Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH FRONT

Fertilisation in the horse and paracrine signalling in the oviduct

Ghylène Goudet
+ Author Affiliations
- Author Affiliations

INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France.

CNRS, UMR6175, Nouzilly, France.

Université François Rabelais de Tours, Tours, France.

IFCE, Nouzilly, France.

Email: ghylene.goudet@tours.inra.fr

Reproduction, Fertility and Development 23(8) 941-951 https://doi.org/10.1071/RD10285
Submitted: 30 October 2010  Accepted: 4 April 2011   Published: 27 September 2011

Abstract

The mammalian oviduct plays a crucial role in the preparation of gametes for fertilisation (transport and final maturation) and fertilisation itself. An increasing number of studies offers a comprehensive overview of the functions of the oviduct and its secretions, but this topic has had limited investigation in the horse. Limited data are available on the final oocyte maturation in the equine oviduct. However, in vitro and in vivo systems have been established to analyse the influence of equine oviduct epithelial cells (OEC) during maturation on the potential of oocytes for fertilisation and development. Most studies focus on the role of the oviduct in equine sperm function, such as spermatozoa transport, attachment to oviduct epithelium, viability, motility and capacitation. Moreover, some possible candidate molecules for sperm–oviducal interactions have been identified in the horse. Finally, the low efficiency of conventional in vitro fertilisation and the in vivo fertilisation of equine oocytes transferred into the oviduct of an inseminated mare predicted an influence of oviduct in equine fertilisation. Actually, in vivo and in vitro experiments demonstrated a role of the oviduct in equine fertilisation. Moreover, recent studies showed a beneficial effect of homologous and heterologous OEC on equine in vitro fertilisation, and some candidate molecules have been studied.

Additional keywords : equine, gamete, oocyte, spermatozoa.


References

Aguilar, J. J., Losinno, L., Koncurat, M., and Miragaya, M. H. (2002). Nuclear, cytoplasmic and mitochondrial patterns of ovulated oocytes in young and aged mares. Theriogenology 58, 689–692.

Alm, H., and Torner, H. (1994). In vitro maturation of horse oocytes. Theriogenology 42, 345–349.
In vitro maturation of horse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVejsg%3D%3D&md5=0056307db65d847a3cf0e939faa2143fCAS | 16727542PubMed |

Alm, H., Torner, H., Blottner, S., Nurnberg, G., and Kanitz, W. (2001). Effect of sperm cryopreservation and treatment with calcium ionophore or heparin on in vitro fertilization of horse oocytes. Theriogenology 56, 817–829.
Effect of sperm cryopreservation and treatment with calcium ionophore or heparin on in vitro fertilization of horse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvF2mtL8%3D&md5=188c9154aa2e5f6d16b8fa42df903114CAS | 11665884PubMed |

Anderson, R. A., Feathergill, K. A., Drisdel, R. C., Rawlins, R. G., Mack, S. R., and Zaneveld, L. J. (1994). Atrial natriuretic peptide (ANP) as a stimulus of the human acrosome reaction and a component of ovarian follicular fluid: correlation of follicular ANP content with in vitro fertilization outcome. J. Androl. 15, 61–70.
| 1:CAS:528:DyaK2cXivFSrsr4%3D&md5=37ba6b7570e159d7e8051ea743ae3075CAS | 7910600PubMed |

Aviles, M., Gutierrez-Adan, A., and Coy, P. (2010). Oviductal secretions: will they be key factors for the future ARTs? Mol. Hum. Reprod. 16, 896–906.
Oviductal secretions: will they be key factors for the future ARTs?Crossref | GoogleScholarGoogle Scholar | 20584881PubMed |

Bader, H. (1982). An investigation of sperm migration into the oviducts of the mare. J. Reprod. Fertil. Suppl. 32, 59–64.
| 1:STN:280:DyaL3s7msVSjtQ%3D%3D&md5=9f19ef4f6ad15512cf8d9f8416777fdeCAS | 6962900PubMed |

Ball, B. A. (1996). Scanning electron microscopy of the equine oviduct and observations on ciliary currents in vitro at day 2 after ovulation. Theriogenology 46, 1305–1311.
Scanning electron microscopy of the equine oviduct and observations on ciliary currents in vitro at day 2 after ovulation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVOnug%3D%3D&md5=ebfc70b407d0a99a58d9f304a27cca72CAS | 16727994PubMed |

Ball, B. A., Dobrinski, I., Fagnan, M. S., and Thomas, P. G. (1997). Distribution of glycoconjugates in the uterine tube (oviduct) of horses. Am. J. Vet. Res. 58, 816–822.
| 1:CAS:528:DyaK2sXls1Srtrk%3D&md5=608cfc539ae3f5a97e418e5ab36774fcCAS | 9256962PubMed |

Battut, I., Palmer, E., and Driancourt, M. A. (1995). Proteins synthesized and released by equine oviducts: characterization, variations, and interactions with spermatozoa. Biology of Reproduction Monograph Series 1, 131–140.

