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Abstract 

In this article we discuss the ground state of a parabolically confined quantum dot in the limit 
of very strong magnetic fields where the electron system is completely spin-polarised and all 
electrons are in the lowest Landau level. Without electron-electron interactions the ground 
state is a single Slater determinant corresponding to a droplet centred on the minimum of 
the confinement potential and occupying the minimum area allowed by the Pauli exclusion 
principle. Electron-electron interactions favour droplets of larger area. We derive exact 
criteria for the stability of the maximum density droplet against edge excitations and against 
the introduction of holes in the interior of the droplet. The possibility of obtaining exact 
results in the strong magnetic field case is related to important simplifications associated with 
broken time-reversal symmetry in a strong magnetic field. 

1. Introduction 

Advances in nanofabrication technology have made it possible to realise 
artificial systems in which electrons are confined to a small area within a 
two-dimensional electron gas. There has been considerable interest in the physics 
of electron-electron and electron-hole interactions in these 'quantum dot' systems 
(see e.g. Merkt 1990; Chakraborty 1992; Kastner 1992). Recent experiments have 
demonstrated the possibility of probing their properties in the regimes of the 
integer (see e.g. McEuen et al. 1991, 1992) and fractional (see e.g. Hansen et al. 
1989) quantum Hall effects (see e.g. von Klitzing et al. 1980; Tsui et al. 1982). 
Excited states and low-temperature thermodynamic properties of quantum dots 
coupled to particle reservoirs are discussed elsewhere (see e.g. MacDonald and 
Johnson 1992). We focus here on the stability of the maximum-density-droplet 
(MDD) state which is the ground state in the absence of electron-electron 
interactions. One interesting consequence of the strong magnetic fields is that 
this state remains an exact eigenstate of the many-particle Hamiltonian even 
in the presence of electron-electron interactions. In Section 2 of this paper we 
discuss the MDD state. We point out that finite-size effects on the dependence 
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of the MDD state energy on particle number are dominated by one-body terms 
from the confinement potential, rather than by the Coulomb interactions, as 
is usually assumed. In Section 3 we discuss the low-lying edge excitations of 
the MDD state and derive a criterion for the stability of the dot against edge 
excitations. In Section 4 we consider the introduction of holes near the centre 
of the MDD. We find that because of the qualitative differences which exist 
between two- and three-dimensional electrostatics the MDD becomes unstable 
against these excitations before the edge becomes unstable. Some concluding 
remarks are contained in Section 5. 

2. The Maximum Density Droplet 

We consider a system of electrons confined to a finite area of a two-dimensional 
electron gas by a parabolic potential, V(r) = 1/2mrPr2. In the strong magnetic 
field limit, where fl/we « 1, only the states in the lowest Landau level are 
relevant. (Here We = eB/mc is the cyclotron frequency.) In the symmetric gauge 
the single-particle states [4>l(Z) "-' zl exp( -zz/4f2)] in this level may be labelled 
by angular momentum and have energy (see e.g. Merkt 1990; Chakraborty 
1992; Kastner, 1992) Cl = Tiwe/2 + 'Y(l + 1), where 'Y = mfl2f2 = Tiwe(fl/we)2. 
[Here z = x + iy is the 2D electron coordinate expressed as a complex number, 
f == (Tic/eB)! is the magnetic length, and the allowed values of single-particle 
angular momentum within the lowest Landau level are l = 0,1,2, .... ] For typical 
systems the regime where fl is small compared to We occurs at experimentally 
available magnetic fields. The wavefunction for the orbital with angular momentum 
l is localised within ,,-,f of a circle of radius Rz, where R; == (llr2Il) = 2f2(l + 1). 
(See Fig. 1.) The circle of radius Rl encloses magnetic flux (l + l)Po, where 
Po = hc/ e is the electron flux quantum. Orbitals at larger angular momentum are 
localised further from the minimum of the confinement potential and experience 
a stronger confinement potential. Note that in the lowest Landau level the 
single-particle orbitals all have the same sign of angular momentum. This 
consequence of broken time-reversal symmetry in the strong magnetic field limit 
leads to important simplifications. We will assume throughout this article that 
the magnetic field is strong enough that mixing of states in higher Landau levels 
by the electron-electron interaction can be neglected. We also assume that the 
electron system is completely spin-polarised by the magnetic field (for effects of 
spin degrees of freedom see Yang et al. 1993). 

