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Abstract

Solutions to the relativistic string equation are found which correspond to rigid body rotation about
the z-axis with azimuthal velocity greater than the velocity of light. If the solutions lie entirely in
the x-y plane they are rotating epicycloids, complimentary to the hypocycloid solutions found
previously. The use of a general solution to the string equation in terms of two arbitrary world-lines
with null tangents provides an alternative derivation of the rigidly rotating solutions.

1. Introduction

Previously we determined the set of solutions to the string equation corresponding
to rigid body rotation about the z-axis (Burden and Tassie 1982b; hereafter referred
to as Paper I). The solutions fell into two categories which we labelled tachyonic
and tardyonic, the names referring to the component of velocity in the () direction
about the z-axis. On physical grounds, however, it is more relevant to consider the
component of velocity of the string normal to the string itself (see e.g. Goddard
et ale 1973), and with this in mind we shall see here that use of the term 'tachyonic'
above is misleading. The 'tachyonic' solutions referred to in Paper I do in fact have
the velocity normal to the string everywhere less than or equal to the velocity of
light, and can lead to physically acceptable string glueballs.

We examine the extra solutions here in detail, with particular emphasis on the
planar solutions, which turn out to be rotating epicycloids. We also show that all
the planar rigidly rotating string solutions can be found more directly as specific
examples of a general solution to the string equation.

2. Additional Solutions

In Paper I we considered solutions to the relativistic string equation of the form
XJL(r,r) = (r,X(r,r)) where, in polar coordinates,

X(r,r) = (r, O(r)+wr, z(r)) , (1)

with O(r) and z(r) the initial azimuthal and axial coordinates of the string and OJ

constant. (We set c = 1.) The form (1) clearly corresponds to rigid body rotation
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(2)

(3)

about the z-axis. Setting ¢ = dO/dr and' = dz/dr, we saw that the string equation
leads to differential equations whose solutions are

AAr
, = {A?r2(1-A2-w2r2)-A2(1-w2r2)}t'

A(1-w2r2
)

<P = r{A2r2(1-A2-w2r2)-A2(1-w2r2)}t'

where A and A are real constants of integration. The restriction that' and ¢ be
real implies that the term in braces in the denominators of equations (2) and (3)
be positive over some range of r.This gives the constraint

lAw-AI ~ AA, (4)

that is, the allowable values of A and A lie in the shaded part of the graph of Fig. 1.

A

Fig. 1. Parameter space of rigidly rotating solutions to the string equation.
The regions A and B were labelled 'tardyonic' and 'tachyonic' respectively
in Paper I, referring to the 0 component of velocity.

The points in region A correspond to solutions for which tor < 1. These solutions
were examined in detail in Paper I. In region B we have cor > 1, such solutions
being labelled 'tachyonic' in Paper I. However, the component of velocity normal
to the string is less than the speed of light provided (X'tXr)2 > X; X; (see e.g.
Goddard et ale 1973). Subscripts are used to denote partial derivatives, for example
X't = aX/aT. In our notation, this condition is equivalent to

(5)

(6)

Direct substitution shows that condition (5) is satisfied for the solutions (2) and (3)
for all points in regions A and B.

The integrals of (2) and (3), namely

A (ri+r~-2r2)
z-const = - -arccos 2 2 '

2w r 2 - rl

(7)
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where

3

ri,2 = (2w2A2
) - 1 ( {(1- A2)A2 +A2w2

} =+= [ {(I - A2)A2 +A2w2
} 2 - 4A2w2A2]t) (8)

(see equation 13 in Paper I), are valid in both regions A and B.
We showed in Paper I that if the point (A, A) = (0,0) is approached along the lines

B = const, where B = A(A+CO)jA, planar solutions are obtained, each the shape of
a hypocycloid.* Consider now the solutions obtained by approaching the point
(A, A) = (0,0) along the curves

A(CO-A) = CA, C>l (9)

shown in Fig. 1. Writing the solutions (2) and (3) in terms of the parameters Aand C
and taking the limit A~ °gives the solutions

dz
dr = , = 0, (lOa, b)

(11)

Once again we have curves lying in the plane z = const. Integrating equation (lOb)
gives

e- const = t(C - 1)arccos (C~w
2

r
2

) ) _ t(C +1)arccos (C~w
2

r
2

) ,
cor C-l cor C+l)

the equation of an epicycloid. Points on the curve lie at positions satisfying
1 < cor < C, and the cusps move at the speed of light.

