Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Dissection of culture media for embryos: the most important and less important components and characteristics

David K. Gardner

A Department of Zoology, University of Melbourne, Victoria 3010, Australia.

B Email: david.gardner@unimelb.edu.au

Reproduction, Fertility and Development 20(1) 9-18 https://doi.org/10.1071/RD07160
Published: 12 December 2007

Abstract

Improvements in culture media formulations have led to an increase in the ability to maintain the mammalian embryo in culture throughout the preimplantation and pre-attachment period. Amino acids and specific macromolecules have been identified as being key medium components, whereas temporal dynamics have been recognised as important media characteristics. Furthermore, other laboratory factors that directly impact embryo development and viability have been identified. Such factors include the use of a reduced oxygen tension, an appropriate incubation system and an adequate prescreening of all contact supplies. With rigourous quality systems in place, it is possible to obtain in vivo rates of embryo development in vitro using new media formulations while maintaining high levels of embryo viability. The future of embryo culture will likely be based on novel culture chips capable of providing temporal dynamics while facilitating real-time analysis of embryo physiology.


References

Anbari, K. , and Schultz, R. M. (1993). Effect of sodium and betaine in culture media on development and relative rates of protein synthesis in preimplantation mouse embryos in vitro. Mol. Reprod. Dev. 35, 24–28.
CrossRef | PubMed |

Balaban, B. , and Urman, B. (2005). Comparison of two sequential media for culturing cleavage-stage embryos and blastocysts: embryo characteristics and clinical outcome. Reprod. Biomed. Online 10, 485–491.
PubMed |

Bavister B. D. (1987). Studies on the developmental blocks in cultured hamster embryos. In ‘The Mammalian Preimplantation Embryo’. (Ed. B. D. Bavister.) pp. 219–249. (Plenum: New York.)

Bavister, B. D. (1995). Culture of preimplantation embryos: facts and artifacts. Hum. Reprod. Update 1, 91–148.
CrossRef | PubMed |

Bavister, B. D. , and Arlotto, T. (1990). Influence of single amino acids on the development of hamster one-cell embryos in vitro. Mol. Reprod. Dev. 25, 45–51.
CrossRef | PubMed |

Bavister, B. D. , and Golden, M. (1989). Alteration of extracellular cation concentrations and ratios in culture medium does not affect first cleavage division of hamster zygotes in vitro nor overcome the ‘two-cell block’. Reprod. Fertil. Dev. 1, 231–236.
CrossRef | PubMed |

Bavister B. D., and McKiernan S. H. (1992). Regulation of hamster embryo development in vitro by amino acids. In ‘Preimplantation Embryo Development’. (Ed. B. D. Bavister.) pp. 57–72. (Springer-Verlag: New York.)

Bavister, B. D. , Kinsey, D. L. , Lane, M. , and Gardner, D. K. (2003). Recombinant human albumin supports hamster in-vitro fertilization. Hum. Reprod. 18, 113–116.
CrossRef | PubMed |

Biggers, J. D. , Lawitts, J. A. , and Lechene, C. P. (1993). The protective action of betaine on the deleterious effects of NaCl on preimplantation mouse embryos in vitro. Mol. Reprod. Dev. 34, 380–390.
CrossRef | PubMed |

Biggers, J. D. , McGinnis, L. K. , and Summers, M. C. (2004). Discrepancies between the effects of glutamine in cultures of preimplantation mouse embryos. Reprod. Biomed. Online 9, 70–73.
PubMed |

Bowman, P. , and McLaren, A. (1970). Cleavage rate of mouse embryos in vivo and in vitro. J. Embryol. Exp. Morphol. 24, 203–207.
PubMed |

Brinster, R. L. (1965). Studies on the development of mouse embryos in vitro. I. The effect of osmolarity and hydrogen ion concentration. J. Exp. Zool. 158, 49–57.
CrossRef | PubMed |

Brison, D. R. , Houghton, F. D. , Falconer, D. , Roberts, S. A. , Hawkhead, J. , Humpherson, P. G. , Lieberman, B. A. , and Leese, H. J. (2004). Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum. Reprod. 19, 2319–2324.
CrossRef | PubMed |

