Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Understanding cellular disruptions during early embryo development that perturb viability and fetal development

Michelle Lane A B D and David K. Gardner C
+ Author Affiliations
- Author Affiliations

A Research Centre for Reproductive Health, Department of Obstetrics and Gynaecology, University of Adelaide, Woodville, SA 5011, Australia.

B Repromed, 180 Fullarton Road, Dulwich, SA 5065, Australia.

C Colorado Center for Reproductive Medicine, Englewood, CO 80113, USA.

D Corresponding author. Email: michelle.lane@adelaide.edu.au

Reproduction, Fertility and Development 17(3) 371-378 https://doi.org/10.1071/RD04102
Submitted: 22 September 2004  Accepted: 21 November 2004   Published: 14 February 2005

Abstract

An inability to regulate ionic and metabolic homeostasis is related to a reduction in the developmental capacity of the embryo. The early embryo soon after fertilisation and up until compaction appears to have a reduced capacity to regulate its homeostasis. The reduced ability to regulate homeostasis, such as intracellular pH and calcium levels, by the precompaction-stage embryo appears to impact on the ability to regulate mitochondrial function and maintain adequate levels of energy production. This reduction in ATP production causes a cascade of events leading to disrupted cellular function and, perhaps ultimately, disrupted epigenetic regulation and aberrant placental and fetal development. In contrast, after compaction the embryo takes on a more somatic cell-like physiology and is better able to regulate its physiology and therefore appears less vulnerable to stress. Therefore, for human IVF it would seem important for the establishment of healthy pregnancies that the embryos are maintained in systems that are designed to minimise homeostatic stress, particularly for the cleavage-stage embryos, as exposure to stress is likely to culminate in impaired embryo function.


References

Baltz, J. M. , Biggers, J. D. , and Lechene, C. (1990). Apparent absence of Na+/H+ antiport activity in the two-cell mouse embryo. Dev. Biol. 138, 421–429.
CrossRef | PubMed |

Baltz, J. M. , Biggers, J. D. , and Lechene, C. (1991a). Relief from alkaline load in two-cell stage mouse embryos by bicarbonate/chloride exchange. J. Biol. Chem. 266, 17 212–17 217.


Baltz, J. M. , Biggers, J. D. , and Lechene, C. (1991b). Two-cell stage mouse embryos appear to lack mechanisms for alleviating intracellular acid loads. J. Biol. Chem. 266, 6052–6057.
PubMed |

Barker, D. J. (1995). Fetal origins of coronary heart disease. BMJ 311, 171–174.
PubMed |

Barker, D. J. (1999). Fetal origins of cardiovascular disease. Ann. Med. 31(Suppl. 1), 3–6.


Barker, D. J. (2000). In utero programming of cardiovascular disease. Theriogenology 53, 555–574.
CrossRef | PubMed |

Barnett, D. K. , Clayton, M. K. , Kimura, J. , and Bavister, B. D. (1997). Glucose and phosphate toxicity in hamster preimplantation embryos involves disruption of cellular organization, including distribution of active mitochondria. Mol. Reprod. Dev. 48, 227–237.
CrossRef | PubMed |

Boron, W. F. (1986). Intracellular pH regulation in epithelial cells. Annu. Rev. Physiol. 48, 377–388.
CrossRef | PubMed |

Brison, D. R. , Houghton, F. D. , Falconer, D. , Roberts, S. A. , Hawkhead, J. , Humpherson, P. G. , Lieberman, B. A. , and Leese, H. J. (2004). Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum. Reprod. 19, 2319–2324.
CrossRef | PubMed |

Campbell A. K. (1983) ‘Intracellular Calcium: Its Universal Role as a Regulator.’ (John Wiley & Sons: Chichester, UK.)

Chatot, C. L. , Ziomek, C. A. , Bavister, B. D. , Lewis, J. L. , and Torres, I. (1989). An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 86, 679–688.
PubMed |

Cummins, J. M. (2001). Mitochondria: potential roles in embryogenesis and nucleocytoplasmic transfer. Hum. Reprod. Update 7, 217–228.
CrossRef | PubMed |

Dale, B. , Menezo, Y. , Cohen, J. , DiMatteo, L. , and Wilding, M. (1998). Intracellular pH regulation in the human oocyte. Hum. Reprod. 13, 964–970.
CrossRef | PubMed |

DeBaun, M. R. , Niemitz, E. L. , and Feinberg, A. P. (2003). Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am. J. Hum. Genet. 72, 156–160.
CrossRef | PubMed |

Doherty, A. S. , Mann, M. R. , Tremblay, K. D. , Bartolomei, M. S. , and Schultz, R. M. (2000). Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62, 1526–1535.
PubMed |

Edwards, L. J. , Williams, D. A. , and Gardner, D. K. (1998). Intracellular pH of the preimplantation mouse embryo: effects of extracellular pH and weak acids. Mol. Reprod. Dev. 50, 434–442.
PubMed |

