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The mathematical properties of linear force-free fields generated by the Helmholtz equation 
are reviewed, and the solutions in terms of spherical, cartesian and cylindrical coordinate 
systems are discussed. When only the normal component of the field on a single (photospheric) 
surface is available as a boundary condition, the solutions are not uniquely determined. If 
further conditions are imposed, solutions may be unique or multiple or may not exist. The 
limitations of various methods of modelling the coronal magnetic field of the Sun using 
linear force-free fields are exposed. A new upper boundary condition is proposed that 
guarantees a unique solution, and takes account of the solar wind effects in a manner as 
closely analogous as possible to that used in potential field modelling. 

1. Introduction 

Simple estimates reveal that the plasma in the solar corona is magnetically 
dominated, the magnetic pressure greatly exceeding the gas pressure. Indeed, 
all other forces are small compared with that which the magnetic field is 
capable of exerting, so that the Lorentz force must vanish to first order. Such 
force-free field structures have been the basis for a great deal of coronal 
magnetic field modelling. In particular, many attempts have been made to 
deduce the steady-state coronal magnetic field structure from observations of 
the vertical component of the magnetic flux density By in the photosphere by 
solving 

jxB=O, (1) 

together with the Maxwell equations 

V.B= 0, (2) 

v x B = Jloj, (3) 

for the coronal volume with By specified at tl1e lower boundary. 
Non-trivial solutions of (1) and (3) require the field and current to be 

parallel, i.e. 
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so that 

V xB = exB, (5) 

with ex being a scalar function. 
Taking the divergence of this expression and using condition (2) shows that 

B . Vex = O. In other words, the value of ex is constant along any field line. This 
implies that ex cannot be imposed arbitrarily over a bounding surface-it may 
be imposed at only one end of each field line. Since the field line connections 
of the boundary points are not generally known in advance, the problem of 
constructing variable ex force-free solutions is mathematically intractable. 

This problem is avoided if ex is assumed to be constant everywhere. in this 
case, the defining equation for B is linear. Taking the curl of (5) produces 

(6) 

which is the Helmholtz equation for each cartesian component of B. However, 
(2) implies that not all the components are independent. Indeed, the solutions 
of (2) may be written generally in terms of two scalar functions 9 and IjJ as 

B = V x V x ljJa + V x 9a, (7) 

where a is some constant vector (cf. Chandrasekhar 1961). If ex is constant, 
Raadu and Nakagawa (1971), Nakagawa and Raadu (1972), and Nakagawa (1973) 
showed that 9 and IjJ are not independent and can be chosen so that 9 = exljJ 

and that IjJ satisfies the scalar Helmholtz equation 

(8) 

When ex is not constant the defining equation for B is not linear and little 
is known about the existence and uniqueness of solutions. The special case 
in which ex = 0 is the potential field case; the current then vanishes and 
the problem of magnetic field extrapolation reduces to solving the Laplace 
equation, whose properties are very well known. The slightly more general 
case of linear force-free fields has also received attention, summarised in 
Priest (1982), although the astrophysical literature exhibits some confusion 
regarding the form of the general solutions, their existence and uniqueness. 

Recently, Heyvaerts and Priest (1984) have discussed in an astrophysical 
context a conjecture, known as Taylor's hypothesis, that resistive effects can 
cause magnetic fields to evolve in a manner that approximately conserves a 
quantity known as the total helicity. The magnetic helicity is defined as 

K= LB. AdV, (9) 

where A is the magnetic vector potential (B = VxA). Now the minimum energy 
state of a system with given total helicity and with the normal component 
of the field Bn specified on the boundary enclosing the volume is precisely 
that linear force-free field satisfying those boundary conditions (Woltjer 1958; 
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Sakurai 1979), the value of 0( being related to the helicity of the system. 
However, it has not been shown that any portion of force-free region is 
able to relax to a linear state when the sources of the field in the excluded 
non-force-free volume are taken into account. 

The use of linear force-free models to describe the slowly evolving structure 
of the solar coronal field has great mathematical convenience but its physical 
significance remains conjectural. 

