted in a wide sense;
it includes not only processes where a change in the chemical composition of the
constituents takes place, but also processes such as electron impact ionization and
attachment, and positron annihilation in gases (Massey 1976; Campeanu and
Humberston 1977). As in Part IV, we consider only homogeneous electrostatic field
conditions, with no magnetic field present.

Our discussion will be restricted to unidirectional reactions and systems in chemical
equilibrium, as these two cases can be treated within a hydrodynamic framework.
The unidirectional reactions are irreversible ones of the type-4A+B — C+D, and it
is supposed that only the transport properties of the charged species 4 with the
distribution function f(c) are measured. Examples of such reactions are the loss and
attachment type of reactions involving electrons lost by capture to form negative -
ions, or positrons lost by annihilation. For this type of reaction, we will be
primarily interested in determining the asymptotic reaction rate o, defined by equations
(4) and (8a). On the other hand, systems in chemical equilibrium are governed by
reversible reactions of the type 4+ B = C+D. The overall reaction rates are zero,
and the interest is primarily in finding the drift velocities and diffusion coefficients
describing the transport not of the particles but of the electric charge, and the relative
numbers of the different charge-carrying species.

A general reacting system with different charged species 7, j = 1,2,... all present-
in trace amounts only, can be described by a system of kinetic equations of the form

(at +c ’ar +ai 'ac + Ji(PC) +Ji(RL))fl.(n, c, t) —'J;i JI(JRG)L( n,c, t) =0 , ’ (245)

where J{® is the particle-conserving or nonreactive part of the collision operator,
J®D represents reactive losses, summed over all reactive channels depleting the i
species, and J g‘G) fi(c) represents ‘reactive gain’, i.e. the influx of particles i with velocity
¢ from reactive i-neutral collisions, integrated over all initial j velocities ¢’. Expressions
for the collision operator with reactive terms included are given in the following paper
by Kumar (1980aq).

In the case of unidirectional reactions, the reactive gain term in the equations (245)
is zero, and the determination of the asymptotic behaviour of fi(r, ¢, ) can be formu-
lated as an eigenvalue problem. This will be considered in the next section (25).

For systems in chemical equilibrium, all the reacting species will asymptotically
have the same distribution in configuration space, and the kinetic equations in the
hydrodynamic limit can be found by using this as an ansatz in the equations (245),
together with the usual expansion in powers of the spatial gradients. This will be
considered in Section 26.

The solution of the equations (245), in the hydrodynamic limit, is considerably
more demanding in terms of computer time than the solution of the similar equations
without reactive terms, but not prohibitively so. More serious for practical calcula-

tion on real ion—molecule systems is the nearly complete lack of reasonable inelastic
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and reaction cross section data, needed as input for the transport calculations.
However, a lot of effort is presently being invested in improving this situation (Miller
1976), and it is to be hoped that this will increase the usefulness of a transport theory
for reacting ion systems.

25. Unidirectional Reactions

In the case of unidirectional reactions, one charged species only is involved in
the transport problem, and the formal description presented in Sections 2 and 4
applies. There we have noted that the presence of reactions not only leads to the
introduction of the reaction rate as an additional transport coefficient, but also makes
invalid the usual association of the drift velocity with the average velocity and of the
diffusion tensor with the velocity autocorrelation function. However, the modification
to these transport coefficients due to the reactions can be found, after the reaction
rate has been determined, by using essentially the same methods as for nonreacting
systems. This was discussed in some detail in the last part of Section 4, and we will
therefore here only consider the problem of calculating the reaction rate.

We assume the reactive gain term J® in the equations (245) to be zero, and
integrate over dr to obtain an equation of the form

0: f(e,t) +Z f(c,t) =0, (246a)
L =a.d,+JF 4+ JRD (246b)

The linear operator £ will be assumed to generate a complete set of orthonormal
eigenfunctions fi(c) with associated eigenvalues A;:

Zf{e) = 110, fw(c)fi(c)f,-(c) de = 5,,. (247a,b)

We make no attempt to justify this assumption. It can be shown to be correct with
certain model collision operators, but is certainly incorrect when runaways can occur.
For the sake of consistency the weight function w(c) must be given by the eigen-
function belonging to the lowest eigenvalue A,

w(e) = {fo(0)} . (248)

In terms of the eigenfunctions fi(¢) the general solution of equation (246a) can
be written in the form

fle,t) =} Bifie)exp(— ;1) o Bo fo(e)exp(—4o1). (249)

The hydrodynamic (i.e. long-time) behaviour is determined by the lowest eigenvalue
Ao (assumed distinct from all others), which is equal to the reaction rate, & = A,.
The determination of A, from equation (247a) is in principle a standard eigenvalue
problem, which can be solved by well-known methods. We will first sketch a
general—and usually also quite laborious—way of proceeding, related to, but not
equivalent to, the matrix methods for determining energy eigenvalues in quantum
mechanics. However, when the reactions are ‘weak’, often a simpler perturbational
approach can be used, and a scheme for this will be outlined subsequently.



Charged Particles in Neutral Gases 423

(@) Matrix eigenvalue method

To transform equation (247a) to a matrix eigenvalue problem, we first expand
f(c) in some basis set () and then form moment equations by multiplying with
moment functions ¥”(c) and integrating over de, in the same way as explained in
Section 17. We thus arrive at a set of homogeneous equations for the expansion
coefficients &,, analogous to equations (199a),

B AWO, Lo) =, o} = 0. (250)
v=1

This is an overdetermined system of equations, and has a solution only if the
determinant is zero:

det{(V, Z¢) —A(V, 9)} = 0. @51

The ‘secular equation’ (251) is a v,,-order algebraic equation for the eigenvalue /.
Its solution thus gives v,,,, in general different, eigenvalues. We are only interested
in the lowest of these.

Most textbooks on numerical analysis describe methods for solving matrix eigen-
value problems, and working computer programs are available as publications and in
computer libraries. Two points are, however, worth noting: Firstly, most methods
assume orthonormal basis sets (), ¢©?) = 4§,,.. To avoid an orthogonal trans-
formation, it is therefore convenient—and more so here than in the foregoing Part
IV—to start out with orthonormal basis sets from the beginning; e.g. with normalized
Burnett functions. Secondly, quite a few methods assume the matrix ({, £ ¢) to be
symmetric (or, if complex functions are used, self-adjoint). The field term a.0,
will, however, always induce asymmetries, regardless of the basis set, and the
last-mentioned group of methods can therefore not be used in general.

