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By requiring the 'bound state' of particle and quantum to have the mass of the particle and be 
physically indistinguishable from the particle we derive fully covariant and unitary equations for 
particle-particle scattering; these reduce to the Lippmann-Schwinger equation for Yukawa potential 
scattering in the nonrelativistic kinematic region and provide a new definition of the 'nuclear potential'. 

In quantum electrodynamics the nonrelativistic limit to lowest order taken in the 
Coulomb gauge leads to the nonrelativistic SchrOdinger equation with a Coulomb 
potential. For a scalar meson theory the corresponding reduction to the Schr6dinger 
equation with a Yukawa potential has never been accomplished by a generally 
accepted procedure (Moravcsik and Noyes 1961). We believe the difference is due to 
the fact that for QED the nonrelativistic limit leads to a potential defined in classical 
physics, which is scale invariant, whereas the range h/mc of the Yukawa potential is 
not scale invariant and hence intrinsically nonclassical. This fact has frustrated 
attempts to construct generally accepted unique models for nonrelativistic nuclear 
physics. In this communication we demonstrate that by starting from covariant 
Faddeev equations for two particles and one massive quantum we can derive integral 
equations defining covariant and unitary amplitudes describing single quantum 
exchange and production. The production channel can be closed without destroying 
unitarity, leading to fully covariant equations for elastic scattering which reduce to 
the Lippmann-Schwinger equation for the scattering by a Yukawa potential in the 
nonrelativistic kinematic region, but which are valid at any energy. The extension 
to sectors with higher particle and quantum number, the connection to field theory, 
and some possible applications are briefly discussed. 

Fully covariant Faddeev equations driven by separable two-particle amplitudes 
define unitary and time-reversal invariant three-particle amplitudes (Freedman et al. 
1966; Brayshaw 1978). For the minimal case discussed by Lindesay (1981), they 
reproduce the Efimov effect in the appropriate limit in quantitative agreement with 
nonrelativistic calculations. For this communication we restrict ourselves to two 
scalar particles of masses m l , m2 and a scalar quantum of mass mQ. The quantum is 
distinguished from the particles by our postulate that there is no direct particle-particle 
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scattering, which reduces the number of Faddeev amplitudes from nine to four. Our 
second assumption is that the quantum-particle scattering input amplitudes describing 
mi+mQ -+ mi+mQ are a single s-channel state of mass m i which is physically indis
tinguishable from the particle mi (i E 1,2). Following the usual convention oflabelling 
this amplitude by the spectator index j ( #- i) and writing it as a function of the initial 
and final spectator momenta k)O) and kj in the three-particle zero momentum system 
and of the invariant c.m. energy M, we have for this invariant amplitude 

If in the coordinate system in which mi and mQ have zero total momentum we allow 
the spectator mj to have any momentum between zero and infinity, these limits in the 
three-particle zero momentum system transform covariantly (Brayshaw 1978) to 
o ~ k j ~ (M 2 - m])/2M, where M is the invariant four momentum. Consequently 
in this system we have 

with B· = (m~+k~)t. 
1 J J' 

This model differs from the minimal model previously discussed in that the 3 (i.e. Q) 
channel is closed and that we have taken Ilj == lliQ == mi' 

By inserting this driving term in the relativistic Faddeev equation (Freedman et al. 
1966; Brayshaw 1978; Lindesay 1981) for the three-particle amplitudes M ij, defining 
tj = 7: j Bj D3 and Mij = tiDij +7:iZij7:j, and iterating once, we find that the Zij satisfy 
the coupled equations 

Zij = -DijR - f Dik R7:k Z kj = -DijR - f Zik7:kRDkj' 

where Dij = 1-Dij , R is the three-particle propagator and the variable content is 
defined below. To isolate the elastic scattering and rearrangement amplitudes we 
rationalize the denominator in 7: j and separate the pole by defining 

7: j = rf(Sj-mf)-l+'Cj . 

