Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Identification of novel genes associated with dominant follicle development in cattle

Anna E. Zielak A B , Niamh Forde A , Stephan D. E. Park A , Fiona Doohan C , Paul M. Coussens D , George W. Smith D , James J. Ireland D , Pat Lonergan A and Alexander C. O. Evans A E
+ Author Affiliations
- Author Affiliations

A School of Agriculture Food Science and Veterinary Medicine and the Conway Institute, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland.

B Institute of Animal Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.

C School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.

D Department of Animal Science and Center for Animal Functional Genomics, Michigan State University, East Lansing, Michigan 48824, USA.

E Corresponding author. Email: alex.evans@ucd.ie

Reproduction, Fertility and Development 19(8) 967-975 https://doi.org/10.1071/RD07102
Submitted: 30 June 2007  Accepted: 16 September 2007   Published: 30 August 2007

Abstract

Follicle development is regulated by the interaction of endocrine and intrafollicular factors, as well as by numerous intracellular pathways, which involves the transcription of new genes, although not all are known. The aim of the present study was to determine the expression of a set of unknown genes identified by bovine cDNA microarray analysis in theca and granulosa cells of dominant and subordinate follicles, collected at a single stage of the first follicular wave using quantitative real-time polymerase chain reaction. Differences were further examined at three stages of the follicular wave (emergence, selection and dominance) and bioinformatics tools were used to identify these originally unknown sequences. The suggested name function and proposed role for the novel genes identified are as follows: MRPL41 and VDAC2, involved in apoptosis (dominant follicle development); TBC1D1 stimulates cell differentiation (growth associated with dominant follicle selection and development); STX7, promotes phagocytosis of cells (subordinate follicle regression); and SPC22 and EHD3, intracellular signalling (subordinate follicle regression). In conclusion, we have identified six novel genes that have not been described previously in ovarian follicles that are dynamically regulated during dominant follicle development and presumably help mediate intracellular signalling, cell differentiation, apoptosis and phagocytosis, events critical to follicular development.

Additional keywords: bovine, ovarian follicles, stages of follicle development.


Acknowledgements

The opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Science Foundation Ireland. The authors thank P. Duffy and S. Treanor for their assistance with tissue collection and N. Hynes for her technical assistance with the hormone assays.


References

Adams, A. , Thorn, J. M. , Yamabhai, M. , Kay, B. K. , and O’Bryan, J. P. (2000). Intersectin, an adaptor protein involved in clathrin-mediated endocytosis, activates mitogenic signaling pathways. J. Biol. Chem. 275, 27 414–27 420.
PubMed |

Altschul, S. F. , Gish, W. , Miller, W. , Myers, E. W. , and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410.
PubMed |

Austin, E. J. , Mihm, M. , Evans, A. C. , Knight, P. G. , Ireland, J. L. , Ireland, J. J. , and Roche, J. F. (2001). Alterations in intrafollicular regulatory factors and apoptosis during selection of follicles in the first follicular wave of the bovine estrous cycle. Biol. Reprod. 64, 839–848.
CrossRef | PubMed |

Brunet, A. , Zigmond, M. J. , Lin, M. Z. , Juo, P. , Hu, L. S. , Anderson, M. J. , Arden, K. C. , Blenis, J. , Greenberg, M. E. , and Bonni, A. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868.
CrossRef | PubMed |

Cattaruzza, M. , Dimigen, C. , Ehrenreich, H. , and Hecker, M. (2000). Stretch-induced endothelin B receptor-mediated apoptosis in vascular smooth muscle cells. FASEB J. 14, 991–998.
PubMed |

Cheng, E. H. , Sheiko, T. V. , Fisher, J. K. , Craigen, W. J. , and Korsmeyer, S. J. (2003). VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513–517.
CrossRef | PubMed |

Chintharlapalli, S. R. , Jasti, M. , Malladi, S. , Parsa, K. V. , Ballestero, R. P. , and Gonzalez-Garcia, M. (2005). BMRP is a Bcl-2 binding protein that induces apoptosis. J. Cell. Biochem. 94, 611–626.
CrossRef | PubMed |

Collins, R. F. , Schreiber, A. D. , Grinstein, S. , and Trimble, W. S. (2002). Syntaxins 13 and 7 function at distinct steps during phagocytosis. J. Immunol. 169, 3250–3256.
PubMed |

Datta, S. R. , Brunet, A. , and Greenberg, M. E. (1999). Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927.
CrossRef | PubMed |

Doria, M. , Salcini, A. E. , Colombo, E. , Parslow, T. G. , Pelicci, P. G. , and Di Fiore, P. P. (1999). The eps15 homology (EH) domain-based interaction between eps15 and hrb connects the molecular machinery of endocytosis to that of nucleocytosolic transport. J. Cell Biol. 147, 1379–1384.
CrossRef | PubMed |

Drost, M. , Savio, J. D. , Barros, C. M. , Badinga, L. , and Thatcher, W. W. (1992). Ovariectomy by colpotomy in cows. J. Am. Vet. Med. Assoc. 200, 337–339.
PubMed |

Ensembl (2007). ‘Ensemble release 44: Apr 2007.’ Available at http://www.ensemble.org [Verified 20 April 2007].