The choice of basis set, and the parameters occurring in it, is governed by essen-
tially the same considerations as in Part IV. Ideally, the size of the basis set and the
basis set parameters should be varied until converged values for the lowest eigenvalue
are obtained. Non-converged values are of little use, as there is no extremum theorem
showing the sign -of the deviation from the true value for non-self-adjoint eigenvalue
problems.

(b) Zero-field eigenvalue method

At zero field, only the collision operator J remains in the linear operator &£. It can
be made self-adjoint by extracting a Maxwellian w(ac) at the neutral gas temperature
as a weight function (Robson 19764, 1979),

flﬁ(”)(c).f (wyt(e)) de = fl//(”’(c) J(wy (o)) dc . (252)

With self-adjoint operators, the approximate solution of the eigenvalue problem
obtained from the use of a finite basis set or a set of trial functions will always give an
upper limit to the lowest eigenvalue, as is well known.

The solution of equation (251), using w(xc) as weight function, will thus in this
case give useful information about 4, even with a small basis set. Further, one is no
longer restricted to the use of a linear combination of trial functions, i.e. a basis set
expansion, but may alternatively use a nonlinear variational approach, as discussed
by Robson (1976a, 1979).



424 K. Kumar et al.

The zero-field problem is, of course, formally the same whether the test
particles are charged or not. . Recently, a theory of ‘hot atom reactions’ has been
presented by Robson et al. (1978), with a more elaborate discussion of what has here
been classified as the ‘zero-field eigenvalue method’. The theory also finds application
to electron attachment in molecular gases; a comprehensive analysis of this phenom-
enon in the zero-field Cavalleri experiment (Huxley and Crompton 1974) has been
given by Ness (1977), who considers ‘diffusion cooling’, ‘attachment cooling’ and
cross effects.

(¢) Perturbation method

The reactions can quite often be classified as ‘weak’, in the sense that the presence
of reactions does not greatly influence the form of the velocity distribution. The
reaction part of the collision operator can then be treated by perturbation methods,
as will be shown below, and this considerably reduces the computational efforts
needed for the determination of the reaction rate.

If the influence of the reactions on the form of the velocity distribution is totally
neglected, as is common practice in neutral chemistry calculations, the reaction rate
is obtained directly as an integral over this unperturbed velocity distribution. A
reaction theory using these assumptions, in a Burnett-function representation, has
been presented by Viehland and Mason (1977).

In a more general perturbation expansion, which will allow us to proceed beyond
the infinitesimally weak-reaction assumption, we may formally associate the reactive
loss collision operator with a smallness parameter ¢ (which in the end is put equal to 1),
and expand both velocity distribution and reaction rate in powers of this parameter:

¥ =a.0,+J =L g J®D, (253a)
f©) = fO) +efD(c) +&2 fP(e) + ..., (253b)
=2y =cea®) +e2a® + ... : (253¢c)

The zeroth order contribution to the reaction rate is by definition zero. Further, the
functions f(c) should fulfill the normalization and self-consistency condition

f Fe) de = 5,4 (254)

. Insertion of the equations (253) into (247a) gives, on equating the coefficients of
¢/ individually to zero, a system of equations of the form

LOFU(e) = (oD —J RLY £G=1(g) — i oa® U= (¢). (255)
i=2

Integration of this equation gives, using the normalization conditions (254) on the
fUs and the particle-preserving property of #®, an expression for « in terms of

f(i—l):
o) = f J®Y £G=1 () de. (256)
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The equations (255) and (256) are in a form equivalent to the drift and diffusion
equations in Section 16, and can be solved to successively higher orders with exactly
the same methods as described in Part IV. One simplification, however, is worth
noting: J® is spherically symmetric and all the /s thus have the same cylindrical
symmetry, while the distribution functions occurring in the diffusion problem have
different symmetries due to the vector form of the inhomogeneous term. It may be
noted at this point that endothermic reactions will often take place only in the high
energy tail of the velocity distribution. Here, there will be very few particles, and the
reactions may easily disturb the velocity distribution appreciably, making the
perturbation approach a doubtful procedure in some cases (to be tested by the calcula-
tions in the actual case). On the other hand, exothermic reactions (for nonresonant
processes) tend to take place more uniformly over the whole distribution, and drastic
(i.e. order-of-magnitude) changes in the distribution due to reactions are less likely to
occur, increasing the chances of a successful perturbation approach.

The methods described in subsection (a) and here have been applied to the recently
demonstrated phenomenon of ‘attachment cooling’ by Crompton et al. (1979). For
discussions of ionization and attachment see the papers by Taniguchi et al. (1977;
19784, 1978b) and Sakai et al. (1979) and the references quoted by them.

26. Systems in chemical equilibrium

The stationary transport of a multicomponent system in chemical equilibrium can
be formally treated very much in the same way as the transport of a one-species
system, outlined in Section 4. To attain this formal equivalence, it is only necessary
to sum over all charged species to obtain the density and velocity distributions of the
charges, regardless of charge carriers.

For the sake of simplicity, we consider here only the lowest level kinetic equation,
i.e. the one determining the drift velocity. This equation may be obtained (compare
equation 180a) by averaging equation (245) over r and assuming /0t = 0:

(@0 +J70 +I () + T TS f(c) = 0. (257)
J

The charge velocity distribution f(c) is given by

10 =3 5@ 259)

Moment equations can be formed in the usual way by expanding f(c) in a basis
set and integrating the Boltzmann equation with suitable moment functions. The
dimensions of basis and moment function sets, however, will have to be increased to
encompass the whole ‘multispecies space’.

We thus insert into the Boltzmann equation an expansion

fl@) =YW eM@) =3 3 & 00 (259)

and use moment functions Y™ (c) = ¥{"(c) to obtain linear algebraic equations of

the form
Y 2™ =0, (260a)
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where the matrix elements £ are given by

L = L = o [0+ 0O T80 de (Y95 o8 de.
(260b)

Equation (260a) should be solved with the normalization condition [ fle)de = 1.
The only essential difference between this equation and the one-species mobility
equation is the i-dimensional summation. The symmetry in ¢ space is not changed
and, in particular, in a spherical harmonic representation the tridiagonality in the
/index is preserved. In a Burnett-function representation, the equations can thus be
reduced in effective size and solved as outlined in Section 19.

From the solution of equation (260a), both the partial velocity distributions fio),
normalized to the mole fraction x;, and the total velocity distribution f(c), yielding
the drift velocity, are found.