For non-interacting electrons the many-body ground state, IlPo), is a single 
Slater determinant in which the confinement energy is minimised by occupying 
orbitals from l = 0 to l = N - 1. This state is an exact many-body eigenstate 
of the Hamiltonian even when electron-electron interactions are included. The 
preceding claim follows after noting that the total angular momentum operator 

00 

Ltot = Llnl (1) 
1=0 

commutes with the Hamiltonian so that L tot is a good quantum number, and 
that 1%) is the only state in the Hilbert space with Ltot = N(N -1)/2. All other 
states have larger values of L tot . However, once electron-electron interactions 
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Fig. 1. Schematic representation of lowest Landau level orbits for a quantum 
dot in a magnetic field. With increasing radii, each circle encloses an additional 
unit of area and represents an orbital with an additional unit of angular 
momentum. Higher angular momentum orbitals are farther from the minimum of 
the confinement potential and have larger confinement energies. In an N-electron 
maximum-density-droplet (MDD) state the innermost N orbitals are occupied 
and others are empty. In this illustration the first twenty circles (solid lines) 
represent orbitals occupied in a twenty-electron MDD state, and the dashed circles 
represent unoccupied orbitals. 
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become important l!lio) need not be the ground state. In the lowest Landau level 
the total angular momentum operator can be written in the first-quantised form 

A "2 2 L tot = ~(ri /2£ - 1) . (2) 

If we assume that the electrons are confined to a droplet of roughly constant 
density, equation (2) may be used to relate L tot to the average area of the droplet: 

(3) 

Many-body states with smaller area have smaller confinement energies, since 
the electrons are closer to the minimum of the confinement potential, but larger 
interaction energies, since the electrons are closer to each other. For sufficiently 
weak confinement the area of the ground state of an interacting-electron droplet 
will increase and l!lio) will no longer be the ground state. 
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The electron density in state l!lio) is 

(4) 

Except near the edges of the droplet, n(r) = (211"£2)-1. This is the maximum 
electron density that can be reached at any point without mixing states from 
higher Landau levels, and we therefore refer to l!lio) as the maximum density 
droplet (MDD) state. The energy of the MDD state is 

EMDD = (~1iwc + "f)N + "fN(N + 1)/2 + El"{DD + E~~D' (5) 

The first two terms on the right-hand side of equation (5) are the kinetic 
energy and confinement energies. The third term is the Hartree (electrostatic) 
energy, and the fourth term, the exchange-correlation energy, is defined by this 
equation. The Hartree energy of the MDD state is approximately equal to that 
of a disk with uniform areal number density n = (211"£2)-1: 

(6) 

Here RN = V2N£ is the approximate radius of the N-electron MDD state. 
Corrections to this approximate expression for the Hartree energy and the 
exchange-correlation energy will both contribute terms rvN to the MDD state 
energy. 

One important property of dots which can be measured (see e.g. McEuen et 
al. 1991, 1992; Meir et al. 1991; Beenakker 1991) is the chemical potential change 
when a single electron is added to the system. If we define p,(N) as the difference 
in energy between the (N + I)-electron ground state and the N-electron ground 
state, then for N» 1 it follows from equations (5) and (6) that 

(7) 

up to terms vanishing as N- 1 • For a system of particles with short-range interaction 
and confined to a fixed 'volume' n rv Ld in d dimensions, p,(N + 1) - p,(N) 
vanishes as N- 1 , leading to a chemical potential which depends only on particle 
density in the thermodynamic limit. For ordinary small metallic grains with 
e2 / c:r interactions between the electrons this quantity vanishes, at fixed density, 
as N- 1jd; the anomalously slow decrease of finite-size effects leads to the Coulomb 
blockade phenomena (see e.g. Zeller and Giaver 1969; Averin and Likharev 1991). 
We see from equation (7) that for parabolically confined two-dimensional systems 
in the strong magnetic field limit the term Coulomb blockade is something of a 
misnomer. The Coulomb energy scales in the same way as for metallic grains but 
the largest contribution to the chemical potential change comes in this case from 
the confinement energy. It may be difficult to separate these two contributions 
experimentally. 
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In the following sections we derive stability criteria for the MDD state. In 
Section 3 we consider the stability of the collective phonon-like edge excitations of 
the MDD. In the process we derive a useful exact identity relating Hartree-Fock 
self-energies and vertex functions of the quantum dot at the Fermi level. This 
identity is used to derive an exact expression for the chemical potential change 
on addition of a particle, which reduces to equation (7) in the large-N limit. In 
Section 4 we consider the stability of the the MDD against the formation of a 
hole in the middle of the droplet. We find that, because of differences between 
two-dimensional and three-dimensional electrostatics, with weakening confinement 
the system becomes unstable to the introduction of holes in the bulk before the 
edge becomes unstable. 