Evans, A. C. , and Fortune, J. E. (1997). Selection of the dominant follicle in cattle occurs in the absence of differences in the expression of messenger ribonucleic acid for gonadotropin receptors. Endocrinology 138, 2963–2971.
CrossRef | PubMed |

Evans, A. C. , and Martin, F. (2000). Kinase pathways in dominant and subordinate ovarian follicles during the first wave of follicular development in sheep. Anim. Reprod. Sci. 64, 221–231.
CrossRef | PubMed |

Evans, A. C. , Ireland, J. L. , Winn, M. E. , Lonergan, P. , Smith, G. W. , Coussens, P. M. , and Ireland, J. J. (2004). Identification of genes involved in apoptosis and dominant follicle development during follicular waves in cattle. Biol. Reprod. 70, 1475–1484.
CrossRef | PubMed |

Galperin, E. , Benjamin, S. , Rapaport, D. , Rotem-Yehudar, R. , Tolchinsky, S. , and Horowitz, M. (2002). EHD3: a protein that resides in recycling tubular and vesicular membrane structures and interacts with EHD1. Traffic 3, 575–589.
CrossRef | PubMed |

Johnson, A. L. (2003). Intracellular mechanisms regulating cell survival in ovarian follicles. Anim. Reprod. Sci. 78, 185–201.
CrossRef | PubMed |

Knight, P. G. , and Glister, C. (2003). Local roles of TGF-beta superfamily members in the control of ovarian follicle development. Anim. Reprod. Sci. 78, 165–183.
CrossRef | PubMed |

Livak, K. J. , and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25, 402–408.
CrossRef | PubMed |

Masaki, T. , Miwa, S. , Sawamura, T. , Ninomiya, H. , and Okamoto, Y. (1999). Subcellular mechanisms of endothelin action in vascular system. Eur. J. Pharmacol. 375, 133–138.
CrossRef | PubMed |

Mihm, M. , and Bleach, E. C. (2003). Endocrine regulation of ovarian antral follicle development in cattle. Anim. Reprod. Sci. 78, 217–237.
CrossRef | PubMed |

Mihm, M. , Baker, P. J. , Ireland, J. L. , Smith, G. W. , Coussens, P. M. , Evans, A. C. , and Ireland, J. J. (2006). Molecular evidence that growth of dominant follicles involves a reduction in follicle-stimulating hormone dependence and an increase in luteinizing hormone dependence in cattle. Biol. Reprod. 74, 1051–1059.
CrossRef | PubMed |

Mintz, L. , Galperin, E. , Pasmanik-Chor, M. , Tulzinsky, S. , Bromberg, Y. , Kozak, C. A. , Joyner, A. , Fein, A. , and Horowitz, M. (1999). EHD1: an EH-domain-containing protein with a specific expression pattern. Genomics 59, 66–76.
CrossRef | PubMed |

Naslavsky, N. , and Caplan, S. (2005). C-terminal EH-domain-containing proteins: consensus for a role in endocytic trafficking, EH? J. Cell Sci. 118, 4093–4101.
CrossRef | PubMed |

Naslavsky, N. , Rahajeng, J. , Sharma, M. , Jovic, M. , and Caplan, S. (2006). Interactions between EHD proteins and Rab11–FIP2: a role for EHD3 in early endosomal transport. Mol. Biol. Cell 17, 163–177.
CrossRef | PubMed |

Neylon, C. B. (1999). Vascular biology of endothelin signal transduction. Clin. Exp. Pharmacol. Physiol. 26, 149–153.
CrossRef | PubMed |

Okazawa, M. , Shiraki, T. , Ninomiya, H. , Kobayashi, S. , and Masaki, T. (1998). Endothelin-induced apoptosis of A375 human melanoma cells. J. Biol. Chem. 273, 12 584–12 592.
CrossRef | PubMed |

Poretsky, L. , Cataldo, N. A. , Rosenwaks, Z. , and Giudice, L. C. (1999). The insulin-related ovarian regulatory system in health and disease. Endocr. Rev. 20, 535–582.
CrossRef | PubMed |