Bauersachs, S., Blum, H., Mallok, S., Wenigerkind, H., Rief, S., Prelle, K., and Wolf, E. (2003). Regulation of ipsilateral and contralateral bovine oviduct epithelial cell function in the postovulation period: a transcriptomics approach. Biol. Reprod. 68, 1170–1177.
Regulation of ipsilateral and contralateral bovine oviduct epithelial cell function in the postovulation period: a transcriptomics approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVert7g%3D&md5=74bf2b88a9088b13112426d47fa3c92bCAS | 12606461PubMed |

Bauersachs, S., Rehfeld, S., Ulbrich, S. E., Mallok, S., Prelle, K., Wenigerkind, H., Einspanier, R., Blum, H., and Wolf, E. (2004). Monitoring gene expression changes in bovine oviduct epithelial cells during the oestrous cycle. J. Mol. Endocrinol. 32, 449–466.
Monitoring gene expression changes in bovine oviduct epithelial cells during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslKjt7w%3D&md5=10b301a2cfec85d64aac6f8210da491aCAS | 15072551PubMed |

Betteridge, K. J., and Mitchell, D. (1974). Direct evidence of retention of unfertilized ova in the oviduct of the mare. J. Reprod. Fertil. 39, 145–148.
Direct evidence of retention of unfertilized ova in the oviduct of the mare.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2czgtValsw%3D%3D&md5=02b7399eb94856deb1192c3c0354a60aCAS | 4604330PubMed |

Betteridge, K. J., and Mitchell, D. (1975). A surgical technique applied to the study of tubal eggs in the mare. J. Reprod. Fertil. Suppl. 23, 519–524.
| 1060835PubMed |

Bézard, J., Magistrini, M., Duchamp, G., and Palmer, E. (1989). Chronology of equine fertilisation and embryonic development in vivo and in vitro. Equine Vet. J. Suppl. 8, 105–110.

Bézard, J., Mekarska, A., Goudet, G., Duchamp, G., and Palmer, E. (1997). Timing of in vivo maturation of equine preovulatory oocytes and competence for in vitro maturation of immature oocytes collected simultaneously. Equine Vet. J. Suppl. 25, 33–37.
| 9593524PubMed |

Brinsko, S. P., Ignotz, G. G., Ball, B. A., Thomas, P. G., Currie, W. B., and Ellington, J. E. (1996). Characterization of polypeptides synthesized and secreted by oviductal epithelial cell explants obtained from young, fertile and aged, subfertile mares. Am. J. Vet. Res. 57, 1346–1353.
| 1:CAS:528:DyaK28XlslKmsLs%3D&md5=6578443f8a15f0414ae1384558fb039bCAS | 8874731PubMed |

Brüssow, K.-P., Rátky, J., and Rodriguez-Martinez, H. (2008). Fertilization and early embryonic development in the porcine fallopian tube. Reprod. Domest. Anim. 43(suppl. 2), 245–251.
Fertilization and early embryonic development in the porcine fallopian tube.Crossref | GoogleScholarGoogle Scholar |

Carnevale, E. M. (2004). Oocyte transfer and gamete intrafallopian transfer in the mare. Anim. Reprod. Sci. 82–83, 617–624.
Oocyte transfer and gamete intrafallopian transfer in the mare.Crossref | GoogleScholarGoogle Scholar | 15271484PubMed |

Carnevale, E. M., Maclellan, L. J., Coutinho da Silva, M. A., Scott, T. J., and Squires, E. L. (2000). Comparison of culture and insemination techniques for equine oocyte transfer. Theriogenology 54, 981–987.
Comparison of culture and insemination techniques for equine oocyte transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2Fot1Cisw%3D%3D&md5=daea1dd310340e722899706c77d5229aCAS | 11097049PubMed |

Chapman, J. A., Chuah, M. I., and Breed, W. G. (2010). Glycoconjugates within the oviduct and their functional significance with special reference to marsupials. Histol. Histopathol. 25, 121–132.
| 1:CAS:528:DC%2BC3cXislamtro%3D&md5=7727b98e8f2b46359d15acf675fbe941CAS | 19924648PubMed |

Chiu, P. C., Wong, B. S., Lee, C. L., Lam, K. K., Chung, M. K., Lee, K. F., Koistinen, R., Koistinen, H., Gupta, S. K., Seppala, M., and Yeung, W. S. (2010). Zona pellucida-induced acrosome reaction in human spermatozoa is potentiated by glycodelin-A via down-regulation of extracellular signal-regulated kinases and up-regulation of zona pellucida-induced calcium influx. Hum. Reprod. 25, 2721–2733.
Zona pellucida-induced acrosome reaction in human spermatozoa is potentiated by glycodelin-A via down-regulation of extracellular signal-regulated kinases and up-regulation of zona pellucida-induced calcium influx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlShtb7F&md5=079ea68df087f99f80afdfc5c0b274a1CAS | 20843776PubMed |

Coy, P., and Aviles, M. (2010). What controls polyspermy in mammals, the oviduct or the oocyte? Biol. Rev. Camb. Philos. Soc. 85, 593–605.
| 20039874PubMed |