Bungum, M. , Humaidan, P. , and Bungum, L. (2002). Recombinant human albumin as protein source in culture media used for IVF: a prospective randomized study. Reprod. Biomed. Online 4, 233–236.
PubMed |

Carney, E. W. , and Bavister, B. D. (1987). Regulation of hamster embryo development in vitro by carbon dioxide. Biol. Reprod. 36, 1155–1163.
CrossRef | PubMed |

Casslen, B. G. (1987). Free amino acids in human uterine fluid. Possible role of high taurine concentration. J. Reprod. Med. 32, 181–184.
PubMed |

Crosby, I. M. , Gandolfi, F. , and Moor, R. M. (1988). Control of protein synthesis during early cleavage of sheep embryos. J. Reprod. Fertil. 82, 769–775.
PubMed |

Dattena, M. , Mara, L. , Bin, T. A. , and Cappai, P. (2007). Lambing rate using vitrified blastocysts is improved by culture with BSA and hyaluronan. Mol. Reprod. Dev. 74, 42–47.
CrossRef | PubMed |

Dawson, K. M. , Collins, J. L. , and Baltz, J. M. (1998). Osmolarity-dependent glycine accumulation indicates a role for glycine as an organic osmolyte in early preimplantation mouse embryos. Biol. Reprod. 59, 225–232.
CrossRef | PubMed |

Dorland, M. , Gardner, D. K. , and Trounson, A. (1994). Serum in synthetic oviduct fluid causes mitochondrial degeneration in ovine embryos. J. Reprod. Fertil. 13, 70.. [Abstract]


Dumoulin, J. C. , Evers, J. L. , Bakker, J. A. , Bras, M. , Pieters, M. H. , and Geraedts, J. P. (1992a). Temporal effects of taurine on mouse preimplantation development in vitro. Hum. Reprod. 7, 403–407.
PubMed |

Dumoulin, J. C. , Evers, J. L. , Bras, M. , Pieters, M. H. , and Geraedts, J. P. (1992b). Positive effect of taurine on preimplantation development of mouse embryos in vitro. J. Reprod. Fertil. 94, 373–380.
PubMed |

Eagle, H. (1959). Amino acid metabolism in mammalian cell cultures. Science 130, 432–437.
CrossRef | PubMed |

Edwards, L. J. , Williams, D. A. , and Gardner, D. K. (1998a). Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum. Reprod. 13, 3441–3448.
CrossRef | PubMed |

Edwards, L. J. , Williams, D. A. , and Gardner, D. K. (1998b). Intracellular pH of the preimplantation mouse embryo: effects of extracellular pH and weak acids. Mol. Reprod. Dev. 50, 434–442.
CrossRef | PubMed |

Fissore, R. A. , Jackson, K. V. , and Kiessling, A. A. (1989). Mouse zygote development in culture medium without protein in the presence of ethylenediaminetetraacetic acid. Biol. Reprod. 41, 835–841.
CrossRef | PubMed |

Gardner, D. K. (1994). Mammalian embryo culture in the absence of serum or somatic cell support. Cell Biol. Int. 18, 1163–1179.
CrossRef | PubMed |

Gardner, D. K. (1998). Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology 49, 83–102.
CrossRef | PubMed |

Gardner, D. K. , and Lane, M. (1993). Amino acids and ammonium regulate mouse embryo development in culture. Biol. Reprod. 48, 377–385.
CrossRef | PubMed |

Gardner, D. K. , and Lane, M. (1996). Alleviation of the ‘2-cell block’ and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum. Reprod. 11, 2703–2712.
PubMed |

Gardner D. K., and Lane M. (2002). Development of viable mammalian embryos in vitro: evolution of sequential media. In ‘Principles of Cloning’. (Eds J. Cibelli, R. Lanza, K. Campbell and M. D. West.) pp. 187–213. (Academic Press: New York.)

Gardner, D. K. , and Lane, M. (2003). Towards a single embryo transfer. Reprod. Biomed. Online 6, 470–481.
PubMed |

Gardner, D. K. , and Lane, M. (2005). Ex vivo early embryo development and effects on gene expression and imprinting. Reprod. Fertil. Dev. 17, 361–370.
CrossRef | PubMed |

Gardner D. K., and Lane M. (2007). Embryo culture systems. In ‘In Vitro Fertilization: A Practical Approach’. (Ed. D. K. Gardner.) pp. 221–282. (Informa Healthcare: New York.)