3. Stability of the MDD Edge 

The total angular momentum of the MDD state, MMDD = N(N -1)/2, is the 
smallest angular momentum in the Hilbert space. The low-energy excited states 
with total angular momentum M = MMDD + 8M, where 8M ~ N, are states 
in which phonon-like (see e.g. Wen 1992; Stone 1990, 1991a, 1991b; Stone et 
al. 1992) collective modes have been excited at the edge of the MDD. In this 
section we discuss the conditions required for these edge excitation energies to be 
positive. If the edge excitation energies were not positive the MDD would not 
be the ground state. This is somewhat analogous to the soft phonon modes at 
wavevectors kF and -kF which combine to give charge-density-wave states. Here, 
however, edges are chiral (8M> 0) so that if a state of nonzero 8M became the 
ground state the system would retain its circular symmetry. In fact we present 
evidence that even this does not occur, that the instability of the ground state 
does not occur at the edge for parabolic quantum dots in a strong magnetic field. 

The expectation value of the Hamiltonian in a single Slater determinant state 
(Le. a state with definite occupation numbers nm equal to 0 or 1) is 

(8) 
m m,m' 

where 

Um,m' == (m,milVlm,m') - (m',mlVlm,m') (9) 

is the difference of direct and eXGhange two-body matrix elements. Note that 
Um,m = O. We will show below that it is possible to express the excitation 
energies for 8M = 1 and 8M = 2 in terms of such expectation values, even 
though for 8M = 2 the eigenstates are not single Slater determinants. In the 
MDD state, nm = 1 for 0 :5 m :5 N - 1 and is zero otherwise. Expanding the 
occupation numbers around the MDD-state values gives 

E[nml = EMDD + L 8nm (cm + E;;;») +! L 8nm 8nml Um,m l • (10) 
m m,m' 
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Here 

N-l 

E}!!) = 'E Um,m' (11) 
m'=O 

is the Hartree-Fock self-energy for the N-electron MDD state and em + E}!!) 
is the Hartree-Fock quasiparticle energy. The Hartree-Fock self-energy is shown 
in Fig. 2 for an N = 40 MDD state. We will see below that because of the 
broken time-reversal symmetry some properties of the system's excitations are 
given exactly in terms of the Hartree-Fock self-energy. 
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Fig. 2. Hartree-Fock self-energy [equation (11)] for m = 0 to m = 50 for the maximum-density 
droplet with N = 40. The diamonds show the Hartree self-energy, which neglects exchange, 
the squares show the full self-energy, and the crosses show the negative of the exchange energy. 

We first consider the state with 8M = 1. There is only one state in the Hilbert 
space at this angular momentum and it is therefore an exact eigenstate of the 
Hamiltonian. This state, which we label II}, has 8nN = 1 and 8nN-l = -1, as 
illustrated in Fig. 3. From equation (10) it follows that 

(N) (N) 
El = EMDD + 'Y + EN - EN _ 1 - UN,N-l. (12) 

(In a perturbative treatment the contribution UN,N-l to the excitation energy 
would appear through vertex corrections to a two-particle Green's function.) 
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m<N m?N 

•••••••••• o 0 0 0··· IMDD) 

··· •••••• 01.000··· 11 ) 

··· ••••• 0.1.000··· 12:A) 

··· •••••• 010.00··· 12:8) 

Fig. 3. Occupation numbers for the states considered in this section. 
Occupied states are indicated by solid circles and unoccupied states by 
open circles. 
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However, 11) differs from the MDD state only through an excitation of the centre 
of mass. To see this it is convenient to define a first-quantised ladder operator 
for centre-of-mass (COM) states in the lowest Landau level: 

Bt = _1_ t ffi Lbi· 
i 

(13) 