Coy, P., Canovas, S., Mondejar, I., Saavedra, M. D., Romar, R., Grullon, L., Matas, C., and Aviles, M. (2008). Oviduct-specific glycoprotein and heparin modulate sperm-zona pellucida interaction during fertilization and contribute to the control of polyspermy. Proc. Natl. Acad. Sci. USA 105, 15 809–15 814.
Oviduct-specific glycoprotein and heparin modulate sperm-zona pellucida interaction during fertilization and contribute to the control of polyspermy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yitrjL&md5=0072f2b204bdf4468127269eaf49ce86CAS |

David, J. S. (1975). A survey of eggs in the oviducts of mares. J. Reprod. Fertil. Suppl. 23, 513–517.
| 1060834PubMed |

Davies Morel, M. C., and Newcombe, J. R. (2008). The efficacy of different hCG dose rates and the effect of hCG treatment on ovarian activity: ovulation, multiple ovulation, pregnancy, multiple pregnancy, synchrony of multiple ovulation; in the mare. Anim. Reprod. Sci. 109, 189–199.
The efficacy of different hCG dose rates and the effect of hCG treatment on ovarian activity: ovulation, multiple ovulation, pregnancy, multiple pregnancy, synchrony of multiple ovulation; in the mare.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12gu7zN&md5=6bf5e1f21353c5791e471d5230f12962CAS | 18054451PubMed |

Day, F. T. (1942). Survival of spermatozoa in the genital tract of the mare. J. Agric. Sci. 32, 108–111.
Survival of spermatozoa in the genital tract of the mare.Crossref | GoogleScholarGoogle Scholar |

Deleuze, S., Dubois, C. S., Caillaud, M., Bruneau, B., Goudet, G., and Duchamp, G. (2010). Influence of cysteamine on in vitro maturation, in vitro and in vivo fertilization of equine oocytes. Reprod. Domest. Anim. 45, 1–7.
Influence of cysteamine on in vitro maturation, in vitro and in vivo fertilization of equine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislagur8%3D&md5=30e7e194506e3666bd874a868e878f1eCAS | 18992121PubMed |

Dell’Aquila, M. E., Fusco, S., Lacalandra, G. M., and Maritato, F. (1996). In vitro maturation and fertilization of equine oocytes recovered during the breeding season. Theriogenology 45, 547–560.
In vitro maturation and fertilization of equine oocytes recovered during the breeding season.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVGktw%3D%3D&md5=0b4751875992868c72b81eadc78c4e0dCAS | 16727818PubMed |

Dell’Aquila, M. E., Albrizio, M., Guaricci, A. C., De Santis, T., Maritato, F., Tremoleda, J. L., Colenbrander, B., Guerra, L., Casavola, V., and Minoia, P. (2008). Expression and localization of the mu-opioid receptor (MOR) in the equine cumulus-oocyte complex and its involvement in the seasonal regulation of oocyte meiotic competence. Mol. Reprod. Dev. 75, 1229–1246.
Expression and localization of the mu-opioid receptor (MOR) in the equine cumulus-oocyte complex and its involvement in the seasonal regulation of oocyte meiotic competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1aksrY%3D&md5=bcb734b4399e5cee5e17f8079e96fa2bCAS | 18213645PubMed |

Desantis, S., Acone, F., Corriero, A., Deflorio, M., Zubani, D., Ventriglia, G., Palmieri, G., and De Metrio, G. (2004). Distribution of sialoglycoconjugates in the oviductal isthmus of the horse during anoestrus, oestrus and pregnancy: a lectin histochemistry study. Eur. J. Histochem. 48, 403–412.
| 1:STN:280:DC%2BD2M%2FovVCntA%3D%3D&md5=b43c987cf1e687954b4a140ba20c4591CAS | 15718207PubMed |

Desantis, S., Ventriglia, G., Zizza, S., Guaricci, A. C., Losurdo, M., Zarrilli, A., and Albrizio, M. (2010). Changes in the expression of the mu-opioid receptor in the mare oviduct during oestrus and anoestrus. Anim. Reprod. Sci. 119, 40–49.
Changes in the expression of the mu-opioid receptor in the mare oviduct during oestrus and anoestrus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Kjs7c%3D&md5=bb7149990ec31c0657bfdc61c63e2e60CAS | 20036785PubMed |

Dobrinski, I., Thomas, P. G., and Ball, B. A. (1995). Cryopreservation reduces the ability of equine spermatozoa to attach to oviductal epithelial cells and zonae pellucidae in vitro. J. Androl. 16, 536–542.
| 1:STN:280:DyaK2s%2FitFansA%3D%3D&md5=f88bfe830ed77289402beb726bcae84aCAS | 8867602PubMed |

Dobrinski, I., Ignotz, G. G., Thomas, P. G., and Ball, B. A. (1996a). Role of carbohydrates in the attachment of equine spermatozoa to uterine tubal (oviductal) epithelial cells in vitro. Am. J. Vet. Res. 57, 1635–1639.
| 1:CAS:528:DyaK28XntV2gtrw%3D&md5=92dbc918b84527b30922f2847ab60a6dCAS | 8915444PubMed |