Following equation (lV.7) of Osborn and Bolle (1973), we isolate the primary singula
rities in Mij and define the physical amplitudes whose squares are directly related to 
cross sections by 

Mij = tiDij +Fij + Gijr/sj-mf)-l +r/si-m;)-lGij 

(1) 

From this definition it follows immediately that Fij (the 3-3 amplitude) is equal to 
'CiZij'Cj, that the amplitudes needed to compute breakup and coalescence [cf. equation 
(I.2) of Osborn and Bolle (1973)] are Gij = 'CiZijrj and Gij = rizij'Cj, while the 
elastic scattering and rearrangement amplitudes are Kij = riZijrj' 

Since we are primarily concerned here with two-particle elastic scattering, we note 
that the quantum production channel can be closed simply by taking 'C = O. Noting 
that the three-particle propagator 

R(ki,kj;M) = Bi"/(Bij+Bi+Bj-M-iO+)-l 
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with eij = {m5+(ki+ky}t, and that since M = e~O)+e)O), when we start from a 
two-body channel, 

sJ.-m,? = -2M(e.-e(O)-iO+) = -P(k. k(O))-l 
J J - J' J ' 

we find that the equations for the physical amplitudes are 

(2) 

If the bound states miQ are physically distinguishable from the particles mi all four 
of these amplitudes would describe different observable processes. Actually, so far as 
observation goes we have only elastic scattering, and since we are in the zero momen
tum system of k j = -ki' everything can be described in terms of one vector variable. 
Taking this vector to be k, the momentum of m1 as a spectator, and noting that we 
can tell, relative to this direction, whether it is ml or m2 that had initial momentum 
k', the physical amplitude whose square gives the elastic scattering cross section is 

T(k,k';M) = Kll(k,k';M)+K21(-k,k';M) 

= K22( -k, -k';M)+K12(k, -k';M); 

the second form expresses the time-reversal invariance guaranteed by the two forms 
of equation (2). 

We note that equation (2) is a coupled channels relativistic Lippmann-Schwinger 
equation with the exchange potential Vij = -"8ijr i Rr j • Since the form of the 
equation automatically guarantees two-particle unitarity independent of the (finite) 
value of the product r;Fj' we can treat the strength of this potential as arbitrary and 
call it gigj' Since the r are the asymptotic normalizations of the 'bound state' wave
function, this amounts to saying that the 'zero range' or pole form of the wavefunction 
does not hold down to an infinitesimal distance but, other than the reflection of this 
fact in the 'reduced width' gf # rf, we need not specify this behaviour, a point we 
will return to below. Further, since on-shell where in the zero momentum system 
(i.e. ki+k j = 0 = ki+kj) we have 

or in the nonrelativistic kinematic region, our 'potential' is 

and hence can be interpreted as either a nonrelativistic Yukawa potential or as the 
lowest order field theory result for single quantum exchange. Furthermore, in the 
nonrelativistic kinematic region, PI: 1 reduces to the nonrelativistic propagator 
(k2_k'2_iO+)-1 and we can add the two equations to obtain the usual Lippmann-
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Schwinger equation for the amplitude T due to a Yukawa potential. Thus our 
equation for single quantum exchange, although fully unitary and covariant, has an 
unambiguous nonrelativistic limit. 

The generalization of our treatment to a first approximation for the nuclear force 
problem is immediate. Instead of scalar particle functions we can use spinors, and 
since our driving term in the three-particle space with which we start is, kinematically, 
simply the s-channel absorption and re-emission of the quantum, we know how to 
put in the vertex operators for pseudo scalar, vector or pseudovector quanta; they 
are the same as lowest order field theory. Thus we can write three-particle coupled 
chanllels equations, and by isolating the pole terms as before obtain a fully covariant 
and unitary 'one-boson-exchange' model for nucleon-nucleon scattering. Solving 
these equations then gives us directly the fully off-shell amplitude TNN(k, k'; M) which 
could be used directly to compute three-nucleon observables from relativistic Faddeev 
equations, or N-nucleon observables from relativistic Faddeev-Yakubovskyequations. 
Noyes (1982) has shown that the Faddeev-Yakubovsky equations for N = 4 can 
easily be derived using our 'zero range' approach. Simply by comparing the results 
with the same equations using nonrelativistic kinematics we can find out quantitatively 
how important relativistic 'recoil corrections' are for nuclear physics. But we can go 
further; by using Faddeev-Yakubovsky equations for N nucleons plus one meson 
and comparing them with the (relativistic) equations for N nucleons, we can isolate 
(within our model) the effect of 'three-body forces' from the effect of 'two-body 
off-shell' behaviour. A still simpler way to test the adequacy of the static potential 
concept for nuclear physics is to use our fully off-shell TNN to compute the potential, 
starting from the Low equation (Noyes 1968). Explicitly, since the nonrelativistic 
energy parameter z is related to M byM = z+m1 +m2, we have 