Gardner, D. K. , and Leese, H. J. (1990). Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. J. Reprod. Fertil. 88, 361–368.
PubMed |

Gardner, D. K. , and Sakkas, D. (1993). Mouse embryo cleavage, metabolism and viability: role of medium composition. Hum. Reprod. 8, 288–295.
PubMed |

Gardner D. K., and Sakkas D. (2003). Assessment of embryo viability: the ability to select a single embryo for transfer. Placenta 24, S5–S12.

Gardner, D. K. , Lane, M. , Spitzer, A. , and Batt, P. A. (1994). Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol. Reprod. 50, 390–400.
CrossRef | PubMed |

Gardner, D. K. , Lane, M. , Calderon, I. , and Leeton, J. (1996). Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil. Steril. 65, 349–353.
PubMed |

Gardner, D. K. , Rodrieguez-Martinez, H. , and Lane, M. (1999). Fetal development after transfer is increased by replacing protein with the glycosaminoglycan hyaluronan for mouse embryo culture and transfer. Hum. Reprod. 14, 2575–2580.
CrossRef | PubMed |

Gardner, D. K. , Lane, M. , and Schoolcraft, W. B. (2002). Physiology and culture of the human blastocyst. J. Reprod. Immunol. 55, 85–100.
CrossRef | PubMed |

Gardner, D. K. , Stilley, K. , and Lane, M. (2004). High protein diet inhibits inner cell mass formation and increases apoptosis in mouse blastocysts developed in vivo by increasing the levels of ammonium in the reproductive tract. Reprod. Fertil. Dev. 16, 190. [Abstract]
CrossRef |

Gardner, D. K. , Reed, L. , Linck, D. , Sheehan, C. , and Lane, M. (2005). Quality control in human in vitro fertilization. Semin. Reprod. Med. 23, 319–324.
CrossRef | PubMed |

Gray, C. W. , Morgan, P. M. , and Kane, M. T. (1992). Purification of an embryotrophic factor from commercial bovine serum albumin and its identification as citrate. J. Reprod. Fertil. 94, 471–480.
PubMed |

Gwatkin, R. B. L. (1966). Amino acid requirements for attachment and outgrowth of the mouse blastocyst in vitro. J. Cell. Comp. Physiol. 68, 335–343.


Hanson, R. W. , and Ballard, F. J. (1968). Citrate, pyruvate, and lactate contaminants of commercial serum albumin.  J. Lipid Res. 9, 667–668.
PubMed |

Harlow, G. M. , and Quinn, P. (1979). Foetal and placental growth in the mouse after pre-implantation development in vitro under oxygen concentrations of 5 and 20%. Aust. J. Biol. Sci. 32, 363–369.
PubMed |

Harlow, G. M. , and Quinn, P. (1982). Development of preimplantation mouse embryos in vivo and in vitro. Aust. J. Biol. Sci. 35, 187–193.
PubMed |

Harris, S. E. , Gopichandran, N. , Picton, H. M. , Leese, H. J. , and Orsi, N. M. (2005). Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology 64, 992–1006.
CrossRef | PubMed |

He, Y. , Hakvoort, T. B. , Vermeulen, J. L. , Lamers, W. H. , and Van Roon, M. A. (2007). Glutamine synthetase is essential in early mouse embryogenesis. Dev. Dyn. 236, 1865–1875.
CrossRef | PubMed |

Hugentobler, S. A. , Diskin, M. G. , Leese, H. J. , Humpherson, P. G. , Watson, T. , Sreenan, J. M. , and Morris, D. G. (2007). Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Mol. Reprod. Dev. 74, 445–454.
CrossRef | PubMed |

Kano, K. , Miyano, T. , and Kato, S. (1998). Effects of glycosaminoglycans on the development of in vitro-matured and -fertilized porcine oocytes to the blastocyst stage in vitro. Biol. Reprod. 58, 1226–1232.
CrossRef | PubMed |