The hydrodynamic limit assumption that is implicit in omitting the time derivative
from equation (257) is more serious here than in the one-species transport theory.
In the latter case, the hydrodynamic assumption implies time scales (and corresponding
length scales) that are long compared with typical energy-relaxation times, while,
in the present case, the time scales must also be long compared with the mean time
between reactions; a condition which is often not fulfilled experimentally. If the
reactions are slow on the energy-relaxation time scale, one may, however, break the
description of the system up in two parts, firstly an uncoupled treatment of the
different species as undergoing unidirectional reactions, and then a purely hydro-
dynamic (i.e. non-Boltzmann) description of the coupled system.
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Part VI. Concluding remarks

The reader interested in calculating drift and diffusion will find a summary of
methods and results in Section 23. If calculation of higher transport coefficients is
contemplated, appropriate kinetic equations may be taken from Section 4 and solved
by the methods discussed in Part IV. The manifestations of their effects in experi-
ments have to be carefully disentangled from those due to non-hydrodynamic phenom-
ena and time-dependent transport coefficients (Section 3). The same methods apply -
for calculations in the presence of (1) inelastic effects due to the structure of gas atoms
(the appropriate collision operator for this case is treated in Section 14); (2) mixtures
of neutral gases (Note [15]); and (3) loss- or attachment-type reactions (Section 25).*
Greater modifications are needed when different charged species or ions with internal
structure are present (Section 26). The calculation of reaction rates is discussed in
Sections 25 and 26.

‘Most of the theory outlined in this paper is for an infinite medium, with no
boundaries. This is an idealization, and proper analysis of experiment requires that
boundaries be taken into account, which in turn requires a proper kinetic treatment
of the boundary layer. Sometimes, these effects can be dealt with by using ‘effective’
transport coefficients; this was briefly touched upon in Section 7.

Computer simulations are an effective means of obtaining physical insight into
all aspects of swarm behaviour. They can also be used to obtain accurate values of
transport coefficients (Section 22).

The mathematically inclined reader will find a discussion: of the limitations of
hydrodynamic theories in Section 5; of the problem of finding accurate solutions of
kinetic equations in Sections 17-21; of the properties of the collision operator in
Part III; of the properties of the three-dimensional translation operator and the
corresponding Taylor series in Appendix 3.

The appended Notes will give some idea of how the work stands in relation to
special treatments of the problems considered here and in the broader context of kinetic
theory.

The problem we have treated in this paper is that of calculating the transport
properties from given cross sections, which may be specified by giving an interaction
potential. The inverse problem, that of finding the potentials or cross sections from
given transport properties, is perhaps of greater practical interest. While the solution
of the direct problem is unique, that of the inverse problem is not. The ambiguities
in the solution of the inverse problem are resolved in various ways (Elford 1972,
Section 2.2¢; Huxley and Crompton 1974, Ch. 13; Milloy et al. 1974, 1977;
Viehland et al. 1976; Gatland et al. 1978; Maitland ez al. 1978). It will be seen from
these discussions that the greater the accuracy in solving the direct problem the better
it is for the solution of the inverse problem, although some ambiguity will always be
present.

The problems that need further elaboration are the problems involving boundaries,
charged particles with internal structure and many species of reacting charged particles.
Methods which may be used in these investigations have been pointed out.

Further afield, many problems have been treated in the presence of weak high
frequency fields. These treatments can be generalized to the situation where a strong

* The kinetic theory part of the treatment of positrons in gases (Massey 1976; Campeanu and
Humberston 1977) may well be improved by use of these methods.
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electrostatic field is present along with a superimposed weak oscillating electric field,
by replacing the collision operator J occurring in these treatments by the operator
a.0,+J. Similarly, the treatments of processes involving large density gradients
can also be generalized. In all such cases, attention has to be paid to the time scales
in the processes involved to ensure that the hydrodynamic or quasi-hydrodynamic
description can be applied.
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Notes

[I] History. Kinetic theory is particularly well served by studies of a historical
nature. Among the works of a general nature we mention those by Brush (1972)
and Truesdell (1968). Of more immediate interest will be the historical remarks by
Uhlenbeck and Ford (1963), Chapman and Cowling (1970) and Koga (1970).
Specifically for the subject of this paper, systematic historical comments may be found
in the texts by Huxley and Crompton (1974) and McDaniel and Mason (1973). For
greater detail about recent history, see Kumar and Robson (1973) and Lin et al.
(1979b). A shorter review covering many of the points discussed in the present paper
was given by Skullerud (1977).

[2] Computer simulations or Monte Carlo methods. These methods first came into
prominence in connection with the kinetic theory of liquids and that is still the most
common association in kinetic theory (Watts and McGee 1976; Berne 1977). The
technical problems in simulating gases and swarms are, however, somewhat different.
The first such simulation seems to have been made by Yarnold (1947), in connection
with a discharge-related problem. An important early application by R. W. Hamming
was reported in Wannier’s (1953) paper. Itoh and Musha (1960) were the first to
simulate electron drift. The null-collision method was introduced by Skullerud (1968,
1973), and improved by Lin and Bardsley (1977). For a comparison between the
Boltzmann equation and Monte Carlo calculations in specific cases, see Taniguchi
et al. (1977) and Reid and Hunter (1979). Other references are given in Section 22.
That the computer simulations may be regarded as a way of solving the Boltzmann
equation itself has been argued by Bird (1970) in the context of rarefied gas dynamics.

There are three distinct sets of ideas involved in the topics mentioned above: the
first is that of the molecular dynamics simulations of liquid theory which give informa-
tion on both the equilibrium and nonequilibrium properties; the second concerns the
so-called ‘straight” Monte Carlo simulations, which sample the equilibrium configura-
tion space and yield only the equilibrium properties; and the third is that of the
simulations used for the problems considered in this paper which give the transport
properties for dilute systems.

[3] Accuracy of present day experiments. Discussions of the problems involved
in estimating accuracies have been given by Elford (1972) and Huxley and Crompton
(1974, Ch. 10, 11, 12). From these and other sources we surmise that the best
experiments may be relied upon to provide the drift to 0-5%; and the diffusion to 1%.
Measurements themselves may be repeatable to within 0-19, for the drift. We thus
consider it reasonable that in theoretical calculations one should aim for a precision
of 0-19% in drift and 19 in diffusion.

[4] Kinetic theory models. 1In other areas of kinetic theory there is a lively tradition
of solving model problems with mathematical rigour. Some references are given in
Section 5. For a refreshing discussion see Blatt (1975). However, there is little of
that in connection with the present problem. Here the models are used more as an
aid to physical reasoning and to provide estimates and insights not easily found
otherwise.