2. The Standard Helmholtz Problem 

There are, in fact, two standard problems (cf. Koshlyakov et al. 1964). The 
interior problem requires the solution to (8) in the volume interior to a closed 
surface S, on which functions a, band c are specified such that 

01fJ 
alfJ + ban = c. (0) 

A solution to this problem exists and is unique, unless the corresponding 
homogeneous problem-obtained by setting c = O-has a non-trivial solution. 
In the latter case, the inhomogeneous problem in which c f. 0 is insoluble. 

The exterior problem requires the solution to (8) in the volume exterior to 
a closed surface S, with the same boundary condition (10). In this problem, 
a solution always exists but is not unique. A unique solution to the exterior 
problem may be obtained only by imposing a further boundary condition, 
such as the 'radiation' condition 

lim IfJ = 0, 
r-co 

limr(~1fJ -iO(IfJ) = o. 
r-oo uY 

(II) 

This condition arises from the appearance of the Helmholtz equation after 
a periodic time dependence has been separated out of the wave equation. 
Introducing an e-iM time dependence into the solutions of (8) yields progressive 
waves. The radiation condition simply excludes incoming waves from infinity. 

The solutions to these boundary value problems are often expressed in 
integral form using the Green function constructed for the problem (e.g. 
Barbosa 1978). The requisite Green function is unique if the solution to the 
problem is unique. When the solution is not unique, a generalisation of the 
Green function is required in order to construct an integral solution in the 
same form (cf. Koshlyakov et al. 1964). 

However, most of the applications of the theory of force-free fields to the 
modelling of coronal fields do not match these standard problems, so these 
applications need to be analysed separately. This is best done explicitly in 
terms of different coordinate systems. 

3. Spherical Coordinates 

The general solution of (8) obtained by separating variables in spherical 
polar coordinates r, e, <f> can be expressed in terms of the infinite set of discrete 
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eigenfunctions 

00 I 
1/1 = L L [Alrn.iI(ocr) + Blmnl(OCr)]Ylm(e, cf», (12) 

I=Om=-1 

where the j and n are the spherical Bessel functions related to the half-odd 
integral standard Bessel functions 

(13) 

and the Yare the spherical harmonic functions. This is the form given by 
Chandrasekhar and Kendall (1957). Nakagawa (1973) omitted the jl(ocr) terms 
and Priest (1982) the nl(ocr) terms. 

If we choose to set a equal to the unit vector in the radial direction (in 
view of the boundary conditions to be posed below) the magnetic flux density 
becomes 

B=[-( 1 ~(sineOI/1)+ 1 0 21/1) 
r 2 sineoe oe r 2sin2 eocf>2' 

(14) 

For an interior solution, we must set Blm = 0 in order to make 1/1 regular at 
the origin-this is the form given by Priest (1982). Then, speCifying Br(e, cf» 
on r = R0 requires us to find the coefficients Aim from 

(15) 

If OCR0 is not a zero of the Bessel function jl, the values of Aim for I> 0 
are uniquely determined by this relation. The spherical harmonics Ylm form 
a complete set, allowing us to express 

00 I 
Br(e, cf» = L L Clm Ylm(e, cf», 

I=Om~1 

(16) 

and then the coefficients can be obtained immediately using the orthogonality 
properties of the Ylm, 

(17) 

For the infinite set of values of OC for which OCR0 is a zero of the Bessel function, 
no solution exists unless the corresponding set of values Clm(l = -m, ... ,m) 
vanishes, in which case there are multiple solutions. In general though, 
the solution is unique up to an additive constant and hence B is uniquely 
determined throughout the volume. 
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For the exterior problem we cannot conclude that either the Aim or the Blm 
coefficients are all zero, as did Nakagawa (1973) and Priest (1982), because 
both the sets of Bessel functions are regular at infinity. Introducing the 
spherical Bessel functions of the third kind, 

(18) 

following Seehafer (1978), we may write the general solution as 

00 I 
1/1=:L :L [A~mhP)(ocr)+B~mhj2)(ocr)]Ylm(e,cJ». 

I=Om=-1 

(12a) 

If the radiation condition is imposed, we must set the B1m coefficients to zero 
and then the previous boundary conditions are satisfied if 

(19) 

But now hpJ is a complex function, whose complex conjugate is hj2), so (19) 
may be rewritten as 

(19a) 

In this case, the denominator cannot vanish for I> 0 and hence 1/1 is always 
uniquely determined up to an arbitrary constant, i.e. B is always unique. 