Katz-Jaffe, M. G. , Linck, D. W. , Schoolcraft, W. B. , and Gardner, D. K. (2005). A proteomic analysis of mammalian preimplantation embryonic development. Reproduction 130, 899–905.
CrossRef | PubMed |

Khosla, S. , Dean, W. , Brown, D. , Reik, W. , and Feil, R. (2001). Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol. Reprod. 64, 918–926.
CrossRef | PubMed |

Lane, M. (2001). Mechanisms for managing cellular and homeostatic stress in vitro. Theriogenology 55, 225–236.
CrossRef | PubMed |

Lane, M. , and Gardner, D. K. (1994). Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. J. Reprod. Fertil. 102, 305–312.
PubMed |

Lane, M. , and Gardner, D. K. (1996). Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum. Reprod. 11, 1975–1978.
PubMed |

Lane, M. , and Gardner, D. K. (1997a). Differential regulation of mouse embryo development and viability by amino acids. J. Reprod. Fertil. 109, 153–164.
PubMed |

Lane, M. , and Gardner, D. K. (1997b). Nonessential amino acids and glutamine decrease the time of the first three cleavage divisions and increase compaction of mouse zygotes in vitro. J. Assist. Reprod. Genet. 14, 398–403.
PubMed |

Lane, M. , and Gardner, D. K. (2000). Lactate regulates pyruvate uptake and metabolism in the preimplantation mouse embryo. Biol. Reprod. 62, 16–22.
CrossRef | PubMed |

Lane, M. , and Gardner, D. K. (2003). Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol. Reprod. 69, 1109–1117.
CrossRef | PubMed |

Lane, M. , and Gardner, D. K. (2005a). Mitochondrial malate–aspartate shuttle regulates mouse embryo nutrient consumption. J. Biol. Chem. 280, 18 361–18 367.
CrossRef | PubMed |

Lane, M. , and Gardner, D. K. (2005b). Understanding cellular disruptions during early embryo development that perturb viability and fetal development. Reprod. Fertil. Dev. 17, 371–378.
CrossRef | PubMed |

Lane, M. , Baltz, J. M. , and Bavister, B. D. (1999). Na+/H+ antiporter activity in hamster embryos is activated during fertilization. Dev. Biol. 208, 244–252.
CrossRef | PubMed |

Lane, M. , Maybach, J. M. , Hooper, K. , Hasler, J. F. , and Gardner, D. K. (2003). Cryo-survival and development of bovine blastocysts are enhanced by culture with recombinant albumin and hyaluronan. Mol. Reprod. Dev. 64, 70–78.
CrossRef | PubMed |

Lawitts, J. A. , and Biggers, J. D. (1992). Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media. Mol. Reprod. Dev. 31, 189–194.
CrossRef | PubMed |

Leese, H. J. (1988). The formation and function of oviduct fluid. J. Reprod. Fertil. 82, 843–856.
PubMed |

Li, A. , Chandrakanthan, V. , Chami, O. , and O’Neill, C. (2007). Culture of zygotes increases TRP53 expression in B6 mouse embryos, which reduces embryo viability. Biol. Reprod. 76, 362–367.
CrossRef | PubMed |

Li, J. , and Foote, R. H. (1995). Effect of inositol and glycine with increasing sodium chloride and constant osmolality on development of rabbit embryos. J. Assist. Reprod. Genet. 12, 141–146.
CrossRef | PubMed |

Lindenbaum, A. (1973). A survey of naturally occurring chelating ligands. Adv. Exp. Med. Biol. 40, 67–77.
PubMed |

Liu, Z. , and Foote, R. H. (1995). Development of bovine embryos in KSOM with added superoxide dismutase and taurine and with five and twenty percent O2. Biol. Reprod. 53, 786–790.
CrossRef | PubMed |

Martin, P. M. , and Sutherland, A. E. (2001). Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev. Biol. 240, 182–193.
CrossRef | PubMed |

Martin, P. M. , Sutherland, A. E. , and Van Winkle, L. J. (2003). Amino acid transport regulates blastocyst implantation. Biol. Reprod. 69, 1101–1108.
CrossRef | PubMed |