Dobrinski, I., Suarez, S. S., and Ball, B. A. (1996b). Intracellular calcium concentration in equine spermatozoa attached to oviductal epithelial cells in vitro. Biol. Reprod. 54, 783–788.
Intracellular calcium concentration in equine spermatozoa attached to oviductal epithelial cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhslKitrs%3D&md5=966c7bd9883be93afccfa7f4d9005268CAS | 8924497PubMed |

Dobrinski, I., Ignotz, G. G., Fagnan, M. S., Yudin, S. I., and Ball, B. A. (1997a). Isolation and characterization of a protein with homology to angiotensin converting enzyme from the periacrosomal plasma membrane of equine spermatozoa. Mol. Reprod. Dev. 48, 251–260.
Isolation and characterization of a protein with homology to angiotensin converting enzyme from the periacrosomal plasma membrane of equine spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFKms7c%3D&md5=6f5008a75e85e27a95f785bf1f84edcaCAS | 9291475PubMed |

Dobrinski, I., Smith, T. T., Suarez, S. S., and Ball, B. A. (1997b). Membrane contact with oviductal epithelium modulates the intracellular calcium concentration of equine spermatozoa in vitro. Biol. Reprod. 56, 861–869.
Membrane contact with oviductal epithelium modulates the intracellular calcium concentration of equine spermatozoa in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitFGrtrg%3D&md5=29bc020c70e37fac203f843bff675909CAS | 9096866PubMed |

Ekhlasi-Hundrieser, M., Schäfer, B., Kirchhoff, C., Hess, O., Bellair, S., Müller, P., and Töpfer-Petersen, E. (2005). Structural and molecular characterization of equine sperm-binding fibronectin-II module proteins. Mol. Reprod. Dev. 70, 45–57.
Structural and molecular characterization of equine sperm-binding fibronectin-II module proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOitrzK&md5=d8b952e0ce43cdcafff0ee685766ab9fCAS | 15515052PubMed |

Ellington, J. E., Ball, B. A., Blue, B. J., and Wilker, C. E. (1993a). Capacitation-like membrane changes and prolonged viability in vitro of equine spermatozoa cultured with uterine tube epithelial cells. Am. J. Vet. Res. 54, 1505–1510.
| 1:CAS:528:DyaK2cXlslKq&md5=1114be9d97fb225f1205104e4b6b2906CAS | 8239141PubMed |

Ellington, J. E., Ball, B. A., and Yang, X. (1993b). Binding of stallion spermatozoa to the equine zona pellucida after coculture with oviductal epithelial cells. J. Reprod. Fertil. 98, 203–208.
Binding of stallion spermatozoa to the equine zona pellucida after coculture with oviductal epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3szkslWluw%3D%3D&md5=2ad7a9344aa04afa5fedd8442418e475CAS | 7688425PubMed |

Ellington, J. E., Ignotz, G. G., Miller, P. G., Currie, W. B., and Meyers-Wallen, V. N. (1993c). Oviduct epithelial cell co-culture modifies stallion and bull sperm cell surface proteins. Biol. Reprod. Suppl. 1, 107.

Ellington, J. E., Ignotz, G. G., Varner, D. D., Marcucio, R. S., Mathison, P., and Ball, B. A. (1993d). In vitro interaction between oviduct epithelial and equine sperm. Arch. Androl. 31, 79–86.
In vitro interaction between oviduct epithelial and equine sperm.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c%2FivFartg%3D%3D&md5=883f591c91b629903b5f13e1bfabb3eeCAS | 8215695PubMed |

Ellington, J. E., Varner, D. D., Burghardt, R. C., Meyers-Wallen, V. N., Barhoumi, R., Brinsko, S. P., and Ball, B. A. (1993e). Cell-to-cell communication of equine uterine tube (oviduct) cells as determined by anchored cell analysis in culture. Anim. Reprod. Sci. 30, 313–324.
Cell-to-cell communication of equine uterine tube (oviduct) cells as determined by anchored cell analysis in culture.Crossref | GoogleScholarGoogle Scholar |

Ellington, J. E., Samper, J., Jones, A., Oliver, S. A., Burnett, K., and Wright, R. W. (1999a). Effects of bovine serum albumin on function of cryopreserved stallion spermatozoa during medium culture and uterine tube epithelial cell coculture. Am. J. Vet. Res. 60, 363–367.
| 1:CAS:528:DyaK1MXit1aiurw%3D&md5=f29265ec8a6c89613e9166b1fb71adebCAS | 10188821PubMed |

Ellington, J. E., Samper, J. C., Jones, A. E., Oliver, S. A., Burnett, K. M., and Wright, R. W. (1999b). In vitro interactions of cryopreserved stallion spermatozoa and oviduct (uterine tube) epithelial cells or their secretory products. Anim. Reprod. Sci. 56, 51–65.
In vitro interactions of cryopreserved stallion spermatozoa and oviduct (uterine tube) epithelial cells or their secretory products.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MzivVWhuw%3D%3D&md5=2c2c7621ec801d545d8c58af8bf49d2dCAS | 10401702PubMed |