[5]1 Cold gas approximation. 1In this approximation the gas atoms are initially at
rest but are free to recoil. It is evident that the two assumptions are not compatible.
However, if we consider the motion-of only one test particle in an infinite gas, the
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perturbation would be very small indeed. The test particle may set a gas molecule in
motion but is not likely to meet with it again. Such approximations must have
occurred earlier in kinetic theory, but the first systematic discussion is by Wannier
(1953). It does not seem to have been used much until recently (Paveri-Fontana 1970,
1974; Skullerud and Forsth 1979). 1In the case o(g,y) ~ g*, y < 0, after a scale
transformation the kinetic equations (Section 4) in the limit £ — co are the same as
those for limit 7, — 0. However, the limit 7, — 0 does not necessarily imply the
limit £ — oo and some further clarification is needed for the case of general cross
sections.

[6] Swarm experiments. Systematic and comprehensive expositions have been
given in the books by McDaniel and Mason (1973) and Huxley and Crompton (1974).
A shorter review is made by Elford (1972) and a simpler account may be found in
the text by McDaniel (1964), Chapter 11.

[7]1 Expansions in terms of density gradients and Fourier series. Expansions in
terms of density gradients are implicit in the works of Wannier (1953) and Kihara
(1953). The first systematic use of Fourier expansion in this context was by Parker
and Lowke (1969). Both approaches are discussed by Kumar and Robson (1973).
For extensive discussions and applications of the continuity equation, see Huxley
and Crompton (1974).

[8] Path integral methods. These methods have their origin in the work of Wiener
on Brownian motion and are used mainly in quantum statistical methods (see
e.g. Wiegel 1975). In kinetic theory (Reif 1965) they arise from the integral equation
for the distribution function and have similarities with simulation methods (Fahr
and Miiller 1967). The path integral methods are to be distinguished from free path
methods also used in kinetic theory.

[9] Integral equation approach. The idea that the integro-differential equation of

Boltzmann can be converted to an integral equation and solved in that form goes back

to Hilbert. In the present context, the books by Reif (1965) and Koga (1970) and the

~ papers by Paveri-Fontana (1970), Cavalleri and Paveri-Fontana (1972) and Braglia
(1977, 1978) may be consulted.

[10] Generalized Einstein relations. Huxley and Crompton (1974) have argued
that the Einstein relation between mobility and diffusion at zero field should be
properly called the Nernst-Townsend relation. Wannier (1953) suggested that a
similar relation should hold in the presence of fields. A clear statement of the
generalized relations along with a thermodynamic derivation was given by Robson
(1972). Since then they have been widely used in solid state physics (Robson 1973b;
Chattopadhyay and Nag 1977) and kinetic theory (Skullerud 1976; Robson 1976b).
Considerable effort has been denoted to understanding them from a theoretical point
of view (Wannier 1973; Kumar 1977; Viehland and Mason 1978; and references
quoted by Skullerud 1976). These relations are exact only for the constant mean free
time model. Our point of view regarding them is expressed at the end of Section 3.

[11] Derivation of kinetic equations. The Boltzmann equation can be decomposed
into simpler equations in a number of ways, depending on the strength of the external
field, as discussed by Chapman and Cowling (1970). All such methods are variants
of the original Chapman-Enskog method and are sometimes called the Chapman-—
Enskog method. There is no fixed usage for the latter term, although specific meaning
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is attached to it in the context of the theory of neutral gases (see e.g. Uhlenbeck and
Ford 1963). The assumptions regarding the hydrodynamic regime are similar to those
involved in the theory of neutral gases. The main point of the derivation given here is
the use of equations (3) and (31b), for which see Note [7]. The derivation may be
combined with other assumptions about the distribution function, with consequent
complications in the equations; an example is discussed in Section 23. Limitations
of such theories are discussed in Section 5. They are not rigorous in the mathematical
sense, although in kinetic theory and chemical literature they are sometimes described
as rigorous.

For discussions involving ‘time-scales’, see Schruben and Condiff (1973) and
van de Water (1977).

[12] Transport cross sections and collision frequencies. The quantity

o(g) = 2 f o(g. 7) (1 — cos x) d(cos )

is called the momentum transfer cross section, and nyg 6*(g) is the corresponding
momentum transfer collision frequency. Similar interpretations may be made for
the quantities 6'”(g) for / > 1. As pointed out at the end of Section 8, we prefer to
deal with these because they occur naturally in our work and because of their
relationship to orthogonal polynomials. In the literature, related quantities

+

1
0ig) = 2n f o(g, 1) (1 —cos’y) d(cos 1)

are often used. The integrals Q¥ of kinetic theory are defined in terms of Q,(g).
The relation between ¢ and Q, is straightforward (Kumar 1967),

o [11 [31] o
4 (g) = ZO a, Ql(g), Pl(x) = ZO ayx .

For another point of view concerning the use of these quantities and the evaluation of
related integrals, see Suchy and Rawer (1971), Thiel and Suchy (1977), Weinert (1978)
and Weinert et al. (1978). ‘

[13] Fokker—Planck expansion. There is considerable literature on the Fokker—
Planck expansion in plasma physics (see e.g. Allis 1956) and in stochastic theories
(see e.g. papersin the collection by Wax 1954). In plasma physics the change in velocity
Ac (cf. equation 55) is considered small by virtue of the long-range nature of the
Coulomb force and the resulting small-angle deflections in the particle trajectories.
Expansions up to second order in Ac are used throughout irrespective of the mass of
the particle. The general expansion is sometimes also called the Kramers—Moyal
expansion after Kramers (1940) and Moyal (1949). The related literature is reviewed
by Braglia (1978).

The presentation in Section 10 is not closely connected with such theories or special
approximations used in them. It is a straightforward expansion of the (foreign gas)
collision operator in powers of the mass ratio my/(m+m,). Complete formulae were
first derived by one of us (H.R.S.) starting from cartesian tensors in cartesian
coordinates. . The derivation given in the present text is somewhat more compact.
The actual expressions obtained in the two cases have different appearance. At the
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time of writing we have not been able to show their equivalence but results up to
fourth order are found to agree.

[14] Differential operators for spherical harmonic decomposition. FEarlier calcula-
tions of these operators occur in connection with the electron problem. The expansion
is motivated in analogy with the Fokker—Planck expansion, with the change in energy
Ae playing the role of Ac in the Fokker—Planck case. To give proper meaning to the
‘order’ of the expansion, certain ‘consistency’ considerations have to be introduced.
The temperature dependence is not treated separately and no reference is made to
the cold gas limit. The related literature is reviewed by Braglia (1978); see also
Lo Surdo (1971). It will be seen that our motivation is quite different and we circum-
vent the problems of previous derivations.