McEvoy, T. G. , Robinson, J. J. , Aitken, R. P. , Findlay, P. A. , and Robertson, I. S. (1997). Dietary excesses of urea influence the viability and metabolism of preimplantation sheep embryos and may affect fetal growth among survivors. Anim. Reprod. Sci. 47, 71–90.
CrossRef | PubMed |

McKiernan, S. H. , Clayton, M. K. , and Bavister, B. D. (1995). Analysis of stimulatory and inhibitory amino acids for development of hamster one-cell embryos in vitro. Mol. Reprod. Dev. 42, 188–199.
CrossRef | PubMed |

Mehta, T. S. , and Kiessling, A. A. (1990). Development potential of mouse embryos conceived in vitro and cultured in ethylenediaminetetraacetic acid with or without amino acids or serum. Biol. Reprod. 43, 600–606.
CrossRef | PubMed |

Menezo Y. (1972). Amino constiuents of tubal and uterine fluids of the eostrous ewe: comparison with blood serum and ram seminal fluid. In ‘The Biology of Spermatazoa’. (Eds E. S. Hafez and C. Thibault.) pp. 174. (Basel Press: New York.)

Miller, J. G. , and Schultz, G. A. (1987). Amino acid content of preimplantation rabbit embryos and fluids of the reproductive tract. Biol. Reprod. 36, 125–129.
CrossRef | PubMed |

Mortimer D. M., and Mortimer S. (2005). ‘Quality and Risk Management in the IVF Laboratory.’ (Cambridge University Press: Cambridge.)

Palasz, A. T. , Thundathil, J. , Verrall, R. E. , and Mapletoft, R. J. (2000). The effect of macromolecular supplementation on the surface tension of TCM-199 and the utilization of growth factors by bovine oocytes and embryos in culture. Anim. Reprod. Sci. 58, 229–240.
CrossRef | PubMed |

Palasz, A. T. , Rodriguez-Martinez, H. , Beltran-Brena, P. , Perez-Garnelo, S. , Martinez, M. F. , Gutierrez-Adan, A. , and De la Fuente, J. (2006). Effects of hyaluronan, BSA, and serum on bovine embryo in vitro development, ultrastructure, and gene expression patterns. Mol. Reprod. Dev. 73, 1503–1511.
CrossRef | PubMed |

Perkins, J. L. , and Goode, L. (1967). Free amino acids in the oviduct fluid of the ewe. J. Reprod. Fertil. 14, 309–311.
PubMed |

Phillips, K. P. , and Baltz, J. M. (1999). Intracellular pH regulation by HCO3–/Cl– exchanger activity appears following fertilization in the mouse. Dev. Biol. 208, 392–405.
CrossRef | PubMed |

Quinn, P. , and Harlow, G. M. (1978). The effect of oxygen on the development of preimplantation mouse embryos in vitro. J. Exp. Zool. 206, 73–80.
CrossRef | PubMed |

Rieger, D. , Loskutoff, N. M. , and Betteridge, K. J. (1992). Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod. Fertil. Dev. 4, 547–557.
CrossRef | PubMed |

Schultz, G. A. , Kaye, P. L. , McKay, D. J. , and Johnson, M. H. (1981). Endogenous amino acid pool sizes in mouse eggs and preimplantation embryos. J. Reprod. Fertil. 61, 387–393.
PubMed |

Scott, L. F. , Sundaram, S. G. , and Smith, S. (1993). The relevance and use of mouse embryos bioassays for quality control in an assisted reproductive technology program. Fertil. Steril. 60, 559–568.
PubMed |

Sinawat, S. , Hsaio, W. C. , Flockhart, J. H. , Kaufman, M. H. , Keith, J. , and West, J. D. (2003). Fetal abnormalities produced after preimplantation exposure of mouse embryos to ammonium chloride. Hum. Reprod. 18, 2157–2165.
CrossRef | PubMed |

Sinclair, K. D. , McEvoy, T. G. , Carol, C. , Maxfield, E. K. , Maltin, C. A. , Young, L. E. , Wilmut, I. , Robinson, J. J. , and Broadbent, P. J. (1998). Conceptus growth and development following in vitro culture of ovine embryos in media supplemented with sera. Theriogenology 49, 218. [Abstract]
CrossRef |