V(k,k') = T(k,k';z+m1 +m2) 

_ (I: + JOCJ)q2 dq T(k,q; q2+ml +,,~2) T*(q,k'; fj2+ml +m2), (3) 
o q -z 

where q2 = q2/2/l, with /l = m1 m 2/(m1 + m2), and the summation is included with 
the integral to remind us to include any bound state pole terms predicted by our 
interaction. Thus we can determine up to what energy and to what accuracy the V 
so computed is indeed independent of z, and hence can be used in a nonrelativistic 
Schrodinger equation for nuclear physics. 

Returning to our covariant equation, we note that it is not the ladder approximation 
to the Salpeter-Bethe (1951) equation, because it is a single time equation, and it is 
not the Blankenbecler-Sugar (1966) equation, because it has no spurious singularities. 
Since we have shown above that it has an unambiguous and reasonable limit in non
relativistic scattering theory, we claim to have obtained the correct equation for single 
quantum exchange. Note that if we make one of the particles a spinor, let mQ go to 
zero and the mass of the second particle go to infinity, we obtain the momentum 
space Dirac equation for a Coulomb potential. Clearly, if we do not take these limits, 
we have a correct relativistic equation with full 'recoil' and, as noted above, can 
introduce spin for the quantum (or quanta) as easily as for the particles. If we have 
m1 = m2 and treat the two particles as identical, then we must, as usual, symmetrize 
or antisymmetrize the amplitude depending on whether the particles are bosons or 
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fermions. As can be seen from the expressions discussed above, this will give us t-u 
'crossing'. Clearly we cannot have s-t or s-u 'crossing' in a finite particle number 
theory since our ladder would imply an infinite number of particles in the intermediate 
states when crossed. We can, however, introduce antiparticles in a straightforward 
way, and compute unitary amplitudes for particle-antiparticle processes with appro
priate symmetries, as we will discuss elsewhere. 

To extend our theory to higher particle number is, as already noted, straightfor
ward. Since our equations will always give finite results, the test of whether our theory 
can be generalized in a way consistent with known physics will come when we compute 
four-particle (or more specifically two-particle and two-quantum) processes and com
pare with renormalized perturbation theory in the weak coupling limit. So far as we 
can see, we are including the same physics as quantum field theories with Yukawa
type couplings at that level, and should anticipate the same results. If we fail, this will 
show that even though, once renormalized, perturbation theory to order g4 seems 
only to refer to a finite number of real particles, some trace of the infinite renormaliza
tion was left behind; this would also be interesting. 

It remains to extend our three-particle theory to quantum production, by restoring 
the elastic scattering amplitude -r to our two-particle input. This leads to coupled 
equations for the Kij and Gij which are easy to write down. The three-particle ampli
tudes calculated from them are clearly unitary so long as we retain the residues 
rf and· r; at the poles which come from a unitary two-particle amplitude, since 
it is easy to show (Freedman et al. 1966; Noyes 1982) that this plus the Faddeev 
form of the equations guarantees unitarity. Whether we can in this case take gf to 
be arbitrary depends to some extent on interpretation. 

Again, if we introduce a 'form factor' so that the normalization of the bound state 
wavefunction corresponds to precisely two particles, we have simply gone back to 
the more general model discussed by Freedman et al. (1966) and Brayshaw (1978), 
and there is no problem with unitarity; however, the form factors then enter the 
equations and change our fundamental theory to phenomenology, which we wish to 
avoid doing. But if we retain the simple pole form for the bound state wavefunction 
with an arbitrary residue, we are in some sense saying that the bound state is partly 
elementary and partly composite. With this interpretation flux conservation is 
preserved, as can be seen from the way it is achieved by Osborn and Bolle (1973) . 

. In the 'nonrelativistic field theory' for n-d scattering by Aaron et al. (1965) a similar 
argument has been used in treating the n-d vertex constant as a free parameter, and 
we do not see why we do not have the same freedom in our context. A fuller discussion 
of this point, and an approach in which we use the density matrix to describe physical 
states which are partly 'bare' and partly 'composite' will be presented elsewhere. 

We conclude that we have achieved a unitary and covariant description of single 
quantum exchange with immediate application in nuclear physics, and with possible 
interesting extensions to a much broader class of problems. 
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