Ertzeid, G. , and Storeng, R. (2001). The impact of ovarian stimulation on implantation and fetal development in mice. Hum. Reprod. 16, 221–225.
CrossRef | PubMed |

Eyestone, W. H. , and First, N. L. (1989). Co-culture of early cattle embryos to the blastocyst stage with oviducal tissue or in conditioned medium. J. Reprod. Fertil. 85, 715–720.
PubMed |

Fleming, T. P. , Wilkins, A. , Mears, A. , Miller, D. J. , Thomas, F. , Ghassemifar, M. R. , Fesenko, I. , Sheth, B. , Kwong, W. Y. , and Eckert, J. J. (2004). Society for Reproductive Biology Founders’ Lecture 2003. The making of an embryo: short-term goals and long-term implications. Reprod. Fertil. Dev. 16, 325–337.
CrossRef | PubMed |

Gardner, D. K. (1998). Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology 49, 83–102.
CrossRef | PubMed |

Gardner, D. K. , and Lane, M. (1993). The 2-cell block in CF1 mouse embryos is associated with an increase in glycolysis and a decrease in tricarboxlyic acid (TCA) cycle activity: alleviation of the 2-cell block is associated with the restoration of in vivo metabolic pathway activities. Biol. Reprod. 49(Suppl. 1), 152.


Gardner, D. K. , and Lane, M. (1996). Alleviation of the ‘2-cell block’ and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum. Reprod. 11, 2703–2712.
PubMed |

Gardner, D. K. , and Lane, M. (1997). Developmental arrest is associated with altered ATP : ADP ratios and PFK activity. Biol. Reprod. 57(Suppl. 1), 216.


Gardner, D. K. , and Lane, M. (2003). Towards a single embryo transfer. Reprod. Biomed. Online 6, 470–481.
PubMed |

Gardner, D. K. , and Lane, M. (2005). Ex vivo early embryo development and effects on gene expression and imprinting. Reprod. Fertil. Dev. 17, 361–370.


Gardner, D. K. , and Leese, H. J. (1986). Non-invasive measurement of nutrient uptake by single cultured pre-implantation mouse embryos. Hum. Reprod. 1, 25–27.
PubMed |

Gardner, D. K. , and Leese, H. J. (1987). Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J. Exp. Zool. 242, 103–105.
PubMed |

Gardner, D. K. , Lane, M. , and Batt, P. (1993). Uptake and metabolism of pyruvate and glucose by individual sheep preattachment embryos developed in vivo. Mol. Reprod. Dev. 36, 313–319.
PubMed |

Gardner, D. K. , Lane, M. , Spitzer, A. , and Batt, P. A. (1994). Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol. Reprod. 50, 390–400.
PubMed |

Gardner, D. K. , Pool, T. B. , and Lane, M. (2000). Embryo nutrition and energy metabolism and its relationship to embryo growth, differentiation, and viability. Semin. Reprod. Med. 18, 205–218.
CrossRef | PubMed |

Gibb, C. A. , Poronnik, P. , Day, M. L. , and Cook, D. I. (1997). Control of cytosolic pH in two-cell mouse embryos: roles of H(+)-lactate cotransport and Na+/H+ exchange. Am. J. Physiol. 273, C404–C419.
PubMed |

Gott, A. L. , Hardy, K. , Winston, R. M. , and Leese, H. J. (1990). Non-invasive measurement of pyruvate and glucose uptake and lactate production by single human preimplantation embryos. Hum. Reprod. 5, 104–108.
PubMed |

Harding, E. A. , Gibb, C. A. , Johnson, M. H. , Cook, D. I. , and Day, M. L. (2002). Developmental changes in the management of acid loads during preimplantation mouse development. Biol. Reprod. 67, 1419–1429.
CrossRef | PubMed |

Hardy, K. , Hooper, M. A. , Handyside, A. H. , Rutherford, A. J. , Winston, R. M. , and Leese, H. J. (1989). Non-invasive measurement of glucose and pyruvate uptake by individual human oocytes and preimplantation embryos. Hum. Reprod. 4, 188–191.
PubMed |

Hewitt, E. A. , Lane, M. , and Gardner, D. K. (2003). Culture effects on mouse embryo gene expression are limited to the first three cleavage divisions. Theriogenology 59, 420.


