Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Zebrafish (Danio rerio) and the egg size versus egg number trade off: effects of ration size on fecundity are not mediated by orthologues of the Fec gene

Erin L. Forbes A B , Craig D. Preston A and P. Mark Lokman A
+ Author Affiliations
- Author Affiliations

A Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand.

B Corresponding author. Email: forer069@student.otago.ac.nz

Reproduction, Fertility and Development 22(6) 1015-1021 https://doi.org/10.1071/RD09257
Submitted: 16 October 2009  Accepted: 29 January 2010   Published: 1 July 2010

Abstract

Few studies have demonstrated plasticity of egg size within the confines of an egg size–number trade-off in response to trophic conditions in fishes. Moreover, the physiological mechanisms that govern this plasticity are not known. Growth differentiation factor 9 (Gdf9) and bone morphogenetic factor 15 (Bmp15) are oocyte-specific factors implicated in follicular growth and ovulation in mammals. In order to investigate whether expression levels of these genes were correlated with ration-dependent changes in fecundity in fish, zebrafish (Danio rerio) were subjected to four different feeding regimens. Counts of spawned eggs or vitellogenic follicles were used to estimate fecundity, whereas quantitative polymerase chain reaction analyses were performed to determine Gdf9 and Bmp15 mRNA levels in response to changes in ration size. Both relative fecundity and gonadosomatic index increased significantly with increased ration size, whereas egg size and hatching rate decreased significantly. No significant differences in Gdf9 or Bmp15 transcript abundance were evident between feeding regimens, suggesting that these growth factors do not govern fecundity in fish. However, favourable trophic conditions markedly affected follicle or egg size and number, with important implications for downstream egg quality and survival.

Additional keywords: bone morphogenetic protein 15, gonadosomatic index, growth differentiation factor 9.


Acknowledgements

The authors are grateful to Dr Julia Horsfield (Pathology, University of Otago) for making spawning tanks available for our study, to several cohorts of third-year students for their involvement in preliminary experiments and to Kim Garrett (Zoology, University of Otago) for his help with fish husbandry. This study was supported financially by PBRF Research Enhancement Grants (2008, 2009) from the Department of Zoology, University of Otago, to P.M.L.


References

Ausubel F., Brent R., and Lech K. (1995). Escherichia coli, plasmids, and bacterophages. In ‘Short Protocols in Molecular Biology: A Compendium of Methods’. (Eds F. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman and K. E. Struhl.) pp. 1.1–1.26. (John Wiley and Sons: New York.)

Bagenal, T. B. (1969). The relationship between food supply and fecundity in brown trout (Salmo trutta L.). J. Fish Biol. 1, 167–182.
CrossRef |

Bromage, N. R. , Hardiman, P. , Jones, J. , Springate, J. , and Bye, V. (1990). Fecundity, egg size and total egg volume differences in 12 stocks of rainbow trout, Oncorhynchus mykiss. Aquacult. Fish. Manage. 21, 269–284.
CrossRef |

Bromley, P. J. , Ravier, C. , and Witthames, P. R. (2000). The influence of feeding regime on sexual maturation, fecundity and atresia in first-time spawning turbot. J. Fish Biol. 56, 264–278.
CrossRef |

Carrière, Y. , and Roff, D. A. (1995). The evolution of offspring size and number: a test of the Smith–Fretwell model in three species of crickets. Oecologia 102, 389–396.
CrossRef |

Clelland, E. , Kohli, G. , Campbell, R. K. , Sharma, S. , Shimasaki, S. , and Peng, C. (2006). Bone morphogenetic protein-15 in the zebrafish ovary: complementary deoxyribonucleic acid cloning, genomic organization, tissue distribution, and role in oocyte maturation. Endocrinology 147, 201–209.
CrossRef | PubMed | CAS |

Czesak, M. E. , and Fox, C. W. (2003). Evolutionary ecology of egg size and number in a seed beetle: genetic trade-off differs between environments. Evolution 57, 1121–1132.
PubMed |

Dube, J. L. , Wang, P. , Elvin, J. , Lyons, K. M. , Celeste, A. J. , and Matzuk, M. M. (1998). The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol. Endocrinol. 12, 1809–1817.
CrossRef | PubMed | CAS |