Here b! = (zd2f - 2£8/8zi )/V2 is the intra-Landau-level single-particle ladder 
operator (see e.g. MacDonald 1991) which can be used to generate the angular 
momentum eigenstates in the Landau gauge (btlm) = vim + Ilm+l)). The COM 
states in the lowest Landau level have the same set of angular momenta as the 
single-particle states and are generated from the zero angular momentum COM 
state by Bt. In second-quantised form Bt and the COM angular momentum 
operator MCOM = Bt B can be written 

Bt _ 1 - ffi L vim + 1 ct 
A m m+l em, (14) 

MCOM = ~ [ L mnm + L J(m + l)m' C!n+l C!n'_l cm' cm] . 
m>O m,m' 

(15) 

Here ch. creates an electron in the single-particle state <Pm in the lowest Landau 
level. The 13 and Bt obey boson commutation relations: [13, Btl = L:m nm/N, 
which is unity in the N-electron sector. It is easy to verify that 1M DD) is an 
eigenstate of MCOM with eigenvalue zero, and that BtIMDD) = 11). Since Bt 
operates only on the COM degree of freedom, it commutes with the interaction 
part of the Hamiltonian (see e.g. Trugman and Kivelson 1985) and 

[H, Btl = 'YBt . (16) 
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It follows that E1 = EMDD +1'. Note that 11) has a higher energy than IMDD) 
no matter how weak the confinement. Comparing with equation (12) it follows 
that 

(N) (N) 
EN = EN_1 + UN,N-1. (17) 

This exact relationship between the self-energy and the vertex correction is a 
consequence of the fact that the relative motions in IMDD) and 11) are identical. 
We will use this relationship below to calculate the energies of the DM = 2 states. 

This approach to generating edge excitations has been used for other purposes. 
In first-quantised language, a bosonic basis for the edge excitations can be 
constructed by the power sums (see e.g. Stone 1990, 1991a, 1991b; Stone et al. 
1992) Sk = L:i zf· The M = MMDD + DM subspace is spanned by the set of 
products {Sil S~2 S~3 ... } IMDD) with L:k klk = 8M. The operator Bt given in 
equation (13) is, when acting on states in the lowest Landau level, equivalent to S1 
times a normalisation constant. (Bt is written in terms of b!, while Sl is written 
in terms of zi-the benefit of the former is that its adjoint is easy to determine.) 
The operator iJt is thus the second-quantised form of Sl, and second-quantised 
versions of the remaining Sk have also been constructed (Marsili 1993): to within 
a normalisation constant, iJk = L:m J(m + k)!jm! c;"+k cm. Only for k = 1 (the 
case discussed above) does the operator iJk generate an eigenstate for finite N. 

There are two states in the many-body Hilbert space with DM = 2; one has 
DnN-2 = -1 and DnN = 1 and is labeled as state 12:A) in Fig. 3, while the 
other has DnN-1 = -1 and DnN+1 = 1 and is labeled 12:B) in Fig. 3. We 
can easily generate one of the two eigenstates at DM = 2 by using the COM 
angular-momentum raising operator 

(18) 

It follows from equation (16) that 12; +) is an eigenstate of the Hamiltonian with 
eigenvalue E 2+ = EMDD + 21'. Applying iJt twice, we see that 

( N-l)t (N+l)t 12; +) = ---w IA) + ---w IB). (19) 

The other eigenstate at DM = 2 must be orthogonal to this, so 

12.-) = (N+l)tIA)_ (N-l)t IB). 
, 2N 2N 

(20) 

(This state can be written as a linear combination [aiJ~ + ,B(iJt )21IMDD). In 
the limit N -+ 00, ,B approaches zero.) 

It follows that the eigenenergy of this state is E 2- = EMDD + 21' + 8E, where 

DE = 2N[(AIVIA) - E~bDl/(N + 1) = 2N[ (BIVIB) - E~bDl/(N -1). (21) 
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(Here E~l)D = E{1DD +E~gD is the interaction energy in the MDD state.) This 
can be shown in two steps. First, calculate the expected energies of 12; +) and 
12; -) and use the known value of the former to eliminate the off-diagonal matrix 
element (A!VIB). Second, solve the 2 x 2 Hamiltonian with basis states IA) and 
IB), and require that the resulting eigenstates be equations (19) and (20); tilis 
gives equation (21). From equations (10), (11) and (17) it then follows that 

A • t 
(AIVIA) = EMDD + UN,N-l - UN+l,N-I. (22) 

We have thus succeeded in expressing the eigenenergies for 8M = 2 in terms of 
interaction matrix elements near the edge of the dot. 