[15] Mixtures of neutral gases and Blanc’s Law. The work in the text is easily
generalized to the case when the charged test particles move in a mixture of neutral
gases. The single species collision operator is replaced by

J(f) = Zi:xiji(f),

where x; is the mole fraction of the ith neutral species and J,(f) describes the collisions
between the charged particle and the ith neutral species. If K; denotes the mobility
in the pure neutral gas #, then Blanc’s law (McDaniel and Mason 1973) states that the
mobility K in the mixture is given by

K=Y KL,
i

The general nature of the deviation from the law at low fields was pointed out by
Robson (1973a).

Milloy and Robson (1973) and Whealton et al. (1974) extended the momentum
transfer theory of Mason and Hahn (1972) to obtain corrections to Blanc’s law
which agree with the results from both a low-field solution (Whealton and Mason
1974) and a high-field solution (Viehland and Mason 1975) of the Boltzmann equation.
These approximate analytic formulae involve the logarithmic derivative of the
mobility, which is familiar from the generalized Einstein relations [10] and other
similar results (Viehland ez al. 1974).

[16] Theory of electron swarms.. In view of the simplicity of the collision operator
for this case it is convenient to use differential equations with various numerical
methods (Huxley and Crompton 1974). Usually the first two terms in the spherical
harmonic expansion suffice. Calculations with three terms have been reported by
Ferrari (1975, 1977). Other theories are reviewed by Braglia (1978). In the presence
of inelastic interactions and highly anisotropic differential cross sections, such methods
are no longer useful and recourse to more general methods is needed (Lin et al.
1979b). Thus one might say that the gap that was apparent earlier between the methods
used in the theory of electron and ion swarms has been bridged.

[17] Moment equations. These equations have a long history in kinetic theory.
They are completely equivalent to the equations obtained by polynomial methods
(see e.g. Chapman and Cowling 1970). To look upon these as matrix equations is a
relatively recent approach and so is the use of weight functions that are different from
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the equilibrium Maxwellian (Weitzsch 1961; Everett 1963; Suchy 1964; Weinert
and Suchy 1977; and other papers quoted in the text).

[18] Momentum transfer theory. This theory is significant in having produced
formulae which are simple and at least qualitatively correct for arbitrary fields and
various ion-neutral interactions. One takes the moment equations from the constant
mean free time model (Section 18d), but inserts collision frequencies with an energy
dependence prescribed by the actual law of force operating between the ion and gas
molecules. The resulting equations are easy to work with and produce reasonable
results. While these are considerable advantages in a complex situation, the theory
is not suitable when high accuracy is desired. It has been extensively used (Mason and
Hahn 1972; Hahn and Mason 1973; McDaniel and Mason 1973; Milloy and
Robson 1973; Whealton et al. 1974; Robson 1976b).
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Appendix 1. Notation and Frequently Used Formulae

As far as possible we have tried to assign to the symbols the meanings conventionally
associated with them. It should help in recognizing them, although such associations
are not uniform throughout the literature. The symbols are defined where they first
appear. At a subsequent appearance there is a reference to some equation where the
symbol was previously used, or to the defining equation itself. Sometimes the defini-
tions are repeated so that a long search should not be necessary at any point. A
description of conventions used and a list of frequently used formulae follows.

A group of equations occurring together should be read as a whole: the first
equation usually contains abbreviations which are explained in subsequent equations.

Vectors and tensors are denoted by bold face type and used in the conventional
way. The second order unit tensor is 1. If ¢ is a vector, ¢ is the unit vector in the
direction of e¢. Sometimes ¢ is used for the spherical polar angular variables (6, @)
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of ¢ = (c,0,9). The volume element dé is d(cosf) dg. We reserve ¢ for charged
particle velocity, ¢, for neutral particle velocity, g and g’ for relative velocities and
W for the drift velocity.

Spherical harmonics YP(@), irreducible tensors ¥V etc., Racah coefficients W and
Wigner coefficients (I; my I, m, | I3 m3), and the corresponding coupling and recoupling
schemes for irreducible tensors, all follow the conventions used in the book by Fano
and Racah (1959). These have been summarized, for instance, by Kumar (1966,
1967). In these references the Gothic symbol 9 was used, for which we have written
Y in this paper. The convention of round and square bracket superscripts for tensors
is explained in the references above and is summarized by

b = (whnyx. (A1)

The rank of the tensor is associated with / (=0,1,2,3,...); for each /, the index m
takes the values /,/—1,..., —/

Collision operator J and translation operator T. Any symbol with leading letter
J (or T) denotes an operator or matrix element related to the collision (or translation)
operator. Subscripts, superscripts and other indices are added to emphasize different
properties of the operators or to specify the derived quantities. The symbol T is also
used for the temperature and, in other papers, for the Talmi coefficients. The latter
do not occur in this paper and no confusion should arise.

Distribution function f. Any symbol with leading letter f denotes a function of
¢ or an expansion coefficient related to the distribution function. Bold-face fis used
when such a quantity is a tensor. Indices are attached to emphasize certain properties
or to specify the derived quantities. Note that f(°(c) is the space-averaged distribution
function in equations (33); f{°)(c) is a function of the scalar variable ¢ occurring in
the spherical harmonic decomposition (Section 16); while fy(co) is the distribution
function for the neutral gas and a function of the neutral velocity vector ¢,.

Differential cross section a(g,y). Derived quantities o,(g) and ¢'”(g) are defined
by equations (58) and (59). The symbols a(/; /, I;) and &(/'1/) are constants not related
to cross sections (see below).

Weight functions W (c), w(c). These are functions of the three-dimensional vector
c. They are not to be confused with the magnitude of vectors W used for the drift
velocity.

The Maxwellian is denoted by

w(a, ¢) = (02/2m)%? exp(—1a’c?), fw(oc, c)de =1. (A2)
Burnett functions T(c). For these, see Kumar (1966, 1967) or, closer at hand, -

Section 2 of the second accompanying paper (Kumar 19806). Frequently used formula
are:

PO = 99, v = (L m); @y
B5(e) = Ro0) YOO, (A%
Rul©) = Nulel/2' SB36), @)

szl = 273/% T+ 1)/ Tv+1+3), (A6)

the S{¥,(4¢?) being Sonine polynomials.



438 K. Kumar et al.

Another frequently used normalizing constant is
N% =232 T(v+ DT (v+1+3).
The Legendre polynomial P,(x) is given by
PO = 3 anx™, = ()27 () (5%),
where [1/] is the largest integer less than or equal to 1/
The coupling rule for spherical harmonics is

Yﬁi](é) Yryzﬂ(é) = Z o(Lil,D(ymyly my| lm)Y,f,l](é) >
I

QL +DQl,+ 1))% 1(9)
4n(2g+1) wg—1)t(g—1)1(g—13)’

Wg) = g!Q2gY), 29 =1L+L+1;;
o(,1,1) =0, if I+l,+I, odd.

o(l, 1, 13) = (

An alternative expression is

_ ihith—ls W)%
o(lilly) =i ( LD (1,01,0]1,0),

but
: G110 =i"U*3(1'010]10).

