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Low induction number 
approximation
Welcome readers to this issue’s column 
on geophysics applied to the environment. 
As many of you who have worked with 
me in the field will know, I love to hate 
data collected using a Geonics EM31, or 
any of the various similar but different 
incarnations of terrain conductivity 
meters (TCM) that have been developed 
over the years (think DualEM and GF 
Instruments and probably others). It’s 
not the instruments that drive me crazy, 
it’s the low induction number (LIN) 
approximation that is used to calculate 
the apparent conductivity that these 
instruments record.

Over time I have come to realise that the 
LIN approximation is (was) a very clever 
idea – one that I have always credited 
to Duncan McNeill in his Technical 
Note 6 (TN-6) (McNeill, 1980), but 
may actually be based on a much earlier 
paper by Jim Wait (will have to look 
into that). Anyway to me it is a clever 
way to make use of the limited portable 
computing power that was available in 
the 70s and 80s to provide a pretty good 
estimate of apparent ground conductivity. 
The LIN approximation takes a non-
linear, complex and complicated 
expression that equates the ratio of the 
secondary (received) magnetic field 
and the primary (transmitted) magnetic 
field (Hs/Hp) to many other parameters, 
including a number of deeply buried 
conductivity terms; in this equation 
it is impossible to explicitly solve for 
conductivity. The complete solution for 
conductivity is done numerically, with 

Hankel transforms, etc. Back then there 
was (overall) limited computing power 
(what will they say about the computing 
power that we have now in 35 years?), 
and even less computing power that a 
person could carry in a long straight 
tube with a transmitter coil at one end 
and a receiver coil at the other. So the 
LIN approximation allows this difficult 
equation to be solved analytically for 
conductivity, once the transmitter-to-
receiver separation was set to be much 
less than the skin depth, by judiciously 
setting the length of the instrument and 
the operating frequency. The standard 
shorthand for the skin depth equation is 
given by:

d

where δ is skin depth (in meters), ρ is 
resistivity (in ohm-m), and f is 
frequency in hertz. And it might be worth 
reminding readers that resistivity (ρ) and 
conductivity (σ) are reciprocals of each 
other, and that conductivity is given in 
units of S/m (and I have used mS/m in 
my figures). Skin depth is often used as 
the approximate depth of investigation 
(DOI) for instruments that operate in the 
frequency domain.

From the EM skin depth equation one 
can see that the skin depth (approximate 
DOI) is large when the ground is 
resistive, i.e. ρ is large (or σ is small), so 
the LIN approximation works, and that 
the skin depth is smaller when the ground 
is conductive, so the LIN approximation 
eventually fails. McNeill understood 
this and showed it graphically in TN-6, 
reproduced here (including its original 
caption), as Figure 1. As noted in TN-6, 
the indicated conductivity is about 20% 
too low (and getting worse with increased 
conductivity) once the conductivity of 
the ground is >100 mS/m (shown as 100 
mmho/m – the conductivity unit of the 
day) or <10 ohm-m. This means that 
when the instrument is used to collect 
data in many normal Australian settings, 
e.g. to measure extent of shallow saline 
groundwater incursion in a wetland 
(a conductive setting), the output 
conductivities are incorrect. I do have to 
admit that as a relatively simple mapping 
tool the map of conductivity distribution 
that is produced using LIN approximated 
conductivities can still be useful (even 

when used to map saline ground water 
incursion).

In 2001 Reid and Howlett published a 
nice article in Exploration Geophysics 
that directly discussed these limitations 
(the only article that I have ever seen 
on the subject besides McNeill’s 1980 
statement of the limitations – there must 
be others) and how the response of 
the EM31 changes over ground where 
the LIN assumptions are not valid. 
In the process they wrote up some 
code that allows the input of a set of 
LIN-approximated data that outputs 
true conductivity values based on the 
more difficult numerical solution. It 
is worth noting that the program may 
be used on any TCM data, so long as 
the transmitting frequency, instrument 
height and the dipole spacing are 
known. I have used James’ program to 
produce Figure 2, which compares the 
difference between the correct response 
(labelled as True Conductivity on the 
y-axis) and the LIN response (labelled 
as Indicated Conductivity on the x-axis) 
for a number of TCM instruments. The 
EM31 comparison is shown - looking 
a great deal like McNeill’s 1980 results 
(Figure 1). Three other instruments, with 
three different dipole lengths, labelled 
here short, medium and long, are shown 
as well, to show how the response varies 
with dipole length. The executable is 
available from me if anyone wants to use 
it. Note that James does not guarantee the 
results, nor does he support it anymore, 
but does not mind seeing it being used.
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Figure 1. Original figure from McNeill’s 
TN6 showing how the indicated conductivity 
veers away from the true conductivity from 
conductivities <100 mmhos/meter (100 mS/m or 
10 ohm-m).
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One of the conclusions from the Reid and 
Howlett paper is that the depth sensitivity 
of the instrument is generally much 
reduced under non-LIN (conductive) 
conditions than what is normally 
assumed; therefore not only are the 
conductivities inaccurate, but the assumed 
depth-sensitivity distribution is wrong as 
well; any inversion of data collected in 
conductive ground will be incorrect, both 
for depth and conductivity. I have been 
experimenting with an inversion routine 
that uses the raw data and makes no 
assumptions about LIN conditions – and 
the results are very interesting. In fact I 
am actually starting to like what can be 
done using TCM instruments, especially 
the newer instruments that collect data 
using a number of transmitter-receiver 
spacings, i.e. at a number of depths. 
The data density is excellent so lateral 
resolution is very good (limited to about 
7 m depth though) and the inverted 
sections come out very reasonably; but 
that may be a subject for another column.

Ultimately my point is that it seems 
wrong to me to use an approximation 
when we have so much more portable 
computing grunt available these days 
than we did when the EM31 was 
developed back in the 70s. Instrument 
manufacturers are producing TCMs 
that provide conductivity information 
that is needlessly approximate. At the 
very minimum the instruments should 
be providing the user with the LIN 
approximated data, the ‘true’ apparent 
conductivity, and the quadrature ratio data 
in ppt so that the data may be properly 
inverted without having to back out the 
raw ratio data.

References

McNeill, J. D., 1980, Technical note 
TN-6, electromagnetic terrain 
conductivity measurement at low 
induction numbers. Geonics Limited: 
Mississauga, Ontario, Canada.

Reid, J. E., and Howlett, A., 2001, 
Application of the EM-31 terrain 
conductivity meter in highly-
conductive regimes: Exploration 
Geophysics, 32, 219–224.

Figure 2. Results of testing with James Reid’s code that recalculates TCM data that is LIN approximated 
to ‘true’ apparent conductivity. The dashed line shows where the data would lie if the relationship between 
the Indicated conductivity and the True conductivity were one-to-one. EM31 results are shown, along 
with results from other similar devices – one with a long dipole length, etc. as indicated. As expected, long 
dipoles are more affected by the LIN approximation than short dipoles.
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