Enders, A. C., Liu, I. K., Bowers, J., Lantz, K. C., Schlafke, S., and Suarez, S. (1987). The ovulated ovum of the horse: cytology of nonfertilized ova to pronuclear stage ova. Biol. Reprod. 37, 453–466.
The ovulated ovum of the horse: cytology of nonfertilized ova to pronuclear stage ova.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c%2FltFSqug%3D%3D&md5=44d70559ff220beb87c943b0d13c8f51CAS | 3676399PubMed |

Fazeli, A., Affara, N. A., Hubank, M., and Holt, W. V. (2004). Sperm-induced modification of the oviductal gene expression profile after natural insemination in mice. Biol. Reprod. 71, 60–65.
Sperm-induced modification of the oviductal gene expression profile after natural insemination in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFKktLY%3D&md5=00f7670d6747b0175f8f7a4306e5ca98CAS | 14973272PubMed |

Galli, C., Colleoni, S., Duchi, R., Lagutina, I., and Lazzari, G. (2007). Developmental competence of equine oocytes and embryos obtained by in vitro procedures ranging from in vitro maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear transfer. Anim. Reprod. Sci. 98, 39–55.
Developmental competence of equine oocytes and embryos obtained by in vitro procedures ranging from in vitro maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Sksr4%3D&md5=e50c1ce5ff679d2385d18cbeb0aa5fa1CAS | 17101246PubMed |

Georgiou, A. S., Sostaric, E., Wong, C. H., Snijders, A. P., Wright, P. C., Moore, H. D., and Fazeli, A. (2005). Gametes alter the oviductal secretory proteome. Mol. Cell. Proteomics 4, 1785–1796.
Gametes alter the oviductal secretory proteome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Cgtb%2FK&md5=64e2cf259298c0aa39f74d1b837d80dfCAS | 16105986PubMed |

Georgiou, A. S., Snijders, A. P., Sostaric, E., Aflatoonian, R., Vazquez, J. L., Vazquez, J. M., Roca, J., Martinez, E. A., Wright, P. C., and Fazeli, A. (2007). Modulation of the oviductal environment by gametes. J. Proteome Res. 6, 4656–4666.
Modulation of the oviductal environment by gametes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWmu73O&md5=7b8bd74a29a748e414759b74fa3c4eaeCAS | 18004800PubMed |

Gonçalves, R. F., Chapman, D. A., Bertolla, R. P., Eder, I., and Killian, G. J. (2008a). Pre-treatment of cattle semen or oocytes with purified milk osteopontin affects in vitro fertilization and embryo development. Anim. Reprod. Sci. 108, 375–383.
Pre-treatment of cattle semen or oocytes with purified milk osteopontin affects in vitro fertilization and embryo development.Crossref | GoogleScholarGoogle Scholar | 18024016PubMed |

Gonçalves, R. F., Staros, A. L., and Killian, G. J. (2008b). Oviductal fluid proteins associated with the bovine zona pellucida and the effect on in vitro sperm–egg binding, fertilization and embryo development. Reprod. Domest. Anim. 43, 720–729.
Oviductal fluid proteins associated with the bovine zona pellucida and the effect on in vitro sperm–egg binding, fertilization and embryo development.Crossref | GoogleScholarGoogle Scholar | 18484958PubMed |

Goudet, G., Bézard, J., Duchamp, G., Gérard, N., and Palmer, E. (1997). Equine oocyte competence for nuclear and cytoplasmic in vitro maturation: effect of follicle size and hormonal environment. Biol. Reprod. 57, 232–245.
Equine oocyte competence for nuclear and cytoplasmic in vitro maturation: effect of follicle size and hormonal environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslWit7o%3D&md5=12fe72a8925a68f56e2af05d4ad5bc73CAS | 9241036PubMed |

Goudet, G., Belin, F., Bézard, J., and Gérard, N. (1998a). Maturation-promoting factor (MPF) and mitogen activated protein kinase (MAPK) expression in relation to oocyte competence for in-vitro maturation in the mare. Mol. Hum. Reprod. 4, 563–570.
Maturation-promoting factor (MPF) and mitogen activated protein kinase (MAPK) expression in relation to oocyte competence for in-vitro maturation in the mare.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlaqsLY%3D&md5=773f1cf6707fe0b1facd611ff6224c96CAS | 9665339PubMed |

Goudet, G., Bézard, J., Belin, F., Duchamp, G., Palmer, E., and Gérard, N. (1998b). Oocyte competence for in vitro maturation is associated with histone H1 kinase activity and is influenced by estrous cycle stage in the mare. Biol. Reprod. 59, 456–462.
Oocyte competence for in vitro maturation is associated with histone H1 kinase activity and is influenced by estrous cycle stage in the mare.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFGntLg%3D&md5=a9285705b693302bfe0ffc1d3dbeb7bbCAS | 9687322PubMed |

Grøndahl, C., Grøndahl Nielsen, C., Eriksen, T., Greve, T., and Hyttel, P. (1993). In-vivo fertilisation and initial embryogenesis in the mare. Equine Vet. J. Suppl. 15, 79–83.