Contrary to the claim of Seehafer (1978), none of these solutions are 
unphysical. Whilst it is true that limr_oo 1 1/11 oc eiar fr, so that 

t.<r) 1/112 dV (20) 

becomes unbounded as R -- 00, it is not true that the magnetic energy 

f B2 dV 
R.<r 2/10 

(21) 

is similarly unbounded. Inspection of the components of B reveals that the 
components which decay least rapidly are Be,Bq, oc eiar fr2. Hence B2 behaves 
asymptotically like r-4, which guarantees the convergence of (21). 

Moreover, this model is physically plausible if the field is interpreted as a 
wave that slowly propagates outward due to the Sun's internal dynamo action. 

The boundary condition at infinity is avoided if a second spherical surface 
is introduced at r = Rs, and solving for 1/1 within the shell R0 :::; r :::; Rs. This is 
a problem of interior type for which both sets of Bessel. functions jl(ocr) and 
nl(ocr) in (12) must be retained since we do not require the solution to be 
regular at the origin. If Br is given on both the inner and outer boundaries 
a unique solution exists if jl(ocR0)nl(ocRs) - NocRs)nl(ocR0) :/= 0 for all I. If this 
quantity vanishes for any 1 (for example, if OCR0 and ocRs are both zeroes 
of jl or nl), then either no solution exists-the boundary expressions being 
inconsistent-or multiple solutions exist. The problem is, however, purely 
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academic in the context of coronal modelling because observations yield no 
information on Br on any surface but the photospheric at r = RCi). 

As an alternative, we might consider the problem analogous to the potential 
problem posed by Schatten et al. (1969) and Altschuler and Newkirk (1969). 
These authors specified Br on the lower boundary as before, but made the 
upper boundary a constant potential surface. This choice forces the field to 
be radial at the outer boundary in order to account approximately for the 
effect of the solar wind. 

However, it is clear from (14) that setting neither IfJ = 0 nor olfJ/or = 0 
on r = Rs will ensure the vanishing of both Be and Bep unless oc = 0 (the 
potential case). In fact, we may show, by setting both expressions to zero 
and eliminating olfJ/or, that IfJ must satisfy 

if oc 10. This is the defining equation for the spherical harmonic functions with 
1=0; thus, the only physically meaningful solution is IfJ(Rs• e, cp) = Yoo, Le. IfJ is 
a constant on r = Rs. To make Be and Bep vanish, we must then require a IfJ /0 r 
also to be constant on r = Rs. These two independent conditions on the outer 
boundary plus the further condition on the inner boundary overdetermine the 
problem so that in general it is not possible to find a solution. One could 
require one component, Be say, to vanish at the outer boundary, but the 
choice would appear to be arbitrary. 

A somewhat less arbitrary procedure would be to minimise the horizontal 
field on this boundary in the least-squares sense, subject to the constraint 
provided by the lower boundary condition. This requires us to minimise 

f 2ITf IT (Bi>= ° ° (BepB;+BeBB)sinededcp, (22) 

subject to (16), and leads to the unique solution 

(23) 

(24) 

where 

(25) 

(26) 

the primes indicating the derivatives h(X) = dj/(x)/dx and n~(x) = dn/(x)/dx. The 
coefficients are undetermined when 1= 0, but these give rise to only a constant 
term in the expansion for IfJ and are eliminated in the expressions for B. 
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This model has two desirable features. Firstly, if Br is a given real function 
on the lower boundary, the complex conjugates of the coefficients Clm must 
satisfy Cim = CI-m for all [, m. From (23) and (24) it is easy to see that the 
coefficients Aim and Blm satisfy the same relation, and therefore l/1 and Bare 
real as well. 

Secondly, the mean-square horizontal field over the outer boundary is 

(27) 

In the limit ex --> 0, the horizontal field over the whole surface must vanish, and 
we recover the condition imposed in the potential field case. The model is, in 
this sense, the optimal analogue of the standard potential field construction. 