For large N the above results may be used to obtain a necessary condition 
for the stability of the maximum density droplet. As illustrated in Fig. 1 the 
single-particle orbital with angular momentum N is localised within about e of a 
circle of radius RN = .,fiNe. If we ignore the width of the resulting annulus in 
comparison with its circumference, an approximation which becomes increasingly 
accurate as N increases, we obtain, for M rv N, 

2 2 2 IN-MI 
e 111" 1 - cos[(N - M)O] 2e 1 

UNM~ dO=-- L 
' 41rcRN 0 sin(Oj2) cRN1r 1=1 2l - 1 

(23) 

The second term in the numerator of the integrand for the integral over 0 comes 
from the exchange term. If this term were not present U N,N ±k (k ~ N) would be 
logarithmically larger for large N: UN,N±k rv (e2 In(RNje))j(2cRN). Comparing 
equations (23), (22) and (21), we see that for large N 

(24) 

The interaction energy is lowered in this state because the electrons are spread 
over a slightly larger area. In 12; +), on the other hand, the COM of the droplet 
is not as well localised but the area of the droplet stays the same. We can 
conclude from the above exact result that the MDD state becomes unstable at 
the edge if 

(25) 

We should now consider the possibility that the edge instability occurs first 
for larger 8M. For 8M = 3 there are three states, two of which we can easily 
generate using the COM angular momentum raising operator: Bt 12, +) j.J3 and 
Bt12; -). These two states have energies larger by 'Y than 12; +) and 12; -), 
respectively, and are always more stable than states already considered. The third 
eigenstate is the one orthogonal to these two, and its energy could be evaluated 
using the same approach as above. It has all of its excess angular momentum 
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in the relative motion of the electrons and should be the lowest energy 8M = 3 
state. Although we have not yet completed this calculation we expect that the 
third state becomes unstable before 12; -). However, as we show in the following 
section, it becomes energetically favourable to introduce holes in the bulk of the 
MDD well before the edge of the MDD becomes unstable. The first instability 
occurs at 8M ~ N for an N-electron droplet and does not correspond to an edge 
excitation. 

The results in this section can be used to derive a simple exact expression for 
the chemical potential change on addition of a particle. Defining /-L(N) as the 
difference in energy between the (N + I)-electron ground state and the N-electron 
ground state, as earlier, it follows from equation (10) that /-L(N) = "IN + 17;:'). 
Using equations (11) and (17) it then follows that 

/-L(N + 1) -/-L(N) = "I + UN+l,N. (26) 

Using equation (23) for UN+l,N at large N we recover the results of equation 
(7). We emphasise that even though these results are expressed in terms of 
Hartree-Fock approximations they are in fact exact as long as the MDD state 
remains the ground state. 

4. Bulk Hole Instability 

In this section we consider the single Slater determinant IIH), which differs 
from the maximum density droplet by having 8no = -1 and 8nN = 1. This state 
differs from the states 11) and 12:A) only in that the orbital that is emptied is 
at the centre of the droplet. The state can be considered as an (N + I)-electron 
droplet with a hole at the centre. Unlike the cases discussed above there are 
many N-particle states of the droplet with the same total angular momentum 
as IIH). However the coupling between IIH) and the other states is weak for 
large droplets and we will ignore it in the discussion below. (The states with the 
same angular momentum as IIH) have the hole in a state of angular momentum 
m and the edge of the (N + I)-electron droplet in a state with the same excess 
angular momentum. The coupling matrix elements can be shown to scale as 
e2fm/cR,,;+l.) Using equation (10) we see that the energy of the hole state is 

(N) (N) 
ElH = EMDD + N"I + EN - Eo - UO,N . (27) 

The last term represents an excitonic attraction between the hole and the extra 
charge at the edge, is proportional to N-l/2, and becomes negligible for large 
dots. The Hartree contribution to the self-energies can be estimated from the 
Hartree potential of a uniformly charged droplet of radius RN, as discussed in 
Section 2: 

(28) 

which is plotted in Fig. 4. Note that this potential decreases more rapidly 
with distance from the centre than the analogous potential for a uniformly 
charged sphere. The different behaviour can be related to the larger fraction of 
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Fig. 4. Hartree potential from a uniformly charged disk of radius R. Unlike the three­
dimensional case the potential is larger at the centre of the disk than at the edge. The dashed 
curve shows the potential when the charge is collapsed to a point at the centre of the disk. 

charge inside a given radius in the two-dimensional case. This difference between 
two-dimensional and three-dimensional electrostatics plays a very important role 
in determining the properties of quantum dots, particularly in the strong magnetic 
field limit as we see below. 