The addition theorem for spherical harmonics has the form

Lo dm o
P(@.b) =57 Y YR@YDE).

The ‘plane-wave’ expansion is given by
]

exp(2a.b) = Z’o ,-Zo Y, NZ(aby*"*'Ya) YOB).

-1

Appendix 2. Collision Operator for Stationary Cold Gas
(a) Fokker—Planck Expansion

We introduce the Fourier transforms

F(k) = fexp(—ik.c) f(e) de,
fle) = (2n)~3 f exp(ik . c) f(k) dk,
J(f) = @2n)~¢ f exp(ik.c) J (k, k') f(k') dk dk',

Jk, k") = fexp(—ik.c) J(exp(ik’ . c)) de.

(AT)

(A3)

(A9)
(A10)

(A1)
(A12)

(A13)

(Al14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)
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For the stationary cold gas, we have

J(k, k) = f&(co) exp(i(k' —k).c){1—exp(ik.(c—c"))} d7V", (A21)

with
d¥ =go(g,x)dg dgdG. (A22)

The integration over dG in equation (A21) may be carried out immediately. We
introduce a vector h = (h,k, w) by

c—c = u(g—9g) = uoh, . (A23a)
h? = 2g*(1— cosy), COSK = jl; = h/\/Zg, (A23b)

and make the plane-wave expansion of the exponential in the braces in equation (A21):
exp(ipo k. b) = Y. g™ (Gh) >+ Y (k) Z, k) . (A24)
nlm

This may be taken as a definition of the quantity Z. The mass dependence of
equation (A21) arises entirely through the term in the braces and is made fully explicit
here. v

We may now write

JUe k) = Y g2 ZIGk) BEO(k—K)  (nlm # 000), (A25)
nlm .
Pty = — f exp(—ik.g) B YO g olg, ) dg'dg.  (A26)

Substituting this into equation ((A19) and noting that the k" integration defines a
convolution, we have

J(f) = Y 13" (PSR (e) f(9) - (A27)
nlm

The tensor differential operator Z is obtained by replacing ik by d/dc in the expression
for Z defined by equation (A24). We do not require the explicit form here. The
tensor ¥ is obtained from equation (A26) as

?a(e) = 2n)~° feXp(ik.C)i’f.?”(k) dk = — f(%h)2"+’Yﬁ’(ﬁ)g (g, %) 49" le=g-
(A28)
The integration in equation (A28) is performed by taking the z axis along g (=¢)

and noting that in this coordinate system the azimuth of & and ¢’ is the same. The
result is

—2nYP(©) f(%h)“* 'P(cosx) ca(c, x) d(cosy). (A29)

The angular integration can be separated by expanding

o(c,x) = ;.Zo {@2+1)/4n} 6,(c) Py(cos 7) (A30)
and introducing the variables

X = cosy, y =cosk = {J(1-x)}* = h//2c. (A31)
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We note further that

5(1—x) = zio 122+ 1)Py(x) (A32)
and, at x = 1, y = 0 so that from equations (A28) and (A29) we have
PEe) = Y(@) Wu(©), (A33)
°p.(c) = ; Aty al,, (A34)
+1 :
ay = 3Q21+1) f_l YRR dx,  y = {F(1-x)}, (A35)

where we have added the superscript ‘0’ at this point to emphasize that these
quantities are for the stationary cold gas. The coefficients a?;, are discussed in the
next subsection of this appendix. The quantity ¢» was defined in equation (59)
of the text; see also Note [12].

Now we find the scalar form of the operator in equation (A27), that is, we carry
out the summation over the index m and show that, for an arbitrary function f(c),
we have

l v
Y IENY @) f(e) = SY(f(9). (A36)
m= -1
It is more convenient to first show the adjoint relation
i ~ ~ -
2 YO ZE(0(0) = S™(e(e)). (A37)
m= -1

Note that the operator relation corresponding to equation (A24) is
exp(V.0) = Y, GV)Y"YP(P) ZLn. (A38)
nlm

Since T'= T ! we have

~

253 = (=)' zh. (A39)

In equation (A37) let ¢ = exp(ik.c) and use the relation (A39) and the fact that
from equation (A24) we have

ZUGik) = N2 (ik)>"+ YW(k). (A40)

The summation over m in equation (A37) is now an application of the addition
theorem of spherical harmonics. One gets

5”’(exp(ik.c)) = (=) {QI+1)/4n} N3P . k) (ik)*"* ' exp(ik . c). (A4])
The operator form is obtained by noting that
(ik)'P(é.k) = [i]) a, (&.ik)y =2 (ik)* (A42)
and replacing ik by d/de. Since é.d/de = d/dc we have

~ [31]
S = (=) {Q1+1)/4n} N3 Y a,(d/de)' ™2 VEetn, (A43)
r=0
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~ It is important to note that terms in ¢ in equation (A42) come from the spherical
harmonic in equation (A28) which is not operated upon. Hence they have to be
kept to the left of differential operators in the substitution ik — d/de.

From the adjoint relations

[¢.(d/do)]” = —(d/de).& = d/de+2/c), [V~ =V2, (A4d)

where [A]~ = A4, one gets

2l+1— il d 2\~
nl z v2(n+r) }
§%= 4m =0 (dc ) ) (A43)

The forms given in equations (81) and (83) are obtained by substituting equations
(A36) and (A45) in (A27), and similarly for the adjoint operator.

(b) Coefficients af,

These coefficients are pure numbers defined by equations (A35). Since the
coefficient of P,(x) is a polynomial in x of degree n+1, it follows that '

ah =0 for A>n+l. (A46)
From the coefficient of the highest power one may derive
aitt=(=)r27t @G, au=(-2)7". (A47a,b)
It is evident from equation (A35) that
alo = 90. (A48)

When / = 0, the use of the identity (Erdélyi et al. 1953, p. 214)

BN ! < _y 27‘+1 (nz-'-‘r)
A=y =2 Y Yy G R (A49)
in equation (A35) gives
2n
PPt B C) S (A50)

n+i+1 ()7

The general coefficient may be expressed as a linear combination of the coefficients
with / = 0. Using the relation

[31]
YRO) = ). aay? (A51)
in equation (A35), we have
i _ 2 o=l () (22
ay = Z A y+1-r0> a, = ( ) (r)( 1 ) (A52a9b)

r=0
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The coefficients satisfy the recursion relations

21—-1 -1 )
arl}z =_la:+1,l—1 - _la'h 1,1-25 (A53a)

A+1 A+l A at-1

2541 = ap'},l—22+3anz A—1m

(A53b)

These may be verified by reducing the index n in equation (A35) with the help of
the following identities obtained from the recursion relations for the Legendre
polynomials:

21-1 ,_ -1 ,_

YRO) = ¥ R0) - T R0), (AS4a)
22 P;(x) = (1—x)P( )—P(x)—iil—P x) — 4 P,_(x) (A54b)

Yo E\xX)= X)Ex) = I, I+l At a1 A

The coefficients satisfy the sum rule
Y ak =0, n+l #0; (A55a)
A=0 .