Einum, S. , and Fleming, I. A. (1999). Maternal effects of egg size in brown trout (Salmo trutta): norms of reaction to environmental quality. Proc. R. Soc. Lond. B Biol. Sci. 266, 2095–2100.
CrossRef |

Einum, S. , and Fleming, I. A. (2000). Highly fecund mothers sacrifice offspring survival to maximize fitness. Nature 405, 565–567.
CrossRef | PubMed | CAS |

Elgar, M. A. (1990). Evolutionary compromise between a few large and many small eggs: comparative evidence in teleost fish. Oikos 59, 283–287.
CrossRef |

Hislop, J. R. G. , Robb, A. P. , and Gauld, J. A. (1978). Observations on effects of feeding level on growth and reproduction in haddock, Melanogrammus aeglefinus, in captivity. J. Fish Biol. 13, 85–98.
CrossRef |

Hutchings, J. A. (1991). Fitness consequences of variation in egg size and food abundance in brook trout Salvelinus fontinalis. Evolution 45, 1162–1168.
CrossRef |

Juengel, J. L. , Hudson, N. L. , Whiting, L. , and McNatty, K. P. (2004). Effects of immunization against bone morphogenetic protein 15 and growth differentiation factor 9 on ovulation rate, fertilization, and pregnancy in ewes. Biol. Reprod. 70, 557–561.
CrossRef | PubMed | CAS |

Juengel, J. L. , Hudson, N. L. , Berg, M. , Hamel, K. , Smith, P. , Lawrence, S. B. , Whiting, L. , and McNatty, K. P. (2009). Effects of active immunization against growth differentiation factor 9 and/or bone morphogenetic protein 15 on ovarian function in cattle. Reproduction 138, 107–114.
CrossRef | PubMed | CAS |

Kjesbu, O. S. , Klungsøyr, J. , Kryvi, H. , Witthames, P. R. , and Greer-Walker, M. (1991). Fecundity, atresia, and egg size of captive Atlantic cod (Gadus morhua) in relation to proximate body composition. Can. J. Fish. Aquat. Sci. 48, 2333–2343.
CrossRef |

Kurita, Y. , Meierb, S. , and Kjesbu, O. S. (2003). Oocyte growth and fecundity regulation by atresia of Atlantic herring (Clupea harengus) in relation to body condition throughout the maturation cycle. J. Sea Res. 49, 203–219.
CrossRef |

Laissue, P. , Christin-Maitre, S. , Touraine, P. , Kuttenn, F. , Ritvos, O. , Aittomaki, K. , Bourcigaux, N. , Jacquesson, L. , Bouchard, P. , and Frydman, R. (2006). Mutations and sequence variants in GDF9 and Bmp15 in patients with premature ovarian failure. Eur. J. Endocrinol. 154, 739–744.
CrossRef | PubMed | CAS |

Laitinen, M. , Vuojolainen, K. , Jaatinen, R. , Ketola, I. , Aaltonen, J. , Lehtonen, E. , Heikinheimo, M. , and Ritvos, O. (1998). A novel growth differentiation factor-9 (GDF9) related factor is co-expressed with GDF9 in mouse oocytes during folliculogenesis. Mech. Dev. 78, 135–140.
CrossRef | PubMed | CAS |

Lambert, Y. , and Dutil, J. D. (2000). Energetic consequences of reproduction in Atlantic cod (Gadus morhua) in relation to spawning level of somatic energy reserves. Can. J. Fish. Aquat. Sci. 57, 815–825.
CrossRef |

Liu, L. , and Ge, W. (2007). Growth differentiation factor 9 and its spatiotemporal expression and regulation in the zebrafish ovary. Biol. Reprod. 76, 294–302.
CrossRef | PubMed |

Lokman, P. M. , Kazeto, Y. , Ozaki, Y. , Ijiri, S. , Tosaka, R. , Kohara, M. , Divers, S. L. , Matsubara, H. , Moore, L. G. , and Adachi, S. (2010). Effects of reproductive stage, growth hormone and 11-ketotestosterone on expression of growth differentiation factor-9 in the ovary of the eel, Anguilla australis. Reproduction 139, 71–83.
CrossRef | CAS | PubMed |