Grøndahl, C., Hyttel, P., Grøndahl, M. L., Eriksen, T., Gotfredsen, P., and Greve, T. (1995). Structural and endocrine aspects of equine oocyte maturation in vivo. Mol. Reprod. Dev. 42, 94–105.
Structural and endocrine aspects of equine oocyte maturation in vivo.Crossref | GoogleScholarGoogle Scholar | 8562057PubMed |

Hao, Y., Mathialagan, N., Walters, E., Mao, J., Lai, L., Becker, D., Li, W., Critser, J., and Prather, R. S. (2006). Osteopontin reduces polyspermy during in vitro fertilization of porcine oocytes. Biol. Reprod. 75, 726–733.
Osteopontin reduces polyspermy during in vitro fertilization of porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCgt7nM&md5=c88190c84b5dd870562cbb730627fb78CAS | 16870945PubMed |

Hawley, L.R., Enders, A.C., and Hinrichs, K. (1995). Comparison of equine and bovine oocyte-cumulus morphology within the ovarian follicle. Biology of Reproduction Monograph Series 1, 243–252.

Hinrichs, K. (2010). The equine oocyte: factors affecting meiotic and developmental competence. Mol. Reprod. Dev. 77, 651–661.
The equine oocyte: factors affecting meiotic and developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFGnsb8%3D&md5=c40281abd4d7839ee58f95633fd1209aCAS | 20652997PubMed |

Hinrichs, K., Love, C. C., Brinsko, S. P., Choi, Y. H., and Varner, D. D. (2002). In vitro fertilization of in vitro-matured equine oocytes: effect of maturation medium, duration of maturation, and sperm calcium ionophore treatment, and comparison with rates of fertilization in vivo after oviductal transfer. Biol. Reprod. 67, 256–262.
In vitro fertilization of in vitro-matured equine oocytes: effect of maturation medium, duration of maturation, and sperm calcium ionophore treatment, and comparison with rates of fertilization in vivo after oviductal transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2itbs%3D&md5=9fee23f27753147e91e57027ae4af837CAS | 12080025PubMed |

Hunter, R. H. (2008). Sperm release from oviduct epithelial binding is controlled hormonally by peri-ovulatory graafian follicles. Mol. Reprod. Dev. 75, 167–174.
Sperm release from oviduct epithelial binding is controlled hormonally by peri-ovulatory graafian follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2snkslOlsg%3D%3D&md5=2a20cafd0cb5e4918633e3dae7c30e4eCAS | 17722022PubMed |

Jennings, M. W., Boime, I., Daphna-Iken, D., Jablonka-Shariff, A., Conley, A. J., Colgin, M., Bidstrup, L. A., Meyers-Brown, G. A., Famula, T. R., and Roser, J. F. (2009). The efficacy of recombinant equine follicle stimulating hormone (reFSH) to promote follicular growth in mares using a follicular suppression model. Anim. Reprod. Sci. 116, 291–307.
The efficacy of recombinant equine follicle stimulating hormone (reFSH) to promote follicular growth in mares using a follicular suppression model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWns77P&md5=20f2487d20d25e4553c1ef16cd978433CAS | 19237253PubMed |

Katila, T. (2001). Sperm-uterine interactions: a review. Anim. Reprod. Sci. 68, 267–272.
Sperm-uterine interactions: a review.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MnpslKntQ%3D%3D&md5=a52f0805cd36c5c9584ceb9be00ac702CAS | 11744270PubMed |

Kim, S. H., Cho, K. W., Oh, S. H., Hwang, Y. H., Lim, S. H., Ryu, H., Seul, K. H., Jeong, G. B., and Yoon, S. (1993). Immunoreactive atrial natriuretic peptides in the oocyte. Comp. Biochem. Physiol. Comp. Physiol. 104, 219–223.
| 1:STN:280:DyaK3s3gtFyqtg%3D%3D&md5=916fe8a2f20d449fa2fb547dbf6283ebCAS | 8095876PubMed |

King, W. A., Bézard, J., Bousquet, D., Palmer, E., and Betteridge, K. J. (1987). The meiotic stage of preovulatory oocytes in mares. Genome 29, 679–682.
The meiotic stage of preovulatory oocytes in mares.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c%2FjtVKktw%3D%3D&md5=9f31bf2bb3df61ae1ca0bd6c49b5b232CAS | 3666452PubMed |

Laurincik, J., Hyttel, P., Rath, D., and Pivko, J. (1994). Ovulation, fertilization and pronucleus development in superovulated gilts. Theriogenology 41, 447–452.
Ovulation, fertilization and pronucleus development in superovulated gilts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVWlsg%3D%3D&md5=646eef724c6f60ead65ce4b40e0787a8CAS | 16727402PubMed |

Lazzari, G., Colleoni, S., Lagutina, I., Crotti, G., Turini, P., Tessaro, I., Brunetti, D., Duchi, R., and Galli, C. (2010). Short-term and long-term effects of embryo culture in the surrogate sheep oviduct versus in vitro culture for different domestic species. Theriogenology 73, 748–757.
Short-term and long-term effects of embryo culture in the surrogate sheep oviduct versus in vitro culture for different domestic species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c7ot1aksw%3D%3D&md5=b67a0e02c2461c0449120311ea17647aCAS | 19726075PubMed |

Lefebvre, R., and Samper, J. C. (1993). Interaction between stallion spermatozoa and oviductal epithelial cells in vitro. Equine Vet. J. Suppl. 15, 39–41.