We shall refer to the hypocycloid solutions as type A solutions and the epicycloid
solutions as type B solutions.

Two other solutions are worthy of note:

(a) If ACO-A = AA, then r1 = r2 = (1 +A)tjco, and the string is the shape of
a helix making an angle of

(
1 dZ) . 1

arctan ~ de = - arctan(l +A)-2 (12)

with a plane arranged perpendicular to the z-axis. A similar case is given] in Paper I
for the case A-Aco = AA.

(b) When A = 0, we have 4J = (co 2r 2-1)tjr, independent of A. This integrates
to give

the polar equation of an involute of a circle. The normal velocity is given by

Vol = cor(l+r 2
4J2 ) - 1 = 1,

indicating that this solution has infinite energy per unit length.

(13)

(14)

* A hypocycloid is the locus of a point on the circumference of a cylinder which rolls without
slipping on the interior of a larger cylinder. If the small cylinder rolls instead on the exterior of the
larger cylinder, an epicycloid is obtained.

t There are two mistakes in Paper I for this case, namely subsection (iii) of Section 2. The correct
equations are

ri = r2 = (l-A)tOJ-1 and arctan(r -ldz/dO) = arctan('/ref» = arctan(l-A)-±.
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3. Dynamics

We next consider the classical string hadron model of Kikkawa et ale (1979) and
Bars (I976a, I976b) which is set out in detail in Paper I and applied to the solutions
in the region A of Fig. 1.

(a) (b) (c)

Fig. 2. Hadrons composed of rigidly rotating string segments: (a) meson or
quark-diquark baryon with tachyonic quarks; (b) glueball (three-cusped
epicycloid); (c) glueballs constructed from type A and type B solutions joining
across the interface OJY = 1 are forbidden.

If any quarks are attached directly to strings of the type in region B (including
the planar strings of the previous section) to form rigidly rotating hadrons, the
quarks must be tachyonic. Mesons and quark-diquark baryons of the type shown
in Fig. 2a would themselves be tardyonic, while the quarks would be confined
tachyons.

More realistic possible structures are the glueballs made from type B planar
solutions (epicycloids) which close on themselves (see Fig. 2b). We shall calculate the
Chew-Frautschi plot slopes for these glueballs and see how they compare with the
hypocycloid glueballs examined in Burden and Tassie (I982a) and Paper I. By
similar calculations to those given in Paper I, the energy and angular momentum
densities of a segment of the string described by equation (11) are respectively

1 wr(C2 - 1)

Iff = 21UX' (C 2 - w2 r2}t(al r2 -1)t'
(lSa)

1 r(C2
- ro2r2)i

fZ=2nrl (w 2 r 2 _ 1}t · (ISb, c)

These integrate to give, for a segment of string with r1 < r < '2'

1 { (1 +C2
- 2ro

2
r

2
)Jz(r1~r2) = ---2 -!-(1-C2)arcsin

---2---
4nct'ro C -1

+(C2
_ w2r2)! (w2r2 -l)!} I::.

(16)

(17)
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In (16) and (17), if r passes through its maximum value rmax = C/OJ, the expressions
must be evaluated in two pieces, namely E(r1--+r2) = Etr, ~rmax)+E(r2~rmax) and
similarly for i;

For an epicycloid with N cusps we have

C = 1 +2/N. (18)

Using equations (16)-(18) we calculate the total energy and angular momentum of
the glueball with N cusps to be

giving the straight Chew-Frautschi plot

(19a, b)

J = {a'/4(1 +N-1)}E 2
• (20)

Comparing this with the previous result (see equation 37 of Paper I) for hypocycloidal
glueballs, namely J = {a'/4(1 - N -1) }E 2, we see that for a given angular momentum
the hypocycloidal glueballs are energetically more favourable.

Finally in this section we investigate the possibility of type A and type B planar
solutions joining across the interface. OJr = 1 to form, for example, glueballs such
as that shown in Fig. 2e. For this to happen the string tension for the inner (type A)
and outer (type B) solutions must match across the junction. From equations (27)
in Paper I, we have for the absolute value of the () and time components of tension
for the type A solutions, at OJr = 1,

l.rel = l.raI = (1/2na')B; O<B<I, (21)

the other components being zero. For the type B solutions a similar calculation
gives, at OJr = 1,

l.rel = l.ral = (1/2na')C; C> 1, (22)

and it is clear that the inner and outer solutions cannot match across the junction.