Note that the Hartree potential is proportional to N!, so that for large 
droplets the exchan~e contribution to the self-energy is negligible by comparison. 
Taking Et) - EaN ~ V~N)(RN) - V};v)(O) = (Ne2 /cRN)(4/1r - 2), we see that 
for large dots it becomes favourable to introduce holes at the centre of the MDD 
state whenever 

(29) 

Expanding equation (28) near the centre of the droplet, we see that the sum of 
confinement and Hartree potentials is given by 

(30) 



356 A. H. MacDonald et al. 

o 

7·5 L-L-l---'--'------'--L-'----'----'--'---'---"-L-'--'---'--'------'---L-'------'----'--'---'---' 
o 10 20 30 40 50 

m 

Fig. 5. Hartree-Fock quasiparticle energies for m = 0 to m = 50 (squares), for N = 40 and 
'Y = o· 07e2 lei!. Note that the occupied orbitals all have lower energies than any unoccupied 
orbital. The proximity of the bulk hole instability is evident. The diamonds show the 
quasiparticle energies in the Hartree approximation where exchange is neglected. 

At the point where it becomes favourable to introduce holes at the centre of 
the droplet, the quasiparticle energy will increase with angular momentum. It 
follows that holes will be introduced first in the bulk, away from the centre of the 
droplet and at a slightly larger value of "( than that required for the introduction 
of holes at the centre of the droplet. Detailed results, given elsewhere (see e.g. 
Yang et al. 1993), depend on the number of electrons in the droplet and require 
numerical calculations. 

The introduction of holes in the bulk of the dot pre-empts the edge instability 
discussed in the previous section. The holes in the bulk of the droplet increase 
the strength of the confinement field seen at the edge of the disk and prevent 
the edge from becoming unstable as the density is lowered further. In Fig. 5 we 
plot the Hartree-Fock quasiparticle energies for an N = 40 MDD state including 
a single-particle contribution for "( = 0·07(e2 jC£). This value is just large enough 
to ensure stability and may be compared with the critical "( for holes at the 
centre of the droplet obtained from the above large-N approximation which 
gives "( '" O· 08( e2 j C£). Note that for a droplet of this size the instability will 
occur first for m '" 15, corresponding to 8M '" 25. Also plotted in Fig. 5 are 
the quasiparticle energies obtained neglecting the exchange contribution. We see 
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that the MDD state is already unstable if exchange is neglected. The Hartree 
approximation seriously underestimates the stability of the MDD state and would 
lead to qualitatively incorrect results. 

5. Summary and Concluding Remarks 

For non-interacting electrons the ground state of a parabolically confined 
N-electron quantum dot at strong magnetic fields has the single-particle orbitals 
with m = 0,1, ... ,N - 2, N - 1 occupied. Because of the strongly broken 
time-reversal symmetry at strong magnetic fields, this maximum-density-droplet 
state remains an exact eigenstate of the Hamiltonian including electron-electron 
interactions. In this paper we have examined the conditions required for the 
MDD to remain the ground state. We have found that for large dots the MDD 
is unstable toward edge excitations for 'Y / (e2 / cf) < 0 . 15005N-1/ 2 , where 'Y is 
a parameter that measures the strength of the confinement potential. However, 
for 'Y/(e2 /cf) < 0·51390N- 1/ 2 we· find that the MDD is unstable toward the 
introduction of holes at the centre of the system. This behaviour is directly related 
to differences between two-dimensional and three-dimensional electrostatics. The 
critical value of 'Y at which holes are introduced in the lowest Landau level will, 
at least for large droplets, be approximately equal to the value of 'Y at which the 
spins first become fully spin-polarised (see e.g. Yang et al. 1993). These small 
values of 'Y are those at which the fractional Hall regime is first being approached 
in quantum dots. For quantum dots in GaAs, 'Y "-' 0·58(1H?[meV]?/B[TeslaJ). 
Thus it seems that this regime can be reached with magnetic fields available in 
the laboratory. 
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