Hillman, N. , and Tasca, R. J. (1969). Ultrastructural and autoradiographic studies of mouse cleavage stages. Am. J. Anat. 126, 151–173.
PubMed |

Ho, Y. , Doherty, A. S. , and Schultz, R. M. (1994). Mouse preimplantation embryo development in vitro: effect of sodium concentration in culture media on RNA synthesis and accumulation and gene expression. Mol. Reprod. Dev. 38, 131–141.
PubMed |

Houghton, F. D. , and Leese, H. J. (2004). Metabolism and developmental competence of the preimplantation embryo. Eur. J. Obstet. Gynecol. Reprod. Biol. 115, S92–S96.
CrossRef | PubMed |

Houghton, F. D. , Hawkhead, J. A. , Humpherson, P. G. , Hogg, J. E. , Balen, A. H. , Rutherford, A. J. , and Leese, H. J. (2002). Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 17, 999–1005.
CrossRef | PubMed |

Lane, M. , and Bavister, B. D. (1998). Calcium homeostasis in early hamster preimplantation embryos. Biol. Reprod. 59, 1000–1007.
PubMed |

Lane, M. , and Gardner, D. K. (1996). Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum. Reprod. 11, 1975–1978.
PubMed |

Lane, M. , and Gardner, D. K. (1998). Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum. Reprod. 13, 991–997.
CrossRef | PubMed |

Lane, M. , and Gardner, D. K. (2000a). Lactate regulates pyruvate uptake and metabolism in the preimplantation mouse embryo. Biol. Reprod. 62, 16–22.
PubMed |

Lane, M. , and Gardner, D. K. (2000b). Regulation of ionic homeostasis by mammalian embryos. Semin. Reprod. Med. 18, 195–204.
CrossRef | PubMed |

Lane, M. , and Gardner, D. K. (2000c). Regulation of substrate utilization in mouse embryos by the malate–aspartate shuttle. Biol. Reprod. 62(Suppl. 1), 262.


Lane M., and Gardner D. K. (2001) Blastomere homeostasis. In ‘Art and the Human Blastocyst’. (Eds M. Lane and D. K. Gardner.) pp. 69–90. (Serono Symposia: Boston, MA, USA.)

Lane, M. , and Gardner, D. K. (2003a). Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol. Reprod. 69, 1109–1117.
CrossRef | PubMed |

Lane, M. , and Gardner, D. K. (2003b). Aspartate and lactate negate the requirements for pyruvate for the first cleavage division in the mouse. Theriogenology 59, 344.


Lane, M. , Baltz, J. M. , and Bavister, B. D. (1998a). Regulation of intracellular pH in hamster preimplantation embryos by the sodium hydrogen (Na+/H+) antiporter. Biol. Reprod. 59, 1483–1490.
PubMed |

Lane, M. , Boatman, D. E. , Albrecht, R. M. , and Bavister, B. D. (1998b). Intracellular divalent cation homeostasis and developmental competence in the hamster preimplantation embryo. Mol. Reprod. Dev. 50, 443–450.
CrossRef | PubMed |

Lane, M. , Baltz, J. M. , and Bavister, B. D. (1999a). Bicarbonate/chloride exchange regulates intracellular pH of embryos but not oocytes of the hamster. Biol. Reprod. 61, 452–457.
PubMed |

Lane, M. , Baltz, J. M. , and Bavister, B. D. (1999b). Na+/H+ antiporter activity in hamster embryos is activated during fertilization. Dev. Biol. 208, 244–252.
CrossRef | PubMed |

Lawitts, J. A. , and Biggers, J. D. (1991). Overcoming the 2-cell block by modifying standard components in a mouse embryo culture medium. Biol. Reprod. 45, 245–251.
PubMed |

Leese, H. J. (1991). Metabolism of the preimplantation mammalian embryo. Oxf. Rev. Reprod. Biol. 13, 35–72.
PubMed |

Leese, H. J. (1995). Metabolic control during preimplantation mammalian development. Hum. Reprod. Update 1, 63–72.
CrossRef | PubMed |

Leese, H. J. , and Barton, A. M. (1984). Pyruvate and glucose uptake by mouse ova and preimplantation embryos. J. Reprod. Fertil. 72, 9–13.
PubMed |

Leese, H. J. , Biggers, J. D. , Mroz, E. A. , and Lechene, C. (1984). Nucleotides in a single mammalian ovum or preimplantation embryo. Anal. Biochem. 140, 443–448.
CrossRef | PubMed |

Ludwig, T. E. , Lane, M. , and Bavister, B. D. (2001a). Differential effect of hexoses on hamster embryo development in culture. Biol. Reprod. 64, 1366–1374.
PubMed |

Ludwig, T. E. , Squirrell, J. M. , Palmenberg, A. C. , and Bavister, B. D. (2001b). Relationship between development, metabolism, and mitochondrial organization in 2-cell hamster embryos in the presence of low levels of phosphate. Biol. Reprod. 65, 1648–1654.
PubMed |

Mann, M. R. , Lee, S. S. , Doherty, A. S. , Verona, R. I. , Nolen, L. D. , Schultz, R. M. , and Bartolomei, M. S. (2004). Selective loss of imprinting in the placenta following preimplantation development in culture. Development 131, 3727–3735.
CrossRef | PubMed |