Luckenbach, J. A. , Kusakabe, M. , Swanson, P. , and Young, G. (2008). Unilateral ovariectomy increases egg size and reduces follicular atresia in the semelparous coho salmon, Oncorhynchus kisutch. J. Exp. Zool. 309A, 468–476.
CrossRef |

Ma, Y. , Kjesbu, O. S. , and Jørgensen, T. (1998). Effects of ration on the maturation and fecundity in captive Atlantic herring (Clupea harengus L.). Can. J. Fish. Aquat. Sci. 55, 900–908.
CrossRef |

McPherron, A. C. , and Lee, S.-J. (1993). GDF-3 and GDF-9: Two new members of the transforming growth factor beta superfamily containing a novel pattern of cysteines. J. Biol. Chem. 268, 3444–3449.
PubMed | |  CAS |

Miller, T. J. , Crowder, L. B. , Rice, J. A. , and Marshall, E. A. (1988). Larval size and recruitment mechanisms in fishes: toward a conceptual framework. Can. J. Fish. Aquat. Sci. 45, 1657–1670.
CrossRef |

Moore, R. K. , Erickson, G. F. , and Shimasaki, S. (2004). Are BMP15 and GDF9 primary determinants of ovulation quota in mammals? Trends Endocrinol. Metab. 15, 356–361.
CrossRef | PubMed | CAS |

Olofsson, H. , Ripa, J. , and Jonzén, N. (2009). Bet-hedging as an evolutionary game: the trade-off between egg size and number. Proc. R. Soc. Lond. B Biol. Sci. 276, 2963–2969.
CrossRef |

Palmer, J. S. , Zhao, Z. Z. , Hoekstra, C. , Hayward, N. K. , Webb, P. M. , Whiteman, D. C. , Martin, N. G. , Boomsma, D. I. , Duffy, D. L. , and Montgomery, G. W. (2006). Novel variants in growth differentiation factor 9 in mothers of dizygotic twins. J. Clin. Endocrinol. Metab. 91, 4713–4716.
CrossRef | PubMed | CAS |

Pilson, D. , and Rausher, M. D. (1988). Clutch size and adjustment by swallowtail butterfly. Nature 333, 361–363.
CrossRef |

Ramsay, K. , and Witthames, P. (1996). Using oocyte size to assess seasonal ovarian development in Solea solea (L.). J. Sea Res. 36, 275–283.
CrossRef |

Rideout, R. M. , Burton, M. P. M. , and Rose, G. A. (2000). Observations on mass atresia and skipped spawning in northern Atlantic cod, from Smith Sound, Newfoundland. J. Fish Biol. 57, 1429–1440.
CrossRef |

Seger J., and Brockmann H. J. (1987). What is bet-hedging? In ‘Oxford Surveys in Evolutionary Biology’. (Eds P. H. Harvey and L. Partridge.) pp. 182–211. (Oxford University Press: Oxford.)

Simmons, L. W. , and García-González, F. (2007). Female crickets trade offspring viability for fecundity. J. Evol. Biol. 20, 1617–1623.
CrossRef | CAS | PubMed |

Simpson, A. C. (1951). The fecundity of the plaice. Fish. Invest. Lond. 2, 1–17.


Smith, C. C. , and Fretwell, S. D. (1974). The optimal balance between size and number of offspring. Am. Nat. 108, 499–506.
CrossRef |

Tyler, A. V. , and Dunn, R. S. (1976). Ration, growth, and measures of somatic and organ condition in relation to meal frequency in winter flounder, Pseudopleuronectes americanus, with hypothesis regarding population homeostasis. J. Fish. Res. Board Can. 33, 63–75.


Tyler, C. R. , Pottinger, T. G. , Santos, E. , Sumpter, J. P. , Price, S. A. , Brooks, S. , and Nagler, J. J. (1996). Mechanisms controlling egg size and number in the rainbow trout, Oncorhynchus mykiss. Biol. Reprod. 54, 8–15.
CrossRef | PubMed | CAS |

Zhang, Y. , Du, H. , Chen, J. , Yang, G. , and Zhang, X. (2008). Porcine growth differentiation factor 9 gene polymorphisms and their associations with litter size. J. Genet. Genomics 35, 163–169.
CrossRef | PubMed |



Rent Article (via Deepdyve) Export Citation Cited By (5)