Spindle, A. I. , and Pedersen, R. A. (1973). Hatching, attachment, and outgrowth of mouse blastocysts in vitro: fixed nitrogen requirements. J. Exp. Zool. 186, 305–318.
CrossRef | PubMed |

Steeves, T. E. , and Gardner, D. K. (1999). Temporal and differential effects of amino acids on bovine embryo development in culture. Biol. Reprod. 61, 731–740.
CrossRef | PubMed |

Stojkovic, M. , Kolle, S. , Peinl, S. , Stojkovic, P. , Zakhartchenko, V. , Thompson, J. G. , Wenigerkind, H. , Reichenbach, H. D. , Sinowatz, F. , and Wolf, E. (2002). Effects of high concentrations of hyaluronan in culture medium on development and survival rates of fresh and frozen–thawed bovine embryos produced in vitro. Reproduction 124, 141–153.
CrossRef | PubMed |

Suh, R. S. , Phadke, N. , Ohl, D. A. , Takayama, S. , and Smith, G. D. (2003). Rethinking gamete/embryo isolation and culture with microfluidics. Hum. Reprod. Update 9, 451–461.
CrossRef | PubMed |

Takahashi, Y. , and First, N. L. (1992). In vitro development of bovine one-cell embryos influence of glucose, lactate, amino acids and vitamins.  Theriogenology 37, 963–978.
CrossRef | PubMed |

Thompson, J. G. , Simpson, A. C. , Pugh, P. A. , Donnelly, P. E. , and Tervit, H. R. (1990). Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J. Reprod. Fertil. 89, 573–578.
PubMed |

Thompson, J. G. , Gardner, D. K. , Pugh, P. A. , McMillan, W. H. , and Tervit, H. R. (1995). Lamb birth weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos. Biol. Reprod. 53, 1385–1391.
CrossRef | PubMed |

Van Winkle, L. J. (1988). Amino acid transport in developing animal oocytes and early conceptuses. Biochim. Biophys. Acta 947, 173–208.
PubMed |

Van Winkle, L. J. , Haghighat, N. , and Campione, A. L. (1990). Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J. Exp. Zool. 253, 215–219.
CrossRef | PubMed |

Virant-Klun, I. , Tomazevic, T. , Vrtacnik-Bokal, E. , Vogler, A. , Krsnik, M. , and Meden-Vrtovec, H. (2006). Increased ammonium in culture medium reduces the development of human embryos to the blastocyst stage. Fertil. Steril. 85, 526–528.
CrossRef | PubMed |

Walker, S. K. , Heard, T. M. , and Seamark, R. F. (1992). In vitro culture of sheep embryos without co-culture: success and perspectives. Theriogenology 37, 111–126.
CrossRef |

Wheeler, M. B. , Walters, E. M. , and Beebe, D. J. (2007). Toward culture of single gametes: the development of microfluidic platforms for assisted reproduction. Theriogenology 68((Suppl. 1)), S178–S189.
CrossRef | PubMed |

Whitten, W. K. (1956). Culture of tubal mouse ova. Nature 177, 96–97.
CrossRef | PubMed |

Whitten, W. K. (1957). Culture of tubal ova. Nature 179, 1081–1082.
CrossRef | PubMed |

Whitten, W. K. , and Biggers, J. D. (1968). Complete development in vitro of the pre-implantation stages of the mouse in a simple chemically defined medium. J. Reprod. Fertil. 17, 399–401.
PubMed |

Whittingham, D. G. (1971). Culture of mouse ova. J. Reprod. Fertil. Suppl. 14, 7–21.
PubMed |

Wu, G. , and Morris, S. M. (1998). Arginine metabolism: nitric oxide and beyond. Biochem. J. 336, 1–17.
PubMed |

Zhang, X. , and Armstrong, D. T. (1990). Presence of amino acids and insulin in a chemically defined medium improves development of 8-cell rat embryos in vitro and subsequent implantation in vivo. Biol. Reprod. 42, 662–668.
CrossRef | PubMed |

Zhao, Y. , and Baltz, J. M. (1996). Bicarbonate/chloride exchange and intracellular pH throughout preimplantation mouse embryo development. Am. J. Physiol. 271, C1512–C1520.
PubMed |



Rent Article (via Deepdyve) Export Citation Cited By (38)