4. Cartesian Coordinates 

If we generate the solution by separating in terms of cartesian coordinates 
x,y,z, we find a continuum of eigenfunctions over the horizontal plane with 

(28) 

where k2 = [2 + m2 _ ex2. 
Taking a to be the unit vector in the z-direction, we obtain 

(29) 

It is obvious that there is now no distinction between interior and exterior 
solutions. Moreover, the specification of Bz(x, y) on the surface z = 0 is insufficient 
to determine the functions A(l,m) and B(l,m). Equating the expansion of Bz in 
(29) to the Fourier integral representation of the boundary value, 

(30) 

produces the single relation 

A(l, m) + B(l, m) = C(l, m)j(l2 + m 2), (31) 

from which A(l, m) and B(l, m) cannot be found uniquely. 
The problem posed in the infinite half-space (z ~ 0) is in any case physically 

unrealistic, as noted by Alissandrakis (1981). If we limit the eigenfunctions 
to those in which limz .... wl/1 = 0, equation (28) becomes 
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This form is compatible with the boundary value expansion (30) only if C(I,m) 
happens to vanish for all [2 + m2 < (X2. Unrestricted boundary conditions lead 
to solutions with unbounded magnetic energy. 

This is not to deny that physically relevant solutions may be constructed. A 
half-space of infinite horizontal extent does not model a system with spherical 
symmetry unless we impose a periodicity on the solution over scales greater 
than L - Ro. If we consider only the finite horizontal region -L::; x,y::; L, the 
general solution becomes 

(28a) 

\ 
where now k2 = rr2(12 + m2 )IL 2 - (X2, and the lower boundary condition (30) 
becomes 

00 00 (. rrlX) (. rrmy ) Bz(x,y) = I I C]m exp IT exp I-L- . 
]=-00 m=-oo 

(30a) 

We can then see that solutions with bounded magnetic energy exist under 
two conditions. Firstly, the net magnetic flux across the lower boundary 
must vanish so that Coo = O-the corresponding coefficient in 1/1, Aoo, is then 
undetermined, but the constant term does not appear in the expression for 
B. Secondly, (X cannot be chosen greater than rr/L. Since the magnitude 
of (X measures the departure of the force-free field configuration from the 
potential field case, this limit is a severe restriction on global models, for 
which rrlL - rrlRo - 10-8 m-I • 

The limit can be raised by confining attention to more restricted areas of the 
solar surface (Nakagawa and Raadu 1972), though then the imposition of strict 
periodicity is not generally valid. The boundary conditions on the vertical 
surfaces -i.e. the selection of 1m modes to represent the solution-cannot be 
determined uniquely by physical considerations and the choice varies from 
author to author. Care must also be taken not to the extrapolate the solution 
beyond its domain of validity in the vertical direction. For any given (x, the 
artificial truncation of the horizontal extent of the field distribution will not 
remove the presence of larger scale fields in the observed coronal structure. 
These will be significant at heights greater than the scale height of the largest 
scale Fourier component considered, i.e. for z > Hmax - k-;iin = LI.jrr2 - «(X2 1[2). 
If (X is small compared with rrlL the model will be valid over a vertical extent 
comparable with its horizontal dimensions. As I (XI approaches its limiting value 
of rrlL the domain of validity increases indefinitely in the vertical direction. 

The effect of adding an upper boundary at z = Zs can be studied with greater 
algebraic simplicity in the cartesian system than in the spherical system. 
Suppose that Bz(x,y,Zs) is given as 

Bz(x,y,Zs) = f _: f _: D(I,m) eilxeimy dl dm, (33) 

requiring 

A(I, m) ekZs + B(I, m) e-kZs = D(I, m)/(l2 + m 2). (34) 
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This, together with (31), has a unique solution for A(l,m) and B(1,m) if k is 
real, i.e. if 12 + m2 - oc 2 > O. If 12 + m2 - oc2 < 0, k is imaginary and the solution 
is unique if sin KZs ::j: 0, where iK = k. If KZs = iTT for any integer i, the solution 
either does not exist or is not unique. 