=1, n=1=0; (A55b)

which may be verified by using equations (A15) and (A35).

To find numerical values of the coefficients, one would naturally use equations
(A46)-(A48) and (A50) where applicable. For other coefficients there are three
possibilities: (i) direct evaluation of the integral in equations (A35); (ii) use of
equations (A50) and (A52); (iii) use of the recursion relations (A53). The sum rules
(AS55) provide a useful check on the calculations.

(c) Differential Operators for Spherical Harmonic Decomposition

The argument here is similar to that in subsection (a) of this appendix. We present
it in an abbreviated form. Consider the Fourier transform

F = “fexp(—ikcz) ottt j,"(f) de?. (A56)
From equations (101) and (60) this can be written as a three-dimensional integral :
F =2 f 9(E) e (Y EHE) ¢ exp(—ike?)
—Y(&) " exp(—ike?)}g o(g, ) dGdgdg’ . (A57)
The delta function is removed by G integration giving

G =g, c=gy, ¢ =ug+uyg. (AS8)

The integration over the azimuth of §' can be performed by taking g along the
z axis and noting that the azimuth of ¢’ and g’ are the same in this coordinate system.
Then we have

‘ Y@ - 2z YW@ P(E.¢),
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and the integration over angles of g can be performed, leaving only the integration
over dg = dc¢’ and d(cos y).
From equations (A58) we have

?=cn?, 0 e =¢th, 4.

cosy = X, (A59a)

n* = u? +pg +2up, X, E=p+pox. (A59b)
In terms of these variables equation (A57) becomes
7 = [exp(-ike?) '™ fQ[1 ~2m' P(ein) expike*(1 ~17))]

x ca(c, x) dxdc?. (A60)

Expanding the exponential in the square brackets, noting that u+pu, = 1 implies
1—n? = 2uuy(1—x), and introducing the function

+1
20 = [ (A=x710 ~ 20 PEMYe o, 1) dx, (A61)
we may write
F=73 (Z’Z’f") (k)" f exp(—ike?)® (c) ' Lf(c) de?. (A62)
n=0 .

Comparing this with equation (A56) we recognize that

52y = emn § B (L) (a0 @) (A6

To put equation (A61) in a more useful form, we note that the first term contributes
2mcao(c)S,. Since at x = 1 we have ' P(¢é/n) = 1, we may write this term as

2mc oy(c) fj: 1=x)"6(1—x)n'P(&/n) dx.
Substituting in equation (A61) and using the relations (A30), (A31) and (A32) we get
B, (c) = 21 zio oD bl C(A64)
The coefficients b, are discussed in the next subsection.

(d) Coefficients b},
These coefficients are defined by

b = 40+ [ A0 B P v, (A65)

where ¢ and 7 are given by equations (A59b). In contrast to the coefficients a}
discussed in subsection (b) of this appendix, these coefficients depend upon the masses
and, in general, are polynomials in u and u,. There are, however, many similarities.
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Using equation (A54b) we may alter the index n as for a}, to give the recursion
relation, similar to (A53b),

A+1

A At+1
bn+1 1= bnl 2)’+3 bnl 2)' 1 b . (A66)

In place of the relation (A54a) we have

21-1 -
WRAE) = &S P~ ()R, (A6

E1—x)" = (1=2)"—pe(1 =", 7*(1=2)" = (1=2)"=2pp(1—x)"*", (A67b)

and then follows the more complicated recursion relation

21-1 -1
bnl = (bnl 1 bf;+1,»1—1)__l'—(bnl 2 —2upg bn+1l 2) (A67c)

Note that this does not reduce to equation (A53a) for any simple choice of p’s.
In general the relation between the two coefficients is complicated. However, it
is seen from the definitions that

22+1 (2,

A 2Ma = lzn .
bnO n0 ( ) n+l+1 (Z”n)

(A68)

The coefficients b}, may be expressed in terms of coefficients with / = 0 by using

[
n'P&m) = ;O a e (A69)

and the binomial expansion for the ¢ and # factors with

2 = 1-2upo(1-x), ¢ =1-p(1-x), (A70)
to obtain
r I-2r
by = Z ZO ZO ay (5) (377) (= 2010) (— o) B4 g0 - (AT1)
r=0 s= t=

For numerical computations it might be better to evaluate the integral (A65) or work
with the recursion relations (A66) and (A67c).

From a consideration of the highest power of x in the coefficient of P,(x) in
equation (A65) one obtains

Bt = (=2 ()23 5 (A722)
bl = ub; bt =0, A>n+l. (A72b,¢)

We have the limiting cases
b} = %(2/L+1)f (1—-x)"P(x)P,(x) dx, u=0; (A73a)

= 31024+1) f (L—x)"P,(x) dx (= blo), po = 0; (A73b)
-1
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and the sum rule (cf. equations A55)
Ybi=0, n+l#0; (A74a)
A=0

=1, n=I=0. (A74b)

(e) Matrix Elements in Burnett-function Representation

As pointed out in Section 12¢ for the cold gas a Burnett-function representation
is necessarily a two-temperature representation. A gas temperature T, of zero cannot
be used to define a weight function for Burnett functions.

Specifically, we have the weight function

W(a, ¢) = (a?/2m)3? exp(—La*c?), o? = mlkT,

and the functions ¢(*)(c) orthogonal with respect to it and normalized to unity. The
matrix element is given by

VOl = f5(00) (@, ) 9N ae) {pM(oe) — pM(ae)} Y. (AT5)

The integration proceeds as indicated in subsection (c) of this appendix. We have

[J (O)]vv' = 511' 6mm’ [Jlo]vv’ ] | (A76a)
with ' .
[Jlo]vv’ = Z dﬁ; Vv};lv” (A76b)
ﬁ.,vl

) +1
&, = (S [ amey e e @ d, (4769
’ vil

yi, = fo (0, 9) R, 1(ag) R, () g° 0¥(g) dg. (AT76d)

The quantities ¢ and 5 were defined in equations (A59b) and definitions of the others
may be found in Appendix 1.