4. Alternative Derivation of the Planar Solutions from a General Solution

As an alternative to the method used in Paper I, the planar rigidly rotating
solutions can be obtained as particular cases of a general solution.

For any world sheet Xtl(a, r) with a time-like tangent at each point it is always
possible (Goddard et ale 1973) to choose a and r to be an orthonormal set of
coordinates satisfying

X; = -X; > 0 (23a, b)

[we use the metric gtlV = diag(l, -1, -1, --1)], and the string equation becomes

Xir-X/:a = o.

Defining a set of null coordinates ~ and 11 by

~ = t(r+a), 11 = t(r-a), (24a, b)
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equations (23) can be written as

X~ = X; = o.
With these coordinates the string equation becomes

Xt, = 0,

with the general solution

where, from equation (25),

c. J. Burden and L. J. Tassie

(25)

(26)

(27)

(28)

That is to saycevery solution to the string equation can be written as the sum of two
world-lines each of which has a null tangent at each point.

In particular we choose r J.l and qJ.l to be the world-lines of points executing uniform
circular motion at the speed of light in the x,-y plane:

rJ.l(~) = (~, Q11 cos Ql~' Q11sin Ql~)' (29a)

qJ.l(1]) = (1], Q2
1cos Q21], Q2

1sin ( 211) . (29b)

Then XJ.l(~, 1]) = rJ.l(~)+qJ.l(1]) is a solution to the string equation. In order to interpret
this solution we consider the string's shape at XO = 0, which will consist of the locus
of points of the form

X(.1, -.1) = r(.1)+q(-.1),

where r " = (~, r(~)) and qJ.l = (1], q(1])).

z

(30)

Fig. 3. Points y' = X(O,O) and
Y = X(L1, - L1) lie on the same
hypocycloid (dashed curve).

In Fig 3. we show the point Y' = X(O, 0) and some arbitrary point Y = X(.1, - .1),
assuming that Q1 and Q2 have the same sign. It is straightforward to see that

arcZY= (Q1 .1 +Q2.1)Q2
1 = QI.1(Q11+Q21) = arcZY', (31)

and so Yand Y' lie on the same hypocycloid (dashed curve). Choosing XO at any
other fixed time will produce the same hypocycloid, rotated around the central point.
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By considering the world-line of constant ~ passing through Y' in Fig. 3 we see
that the cusps move at the speed of light, and so have the properties of the planar
solutions found in Paper I. If Q1 and Q2 have opposite sign, a similar argument
gives the rotating epicycloids of Section 2. The quantities B, C and t» which
parametrize the .solutions are related to Q1 and Q2 by

(32a, b)

For the singular case Q1 = - Q2 = Q, the solution (27) is a breathing circle whose
radius R(t) is given by

R(t) = 2Q-1 sintQt.

This solution has been found previously (Vilenkin 1981).

(33)

5. Conclusions

We have examined certain rigidly rotating solutions to the relativistic string
equation, namely those whose azimuthal velocity is greater than the speed of light.
Of particular interest are the planar solutions, which turn out to be epicycloids whose
cusps move at the speed of light (cf. the rotating hypocycloids in Paper I). These
solutions suggest the existence of a set of string glueballs further to those conjectured
in Paper I. The Chew-Frautschi plot slopes of the new epicycloid glueballs are
always greater than those for the hypocycloid glueballs, so we expect the new glueballs
to be less stable.

There seem to be no other simple rigidly rotating hadrons which can be constructed
from the new solutions, unless quarks are tachyons, in which case mesons and baryons
such as those in Fig. 2a are allowed.

In Section 4 we used the result that every classical solution to the string equation
is the sum of two world-lines, each with null-vector tangents. By choosing the two
world-lines to be those corresponding to coplanar uniform circular motion we
reconstructed the planar solutions to the string equation. This method of solution
serves to' exhibit the massless nature of the string: the rigidly rotating solutions are
in fact a collection of massless points, each executing uniform circular motion at
the speed of light.
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