As in the spherical system, it is not possible to make both horizontal 
components of the field vanish on the upper boundary unless oc = O. If we 
choose instead to minimise the horizontal field in the least-squares sense, i.e. 
minimise 

(35) 

subject to (32), we obtain the unique solution 

A I m = (k2 + o(2)e-2kZs + (k2 - o(2) C(l, m) 
(, ) (k2 + o(2)(e2kZs +e-2kZs) + 2(k2 - o(2) (12 +m2)' 

(36) 

(k2 + o(2)e2kZs + (k2 - o(2) C(I, m) 
B(I, m) = (k2 + o(2)(e2kZs + e-2kZs ) + 2(k2 _ o(2) (12 + m 2)' 

(37) 

Inspection of the common denominator of these expressions reveals that it 
vanishes for no real or imaginary value of k, except k = O. In the latter 
case, the two terms in the expansion (28) are not independent and their 
combined coefficient is determined uniquely by (31). Thus our assertion that 
this solution is unique is proven. Of course, the relation (31) cannot be 
satisfied for 1= 0, m = 0 unless C(O,O) = 0, so that the existence of a solution 
requires the net magnetic flux across the lower boundary to vanish. The 
indeterminacy of the constant component in the expansion (28) again does 
not affect the solution for B. 

This model has the same features in the cartesian system as in the spherical 
system. Firstly, if Bz is specified as a real function on the,lower boundary, the 
complex conjugates of the coefficients C(1,m) must satisfy C(l,m) = C(-I,-m) 

for all I,m. Then the coefficients given by (36) and (37) satisfy 

A*(l,m) =A(-I,-m), B*(I,m) =B(-I,-m), (38) 

if k is real, and 

A * (I, m) = B( -I, -m), B*(I,m) =A(-l,-m), (38a) 

if k is imaginary. These relations then guarantee that I/J, and hence B, is real 
throughout the volume. 

Secondly, the mean-square horizontal field over the outer boundary is 

(B2) - 2 f 00 f 00 4k2 I C(I, m)1 2 dl d (39) 
L - oc -00 -00 (k2 + o(2)(e2kZs + e-2kZs) + 2(k2 _ o(2) (12 + m 2) m, 

so that we again recover the potential field case in the limit oc -+ O. 
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5. Cylindrical Coordinates 

The case of cylindrical coordinates p, 1>,z exactly parallels the cartesian case; 
it has already been discussed by several authors (e.g. Raadu and Nakagawa 
1971; Chiu and Hilton 1977) and is included here for completeness. The 
general solution which is regular on the axis is 

(40) 

where k 2 = 12 _ oc 2 . 

Taking a again as the unit vector in the z-direction, we get 

(41) 

The lower boundary condition can now be written in terms of the complete 
set of functions Jm(lp)eimq, as 

(42) 

Equating this to the expression in (41) using the expansion (40) yields the 
single relation 

(43) 

from which Am(/) and Bm(/) cannot be found uniquely. 
Limiting the eigenfunctions to those for which limz_oo IjJ = 0, equation (40) 

becomes 

(44) 

where the domain of integration excludes the origin, and is compatible with the 
boundary condition (42) only if Cm (/) = 0 for all I < loci. If, on the contrary, the 
expression (42) contains any components with non-vanishing Cm (/) for I < I ocl, 
then IjJ contains terms with a purely sinusoidal z-dependence. When used to 
model the coronal field, such solutions possess the physically unacceptable 
property of unbounded total magnetic energy (cf. Nakagawa et al. 1971). 

As in the cartesian case, any cylindrical representation of the corona can 
possess only components whose scales are less than R0 , i.e. components 
whose first zero jm,l lie within Ip - lR0 ; hence we must set Cm(l) = 0 for 
1< jm,IIR0 . In order to produce only exponentially decaying terms in (41) 
we must also restrict the value of oc to loci < Imin - jO,IIR0 - 2.4/R 0 • This is 
essentially the same restriction as before. 

Once again, any attempt to model a finite horizontal region, p < R say, that 
would enable larger values of oc to be employed (up to oc - 2.4/R), introduces 
a degree of arbitrariness by way of choice of boundary conditions that cannot 
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be resolved by observations_ All such solutions are also valid for only a finite 
extent in the vertical direction, unless IlXl is equal to its maximum value. The 
largest significant scale is Hmax ~ L/./5.76 - (lX/L)2, closely analogous to the 
cartesian case. 