The integrals V,}! of equation (A76d) contain all the information on the cross
sections and the parameter « coming from the weight function. They are reduced to
the interaction integrals V). occurring in other works if A =/ (cf. Kumar 1980a).

The coefficients d defined by equation (A76c) are independent of cross sections and
the parameter «. They depend only on the masses and are in fact polynomials in
u and p,. Other expressions for these coefficients may be developed along the lines
of subsections (b) and (d) of this appendix. It follows from those arguments that the
sum over both v, and A in equation (A76b) is limited to 0 < v; < v and
0<A<v+v+L

It may be useful to point out that, after the integration over centre-of-mass
velocity, the azimuth of g’ and angles of g, and application of the argument given
below equation (A63) one obtains as an intermediate step between equations (A75)
and (A76) the expression '

© +1
[ = [ a0 [ ax 0.0) Roso) Ruaam P

% {600(1—x) —2ma(g, 1)} . (ATT)
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The g and x integrations are then separated by expressing R, (xgn) in terms of
Rv1l(“g)' )

Appendix 3. Tensor Decomposition of Translation Operator

The translation operator T is defined by

Tf(e) = fle+V) = exp(V.0) f(c). (AT8)

It is the generator of the three-dimensional Taylor expansion. Its adjoint defined
by equation (68) and its inverse are the same operators

T=T"1=exp(—V.d). (A79)

The tensor decomposition is not diagonal in / and is given by (cf. equations 92,
94 and 102)

(@) = ¥ @r) V" uy i OT(n, 1, 1,111). (AS0)

nilyly

The scalar operator T'(ny/;I,1|.) depends only on ¢. Its adjoint T(n;7;1,1|.) is
defined by equation (103). The tensor decomposition of 7 ™! is obtained by replacing
V by —V on the right-hand side of equation (A80).

We have the identity

f(PE.f?](C) (T/()) de = ffn‘."(C) (T™! ¢hX(e)) de. (A81)

Using equation (A80) on both sides and adjusting the Wigner coefficients occurring
in the tensors using the relation

(Uymy l=m| U=’y = (=)™ Uy my ' | ), (A82)

with 7 = (2I+1)*, we obtain for the scalar operators

f 0O Ty LU 11 )¢ de = (=)s(1) f FOT@ LIV @) de.  (A83)
Comparing this with the definition (103) of the adjoint we have
iT(nllll'IIQ) =(—)“7’ T L1l 9). (A84)

This was used in equation (104).
Recursion relations for the operators may be obtained from the identities

ViT = V2T = TV2, (A85a)
0yT =0,T = T0,. (A85b)
dT/dV = TV.9,. (A85c)

We give only the relation that follows from the identity (A85a) and allows us to
completely reduce the n; dependence of the operators:
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T(n L LIIf) = (N&,2 " Ny TOL L1V f), (A86a)

1d ,d Ii+1)
20 | 2 b
vi/ (c2 dc € de c? )f' (A86b)

Equations (A85b) and (A85c¢) yield a step-down relation in /; but this changes the
other / values.

The n; =/, = 0 term on the right-hand side of equation (A80) just picks the
first term in the Taylor expansion (A78). Hence

TOO0LI1f) = 64, f(). (A87)
From equations (A86a) and (A87)
T, 0L11f) = 272" {n ! T(n, +%)/F(%)} ou, (V211 £(0)). (A88)

The formulae for /;, = 1, n; = 0, which may be obtained from the general formula
(A91) below or from equations (A78) and (A80) using the gradient formula, are given
by

TO11+11]f) = (3(;;;11))%(% —é)f. (A89a)
TOLI—1]f) = (3—@%—5)%((%+5—“:—1)f. (A89b)

_ These are related by equation (A84) since [d/dc]” = —(d/dc +2/c) (cf. equations
Ad4).

The tensor operator Z"1 used in Section 10 and Appendix 2a is related to the
translation operator by equation (A38). Its action on irreducible tensors £’ may
also be expressed in terms of the scalar operators T'(n, [, I,1|.) and tensors Y(c) by
means of equations (A38) and (A80). Similarly, the relationship of the operators S"
of Section 10 to T'(n,/,/,/].) may also be found.

We now give the general formula for the operators 7'(n, /; [, 1| .). In place of giving
the actual derivation we have to be content to simply note that the action of the
translation operator on a scalar function and on a spherical harmonic ¢' Y{(¢) can
be calculated directly. Then the general formula may be developed by using the
relation

T( £(e) Yf,?(e)) = ( T(c™! f(c)))(:r(c' Yf,?(é))) . (A90)

It is evident that tensor recouplings are needed and the final result involves Wigner
and Racah coefficients:

T(n, 1, 1,1 f) = lzl 3(2ny+1— Q'+ +1))
){l LTI} U T, (7). (A91)

The ¢ dependence in equation (A91) is contained in the last two terms. The
operator 7, is given by

~ ,""H' _2,_ - d n'+r
T, (7! () = I ; (nzle: l,’_”r)!cz'( d(cz)) (c--'f(c)). (A92)
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The effect of tensor recouplings is represented in the coefﬁcients
(L LN} = @m0, LAY e 1 1) o= 11 I L)al), 11, 1)
(1 N -, - —
XW( ! , l? ,) N%llN%l—llN(;lz’ (A93)
l"‘ ll ll l ’

where W is a Racah coefficient, / = (2/+1)* and the other quantities are defined in
Appendix 1. The factors involving 7 eventually cancel out in equation (A91) but it
is as well to carry them in the present form since they provide a check on the
calculations.

From the first two ¢’s in equation (A93) the coefficient vanishes unless /, + 1/, +/
is even; the same is therefore true for T'(n, [, 1, 1| f).

The sum in equation (A91) is limited by the § function, with

2,11 < 2n, +1, (A94)

and it is therefore a sum of finite terms. The number of terms in the sum is further
restricted by the requirements of the Wigner and Racah coefficients.
Finally we note that from equations (A91) and (A92) we have

T(I’ll ll lzl| cl+2N) ~ Clz+2N”

where 2N’ = 2N—2n;+1—1;—1,. Since I+1];+1, is even and we have I < (I, +1,),
we conclude that N’ < N. It follows that, for a polynomial @y(c?) of degree N in 2,

T(n L1 on(cd)) = c2Gydc?), (A95)

where $y.(c?) is another polynomial in ¢? of degree N’ and N’ < N. This property
was used following equation (118) in considering calculation of moments.
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