Lefebvre, R., DeMott, R.P., Suarez, S.S., and Samper, J.C. (1995). Specific inhibition of equine sperm binding to oviductal epithelium. Biology of Reproduction Monograph Series 1, 689–696.

Leopold, S., Samper, J. C., Curtis, E., and Buhr, M. M. (2000). Effect of cryopreservation and oviductal cell conditioned media on Ca2+ flux of equine spermatozoa. J. Reprod. Fertil. Suppl. 23, 431–445.

Li, X., Morris, L. H., and Allen, W. R. (2001). Influence of co-culture during maturation on the developmental potential of equine oocytes fertilized by intracytoplasmic sperm injection (ICSI). Reproduction 121, 925–932.
Influence of co-culture during maturation on the developmental potential of equine oocytes fertilized by intracytoplasmic sperm injection (ICSI).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWntrk%3D&md5=fd4402ccc7cf182310918861e63c58b5CAS | 11373179PubMed |

Liu, Y. X. (2007). Involvement of plasminogen activator and plasminogen activator inhibitor type 1 in spermatogenesis, sperm capacitation, and fertilization. Semin. Thromb. Hemost. 33, 29–40.
Involvement of plasminogen activator and plasminogen activator inhibitor type 1 in spermatogenesis, sperm capacitation, and fertilization.Crossref | GoogleScholarGoogle Scholar | 17253187PubMed |

Lloyd, R. E., Elliott, R. M., Fazeli, A., Watson, P. F., and Holt, W. V. (2009). Effects of oviductal proteins, including heat shock 70 kDa protein 8, on survival of ram spermatozoa over 48 h in vitro. Reprod. Fertil. Dev. 21, 408–418.
Effects of oviductal proteins, including heat shock 70 kDa protein 8, on survival of ram spermatozoa over 48 h in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFemsLw%3D&md5=3ef413b3b7838f9f7643b637cdd889d7CAS | 19261218PubMed |

Logan, N. L., McCue, P. M., Alonso, M. A., and Squires, E. L. (2007). Evaluation of three equine FSH superovulation protocols in mares. Anim. Reprod. Sci. 102, 48–55.
Evaluation of three equine FSH superovulation protocols in mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvF2ksbY%3D&md5=b0a94881a4587cd694da59d86e77f732CAS | 17188438PubMed |

Mann, T., Polge, C., and Rowson, L. E. (1956). Participation of seminal plasma during the passage of spermatozoa in the female reproductive tract of the pig and horse. J. Endocrinol. 13, 133–140.
Participation of seminal plasma during the passage of spermatozoa in the female reproductive tract of the pig and horse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XksFGhsw%3D%3D&md5=3ce09f2635ea3f7485fa186ed0ebe7a0CAS | 13286404PubMed |

Marín-Briggiler, C. I., González-Echeverría, M. F., Munuce, M. J., Ghersevich, S., Caille, A. M., Hellman, U., Corrigall, V. M., and Vazquez-Levin, M. H. (2010). Glucose-regulated protein 78 (Grp78/BiP) is secreted by human oviduct epithelial cells and the recombinant protein modulates sperm-zona pellucida binding. Fertil. Steril. 93, 1574–1584.
Glucose-regulated protein 78 (Grp78/BiP) is secreted by human oviduct epithelial cells and the recombinant protein modulates sperm-zona pellucida binding.Crossref | GoogleScholarGoogle Scholar | 19296942PubMed |

Martus, N. S., Verhage, H. G., Mavrogianis, P. A., and Thibodeaux, J. K. (1998). Enhancement of bovine oocyte fertilization in vitro with a bovine oviductal specific glycoprotein. J. Reprod. Fertil. 113, 323–329.
Enhancement of bovine oocyte fertilization in vitro with a bovine oviductal specific glycoprotein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFOmsrY%3D&md5=14b0bb42ce1fb71a49114d818dc8cf58CAS | 9861173PubMed |

McCauley, T. C., Buhi, W. C., Wu, G. M., Mao, J., Caamano, J. N., Didion, B. A., and Day, B. N. (2003). Oviduct-specific glycoprotein modulates sperm-zona binding and improves efficiency of porcine fertilization in vitro. Biol. Reprod. 69, 828–834.
Oviduct-specific glycoprotein modulates sperm-zona binding and improves efficiency of porcine fertilization in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVeitL0%3D&md5=67e230a04d782ef739be7d08e4005ac2CAS | 12748122PubMed |

McDowell, K. J., Adams, M. H., and Williams, N. M. (1993). Characterization of equine oviductal proteins synthesized and released at estrus and at day 4 after ovulation in bred and nonbred mares. J. Exp. Zool. 267, 217–224.
Characterization of equine oviductal proteins synthesized and released at estrus and at day 4 after ovulation in bred and nonbred mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXls1ei&md5=3facde9b22ce8c0af70d33eb3b405729CAS | 8409902PubMed |

