Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effect of donor age on success of spermatogenesis in feline testis xenografts

Yeunhee Kim A , Vimal Selvaraj A , Budhan Pukazhenthi B and Alexander J. Travis A C
+ Author Affiliations
- Author Affiliations

A Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.

B Department of Reproductive Sciences, Smithsonian’s National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA.

C Corresponding author. Email: ajt32@cornell.edu

Reproduction, Fertility and Development 19(7) 869-876 https://doi.org/10.1071/RD07056
Submitted: 21 March 2007  Accepted: 19 July 2007   Published: 6 September 2007

Abstract

Ectopic xenografting of ‘donor’ feline testicular tissue into a ‘recipient’ immunodeficient mouse is a promising tool to preserve the male genome from genetically valuable felids. To define parameters under which the technique can succeed, we compared the effect of donor age on xenograft spermatogenesis among four age groups of domestic cats (Felis catus; age range 8 weeks to 15 months). In all cases, fresh tissue was grafted into castrated mice and collected 10, 30 and 50 weeks later. The percentage of xenografts recovered decreased as donor age increased. Mature testicular spermatozoa were observed in xenografts from the 8 and 9–16 week age groups; only a single 7-month-old donor produced elongating spermatids and xenografts from donors ≥ 8 months of age degenerated. Seminal vesicle weight, an indicator of bioactive testosterone, was not significantly different between donors aged 8 weeks to 7 months and controls, suggesting that xenograft Leydig cells were ultimately functional even in the 5–7 month age group. Regardless of donor age, production of mature spermatozoa from xenografts was markedly delayed compared with controls. Comparison of xenografts that produced sperm with normal controls revealed a decrease in tubule cross-sections having post-meiotic germ cells. Together, these results indicate that the maximum practical donor age was just before the onset of puberty and that even successful xenografts had abnormalities in spermatogenesis.


Acknowledgements

The authors thank Colonial Veterinary Hospital, Ithaca, NY, USA, and Dr Leslie D. Appel and Marla Hirch of Shelter Outreach Services, Ithaca, NY, USA, for providing testis specimens from routine castrations. The authors also thank Dr Ina Dobrinski (University of Pennsylvania, Kennett Square, PA, USA) for her thoughtful comments on the manuscript. This work was supported, in part, by a grant from the Morris Animal Foundation (AJT, BP) and additionally by the Baker Institute.


References

Bajpai, M. , Gupta, G. , and Setty, B. (1998). Changes in carbohydrate metabolism of testicular germ cells during meiosis in the rat. Eur. J. Endocrinol. 138, 322–327.
CrossRef | PubMed |

Bellve, A. R. , Cavicchia, J. C. , Millette, C. F. , O’Brien, D. A. , Bhatnagar, Y. M. , and Dym, M. (1977). Spermatogenic cells of the prepuberal mouse: isolation and morphological characterization. J. Cell Biol. 74, 68–85.
CrossRef | PubMed |

Brinster, R. L. , and Avarbock, M. R. (1994). Germline transmission of donor haplotype following spermatogonial transplantation. Proc. Natl Acad. Sci. USA 91, 11 303–11 307.
CrossRef | PubMed |

Brinster, R. L. , and Zimmermann, J. W. (1994). Spermatogenesis following male germ-cell transplantation. Proc. Natl Acad. Sci. USA 91, 11 298–11 302.
CrossRef | PubMed |

Dobrinski, I. , Avarbock, M. R. , and Brinster, R. L. (1999). Transplantation of germ cells from rabbits and dogs into mouse testes. Biol. Reprod. 61, 1331–1339.
CrossRef | PubMed |

Franca, L. R. , Ogawa, T. , Avarbock, M. R. , Brinster, R. L. , and Russell, L. D. (1998). Germ cell genotype controls cell cycle during spermatogenesis in the rat. Biol. Reprod. 59, 1371–1377.
CrossRef | PubMed |

Geens, M. , De Block, G. , Goossens, E. , Frederickx, V. , Van Steirteghem, A. , and Tournaye, H. (2006). Spermatogonial survival after grafting human testicular tissue to immunodeficient mice. Hum. Reprod. 21, 390–396.
CrossRef | PubMed |

Grootegoed, J. A. , Jansen, R. , and van der Molen, H. J. (1986). Effect of glucose on ATP dephosphorylation in rat spermatids. J. Reprod. Fertil. 77, 99–107.
PubMed |

Honaramooz, A. , Snedaker, A. , Boiani, M. , Scholer, H. , Dobrinski, I. , and Schilatt, S. (2002). Sperm from neonatal mammalian testes grafted in mice. Nature 418, 778–781.
CrossRef | PubMed |

Honaramooz, A. , Behboodi, E. , Megee, S. O. , Overton, S. A. , Galantino-Homer, H. , Echelard, Y. , and Dobrinski, I. (2003). Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol. Reprod. 69, 1260–1264.
CrossRef | PubMed |

Honaramooz, A. , Li, M. W. , Penedo, M. C. T. , Meyers, S. , and Dobrinski, I. (2004). Accelerated maturation of primate testis by xenografting into mice. Biol. Reprod. 70, 1500–1503.
CrossRef | PubMed |

Kim, Y. , Selvaraj, V. , Dobrinski, I. , Lee, H. , Mcentee, M. C. , and Travis, A. J. (2006). Recipient preparation and mixed germ cell isolation for spermatogonial stem cell transplantation in domestic cats. J. Androl. 27, 248–256.
CrossRef | PubMed |