Poupon, V. , Polo, S. , Vecchi, M. , Martin, G. , Dautry-Varsat, A. , Cerf-Bensussan, N. , Di Fiore, P. P. , and Benmerah, A. (2002). Differential nucleocytoplasmic trafficking between the related endocytic proteins Eps15 and Eps15R. J. Biol. Chem. 277, 8941–8948.
CrossRef | PubMed |

Prendiville, D. J. , Enright, W. J. , Crowe, M. A. , Finnerty, M. , Hynes, N. , and Roche, J. F. (1995). Immunization of heifers against gonadotropin-releasing hormone: antibody titers, ovarian function, body growth, and carcass characteristics. J. Anim. Sci. 73, 2382–2389.
PubMed |

Rawlings, N. D. , and Barrett, A. J. (1994). Families of serine peptidases. Methods Enzymol. 244, 19–61.
PubMed |

Rivera, G. M. , and Fortune, J. E. (2003). Selection of the dominant follicle and insulin-like growth factor (IGF)-binding proteins: evidence that pregnancy-associated plasma protein A contributes to proteolysis of IGF-binding protein 5 in bovine follicular fluid. Endocrinology 144, 437–446.
CrossRef | PubMed |

Roach, W. G. , Chavez, J. A. , Miinea, C. P. , and Lienhard, G. E. (2007). Substrate specificity and effect on GLUT4 translocation of the Rab GTPase-activating protein Tbc1d1. Biochem. J. 403, 353–358.
CrossRef | PubMed |

Rotem-Yehudar, R. , Galperin, E. , and Horowitz, M. (2001). Association of insulin-like growth factor 1 receptor with EHD1 and SNAP29. J. Biol. Chem. 276, 33 054–33 060.
CrossRef | PubMed |

Ryan, K. E. , Casey, S. M. , Canty, M. J. , Crowe, M. A. , Martin, F. , and Evans, A. C. (2007). Akt and Erk signal transduction pathways are early markers of differentiation in dominant and subordinate ovarian follicles in cattle. Reproduction 133, 617–626.
CrossRef | PubMed |

Sampson, M. J. , Lovell, R. S. , and Craigen, W. J. (1997). The murine voltage-dependent anion channel gene family. Conserved structure and function. J. Biol. Chem. 272, 18 966–18 973.
CrossRef | PubMed |

Shelness, G. S. , Lin, L. , and Nicchitta, C. V. (1993). Membrane topology and biogenesis of eukaryotic signal peptidase. J. Biol. Chem. 268, 5201–5208.
PubMed |

Sisco, B. , Hagemann, L. J. , Shelling, A. N. , and Pfeffer, P. L. (2003). Isolation of genes differentially expressed in dominant and subordinate bovine follicles. Endocrinology 144, 3904–3913.
CrossRef | PubMed |

Smit A. F. A., Hubley R., and Green P. (2007) RepeatMasker. In ‘Current Version: open–3.1.6’. Available at http://www.repeatmasker.org [Verified 20 April 2007].

Spicer, L. J. , and Echternkamp, S. E. (1995). The ovarian insulin and insulin-like growth factor system with an emphasis on domestic animals. Domest. Anim. Endocrinol. 12, 223–245.
CrossRef | PubMed |

Sulston, J. E. , and Horvitz, H. R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156.
CrossRef | PubMed |

Tong, X. K. , Hussain, N. K. , Adams, A. G. , O’Bryan, J. P. , and McPherson, P. S. (2000). Intersectin can regulate the Ras/MAP kinase pathway independent of its role in endocytosis. J. Biol. Chem. 275, 29 894–29 899.
CrossRef | PubMed |

White, R. A. , Pasztor, L. M. , Richardson, P. M. , and Zon, L. I. (2000). The gene encoding TBC1D1 with homology to the tre-2/USP6 oncogene, BUB2, and cdc16 maps to mouse chromosome 5 and human chromosome 4. Cytogenet. Cell Genet. 89, 272–275.
CrossRef | PubMed |

Wong, W. T. , Schumacher, C. , Salcini, A. E. , Romano, A. , Castagnino, P. , Pelicci, P. G. , and Di Fiore, P. P. (1995). A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution. Proc. Natl Acad. Sci. USA 92, 9530–9534.
CrossRef | PubMed |

Yoo, Y. A. , Kim, M. J. , Park, J. K. , Chung, Y. M. , Lee, J. H. , Chi, S. G. , Kim, J. S. , and Yoo, Y. D. (2005). Mitochondrial ribosomal protein L41 suppresses cell growth in association with p53 and p27Kip1. Mol. Cell. Biol. 25, 6603–6616.
CrossRef | PubMed |



Rent Article (via Deepdyve) Export Citation Cited By (14)