Nasr-Esfahani, M. M. , and Johnson, M. H. (1991). The origin of reactive oxygen species in mouse embryos cultured in vitro. Development 113, 551–560.
PubMed |

Nasr-Esfahani, M. H. , and Johnson, M. H. (1992). How does transferrin overcome the in vitro block to development of the mouse preimplantation embryo? J. Reprod. Fertil. 96, 41–48.
PubMed |

Nasr-Esfahani, M. , Johnson, M. H. , and Aitken, R. J. (1990a). The effect of iron and iron chelators on the in vitro block to development of the mouse preimplantation embryo: BAT6 a new medium for improved culture of mouse embryos in vitro. Hum. Reprod. 5, 997–1003.
PubMed |

Nasr-Esfahani, M. H. , Aitken, J. R. , and Johnson, M. H. (1990b). Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development 109, 501–507.
PubMed |

Phillips, K. P. , and Baltz, J. M. (1999). Intracellular pH regulation by HCO3–/Cl– exchange is activated during early mouse zygote development. Dev. Biol. 208, 392–405.
CrossRef | PubMed |

Powell, K. (2003). Fertility treatments: Seeds of doubt. Nature 422, 656–658.
CrossRef | PubMed |

Rieger, D. , McGowan, L. T. , Cox, S. F. , Pugh, P. A. , and Thompson, J. G. (2002). Effect of 2,4-dinitrophenol on the energy metabolism of cattle embryos produced by in vitro fertilization and culture. Reprod. Fertil. Dev. 14, 339–343.
CrossRef | PubMed |

Rinehart, J. S. , Bavister, B. D. , and Gerrity, M. (1988). Quality control in the in vitro fertilization laboratory: comparison of bioassay systems for water quality. J. In Vitro Fert. Embryo Transf. 5, 335–342.
PubMed |

Schatten, G. P. (2002). Safeguarding ART. Nat. Cell Biol. 4, S19–S22.
CrossRef | PubMed |

Schini, S. A. , and Bavister, B. D. (1988). Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose. Biol. Reprod. 39, 1183–1192.
PubMed |

Schultz, R. M. , and Williams, C. J. (2002). The science of ART. Science 296, 2188–2190.
CrossRef | PubMed |

Scott, L. F. , Sundaram, S. G. , and Smith, S. (1993). The relevance and use of mouse embryo bioassays for quality control in an assisted reproductive technology program. Fertil. Steril. 60, 559–568.
PubMed |

Seshagiri, P. B. , and Bavister, B. D. (1991). Glucose and phosphate inhibit respiration and oxidative metabolism in cultured hamster eight-cell embryos: evidence for the ‘crabtree effect’. Mol. Reprod. Dev. 30, 105–111.
PubMed |

Squirrell, J. M. , Lane, M. , and Bavister, B. D. (2001). Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol. Reprod. 64, 1845–1854.
PubMed |

Stern, S. , Biggers, J. D. , and Anderson, E. (1971). Mitochondria and early development of the mouse. J. Exp. Zool. 176, 179–191.
PubMed |

Thompson, J. G. , Kind, K. L. , Roberts, C. T. , Robertson, S. A. , and Robinson, J. S. (2002). Epigenetic risks related to assisted reproductive technologies: short- and long-term consequences for the health of children conceived through assisted reproduction technology: more reason for caution? Hum. Reprod. 17, 2783–2786.
CrossRef | PubMed |

Van Blerkom, J. , Davis, P. , and Alexander, S. (2000). Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Hum. Reprod. 15, 2621–2633.
CrossRef | PubMed |

Van den Bergh, M. , Devreker, F. , Emiliani, S. , and Englert, Y. (2001). Glycolytic activity: a possible tool for human blastocyst selection. Reprod. Biomed. Online 3(Suppl. 1), 8.


Van der Auwera, I. , and D’Hooghe, T. (2001). Superovulation of female mice delays embryonic and fetal development. Hum. Reprod. 16, 1237–1243.
CrossRef | PubMed |

Zander, D. L. , Froiland, D. , and Lane, M. (2004). Ammonium affects mitochondrial distribution and function in mouse 2-cell embryos. Reprod. Fertil. Dev. 16(Suppl.), 81.


Zhao, Y. , and Baltz, J. M. (1996). Bicarbonate/chloride exchange and intracellular pH throughout preimplantation mouse embryo development. Am. J. Physiol. 271, C1512–C1520.
PubMed |

Zhao, Y. , Chauvet, P. J. , Alper, S. L. , and Baltz, J. M. (1995). Expression and function of bicarbonate/chloride exchangers in the preimplantation mouse embryo. J. Biol. Chem. 270, 24 428–24 434.
CrossRef |



Rent Article (via Deepdyve) Export Citation Cited By (80)