Nakamura, M. , Okinaga, S. , and Arai, K. (1986). Studies of metabolism of round spermatids: glucose as unfavorable substrate. Biol. Reprod. 35, 927–935.
CrossRef | PubMed |

Oatley, J. M. , de Avila, D. M. , Reeves, J. J. , and McLean, D. J. (2004). Spermatogenesis and germ cell transgene expression in xenografted bovine testicular tissue. Biol. Reprod. 71, 494–501.
CrossRef | PubMed |

Oatley, J. M. , Reeves, J. J. , and McLean, D. J. (2005). Establishment of spermatogenesis in neonatal bovine testicular tissue following ectopic xenografting varies with donor age. Biol. Reprod. 72, 358–364.
CrossRef | PubMed |

Ogawa, T. , Dobrinski, I. , Avarbock, M. R. , and Brinster, R. L. (2000). Transplantation of male germ line stem cells restores fertility in infertile mice. Nat. Med. 6, 29–34.
CrossRef | PubMed |

Pukazhenthi, B. , Comizzoli, P. , Travis, A. J. , and Wildt, D. E. (2006). Applications of emerging technologies to the study and conservation of threatened and endangered species. Reprod. Fertil. Dev. 18, 77–90.
CrossRef | PubMed |

Rathi, R. , Honaramooz, A. , Zeng, W. , Schlatt, S. , and Dobrinski, I. (2005). Germ cell fate and seminiferous tubule development in bovine testis xenografts. Reproduction 130, 923–929.
CrossRef | PubMed |

Rathi, R. , Honaramooz, A. , Zeng, W. , Turner, R. , and Dobrinski, I. (2006). Germ cell development in equine testis tissue xenografted into mice. Reproduction 131, 1091–1098.
CrossRef | PubMed |

Ravindranath N., Dettin L., and Dym M. (2003). Mammalian testes: structure and fuction. In ‘Introduction to Mammalian Reproduction’. (Ed. D. Tulsiani.) pp. 1–19. (Kluwer Academic Publishers: Boston.)

Ryu, B.-Y. , Orwig, K. E. , Avarbock, M. R. , and Brinster, R. L. (2003). Stem cell and niche development in the postnatal rat testis. Dev. Biol. 263, 253–263.
CrossRef | PubMed |

Schlatt, S. , Kim, S. S. , and Gosden, R. (2002). Spermatogenesis and steroidogenesis in mouse, hamster and monkey testicular tissue after cryopreservation and heterotopic grafting to castrated hosts. Reproduction 124, 339–346.
CrossRef | PubMed |

Schlatt, S. , Honaramooz, A. , Boiani, M. , Scholer, H. R. , and Dobrinski, I. (2003). Progeny from sperm obtained after ectopic grafting of neonatal mouse testes. Biol. Reprod. 68, 2331–2335.
CrossRef | PubMed |

Schlatt, S. , Honaramooz, A. , Ehmcke, J. , Goebell, P. J. , Rübben, H. , Dhir, R. , Dobrinski, I. , and Patrizio, P. (2006). Limited survival of adult human testicular tissue as ectopic xenograft. Hum. Reprod. 21, 384–389.
CrossRef | PubMed |

Schmidt, J. A. , de Avila, J. M. , and McLean, D. J. (2006). Grafting period and donor age affect the potential for spermatogenesis in bovine ectopic testis xenografts. Biol. Reprod. 75, 160–166.
CrossRef | PubMed |

Setchell B. P. (1978). Endocrinology of the testis. In ‘The Mammalian Testis’. (Ed. C. A. Finn.) pp. 109–180. (Cornell University Press: Ithaca, NY.)

Shinohara, T. , Inoue, K. , Ogonuki, N. , Kanatsu-Shinohara, M. , and Miki, H. , et al. (2002). Birth of offspring following transplantation of cryopreserved immature testicular pieces and in-vitro microinsemination. Hum. Reprod. 17, 3039–3045.
CrossRef | PubMed |

Shinohara, T. , Kato, M. , Takehashi, M. , Lee, J. , Chuma, S. , Nakatsuji, N. , Kanatsu-Shinohara, M. , and Hirabayashi, M. (2006). Rats produced by interspecies spermatogonial transplantation in mice and in vitro microinsemination. Proc. Natl Acad. Sci. USA 103, 13 624–13 628.
CrossRef | PubMed |

Snedaker, A. K. , Honaramooz, A. , and Dobrinski, I. (2004). A game of cat and mouse: xenografting of testis tissue from domestic kittens results in complete cat spermatogenesis in a mouse host. J. Androl. 25, 926–930.
PubMed |

Tsutsui, T. , Kuwabara, S. , Kuwabara, K. , Kugota, Y. , Kinjo, T. , and Hori, T. (2004). Development of spermatogenic function in the sex maturation process in male cats. J. Vet. Med. Sci. 66, 1125–1127.
CrossRef | PubMed |

Zeng, W. , Avelar, G. F. , Rathi, R. , Franca, L. R. , and Dobrinski, I. (2006). The length of the spermatogenic cycle is conserved in porcine and ovine testis xenografts. J. Androl. 27, 527–533.
CrossRef | PubMed |



Rent Article (via Deepdyve) Export Citation Cited By (19)