The dilemmas may be resolved in the same manner as before. 

6. Discussion 

Whereas potential field modelling of the global coronal field is a matter of 
routine (Altschuler et aI. 1977), with the exception of Levine and Altschuler 
(1974) little attention has been given to use of linear force-free fields to model 
the global corona. In global models, the effect of the solar wind at r ~ 2R0 
cannot be ignored but the standard method of obtaining a unique solution 
in spherical geometry-the imposition of the 'radiation' condition-takes no 
account of it. The difficulty cannot be circumvented by employing cartesian 
or cylindrical geometry. Although solutions can then be found with all 
components decaying exponentially with height, we are then restricted to 
such small values of IlXl that the linear force-free and potential models will 
barely differ. Moreover, the effect of the solar wind is still not incorporated. 
This dilemma may be resolved by creating an outer boundary over which the 
horizontal components of the field are minimised, a procedure which leads to 
a unique solution for a given normal component of B on the lower boundary, 
as well as mimicking as far as possible the effect of the solar wind source 
surface introduced in potential models. The position of the outer boundary 
which leads to the best representation of the solar wind effects must be found 
by trial and error. In the potential field case, it is found to be at Rs ~ 2.5 R0 • 

Recent considerations of the global electrodynamics of coronal heating 
and activity have suggested that the solar corona may support relatively 
large permanent current systems, and that the current systems might relax 
conserving their magnetic helicity into a linear force-free form (Heyvaerts and 
Priest 1984). These ideas might be tested by a systematic investigation of 
global models with lX,p O. 

Although few comparisons of global models with coronal morphology have 
been made, many authors have compared linear force-free field extrapolations 
of the photospheric field over limited regions of the solar disk with the 
observed structure of features such as active regions (Raadu and Nakagawa 
1971; Nakagawa et aI. 1973; Levine 1976). Our discussion of the cartesian 
and cylindrical systems has exposed the limitations of such investigations. 
No account is taken of an outer boundary introducing the gross effect of the 
solar wind. All demand that the field components vanish as r -> 00, so that the 
range of lX values that can be accommodated has an upper limit of the order 
of L -1, where L is the horizontal dimension of the area under consideration. 
Several authors (e.g. Levine 1974; Seehafer 1978, 1982) have pointed out 
the uncertainties introduced by the indeterminacy of the boundary conditions 
at the vertical bounding surfaces. The first two limitations can be lifted by 
introducing an outer horizontal boundary as before, but the last difficulty 
is insurmountable and the extent to which it may influence any conclusions 
drawn from comparisons can be judged only by numerical experiments. 
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A final point that calls for comment is the means of determining the value 
of 0(. The analyses summarised above assume a value for 0(, and allow us to 
generate solutions for any choice within the range of the model. Chiu and 
Hilton (1977) suggested that the value of 0( may be extracted from observations 
of the photospheric field, at least in principle. If, for instance, the horizontal 
field components were known there, a best-fit value of 0( could be obtained 
by a least-squares comparison of the computed and measured components. 
(indeed, one could contemplate foregoing an outer boundary and determining 
IjJ completely by some extension of this method.) However, it should be 
realised that the field is not force-free throughout the photosphere, where 
the magnetic measurements are made. The photosphere and chromosphere 
together form a very thin transition layer of relatively low ionisation between 
a plasma dominated regime in the subsurface regions and a magnetically 
dominated regime in the corona. If we allow for a surface current distribution 
at such a 'discontinuity', the Maxwell equations require the normal or radial 
component of B to be continuous, but not the horizontal components. Thus 
the coronal field is properly determined by measurements of Br or Bz, but is 
not properly determined by measurements of the horizontal components in 
the photosphere. For this reason, the use of line-of-sight components in place 
of the true normal components should be avoided in the calculation of linear 
force-free and potential fields. We need to fix 0( by reference to the coronal 
conditions, and the only legitimate procedure appears to be that adopted by 
most authors, i.e. it is found a posteriori by comparing the calculated field 
structures with observations of the morphology of the actual coronal features. 
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