McKinnon, A. O., Carnevale, E. M., Squires, E. L., Voss, J. L., and Seidel, G. E., (1988). Heterogenous and xenogenous fertilization of in vivo matured equine oocytes J. Equine Vet. Sci. 8, 143–147.
Heterogenous and xenogenous fertilization of in vivo matured equine oocytesCrossref | GoogleScholarGoogle Scholar |

McPartlin, L. A., Suarez, S. S., Czaya, C. A., Hinrichs, K., and Bedford-Guaus, S. J. (2009). Hyperactivation of stallion sperm is required for successful in vitro fertilization of equine oocytes. Biol. Reprod. 81, 199–206.
Hyperactivation of stallion sperm is required for successful in vitro fertilization of equine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslaqs7w%3D&md5=d6674d6178365b8f426badce61fb19b5CAS | 19208544PubMed |

Monaco, E., Gasparrini, B., Boccia, L., De Rosa, A., Attanasio, L., Zicarelli, L., and Killian, G. (2009). Effect of osteopontin (OPN) on in vitro embryo development in cattle. Theriogenology 71, 450–457.
Effect of osteopontin (OPN) on in vitro embryo development in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFChtLzN&md5=a34b87560c02dda00c1b04f83ab6ecb0CAS | 18835636PubMed |

Mugnier, S., Kervella, M., Douet, C., Canepa, S., Pascal, G., Deleuze, S., Duchamp, G., Monget, P., and Goudet, G. (2009). The secretions of oviduct epithelial cells increase the equine in vitro fertilization rate: are osteopontin, atrial natriuretic peptide A and oviductin involved? Reprod. Biol. Endocrinol. 7, 129.
The secretions of oviduct epithelial cells increase the equine in vitro fertilization rate: are osteopontin, atrial natriuretic peptide A and oviductin involved?Crossref | GoogleScholarGoogle Scholar | 19925651PubMed |

Onuma, H., and Ohnami, Y. (1975). Retention of tubal eggs in mares. J. Reprod. Fertil. Suppl. 23, 507–511.
| 1060833PubMed |

Palmer, E., Bezard, J., Magistrini, M., and Duchamp, G. (1991). In vitro fertilization in the horse. A retrospective study. J. Reprod. Fertil. Suppl. 44, 375–384.
| 1:STN:280:DyaK387nslantg%3D%3D&md5=0d533f527713e4df8ff3a5f44e804a56CAS | 1795281PubMed |

Parker, W. G., Sullivan, J. J., and First, N. L. (1975). Sperm transport and distribution in the mare. J. Reprod. Fertil. Suppl. 23, 63–66.
| 1060855PubMed |

Raz, T., Gray, A., Hunter, B., and Card, C. (2009). Early effects of equine FSH (eFSH) treatment on hormonal and reproductive parameters in mares intended to carry their own pregnancy. Anim. Reprod. Sci. 115, 76–87.
Early effects of equine FSH (eFSH) treatment on hormonal and reproductive parameters in mares intended to carry their own pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptl2hsrg%3D&md5=2ba1e3dcca56b8c120cdc2910bae13fdCAS | 19070442PubMed |

Russinova, A., Mourdjeva, M., Kyurkchiev, S., and Kehayov, I. (2001). Immunohistochemical detection of atrial natriuretic factor (ANF) in different ovarian cell types. Endocr. Regul. 35, 81–89.
| 1:CAS:528:DC%2BD3MXotl2htL4%3D&md5=1feeef4aa78cd4dc895cac3f02d8dc1cCAS | 11563936PubMed |

Sabeur, K., and Ball, B. A. (2007). Characterization of galactose-binding proteins in equine testis and spermatozoa. Anim. Reprod. Sci. 101, 74–84.
Characterization of galactose-binding proteins in equine testis and spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntFyhsL0%3D&md5=5fc88336a9409235e9079b3c48c1d166CAS | 17034965PubMed |

Scott, T. J., Carnevale, E. M., Maclellan, L. J., Scoggin, C. F., and Squires, E. L. (2001). Embryo development rates after transfer of oocytes matured in vivo, in vitro, or within oviducts of mares. Theriogenology 55, 705–715.
Embryo development rates after transfer of oocytes matured in vivo, in vitro, or within oviducts of mares.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzgtFOrtw%3D%3D&md5=45c6bb927e49be426eb52f1f9d35c461CAS | 11245260PubMed |

Seytanoglu, A., Georgiou, A. S., Sostaric, E., Watson, P. F., Holt, W. V., and Fazeli, A. (2008). Oviductal cell proteome alterations during the reproductive cycle in pigs. J. Proteome Res. 7, 2825–2833.
Oviductal cell proteome alterations during the reproductive cycle in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFCit7s%3D&md5=9fde7c37623a8df5aaa614ab11b4f3b7CAS | 18540664PubMed |

Shaw, J. L., Smith, C. R., and Diamandis, E. P. (2007). Proteomic analysis of human cervico-vaginal fluid. J. Proteome Res. 6, 2859–2865.
Proteomic analysis of human cervico-vaginal fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtl2ltrs%3D&md5=b086753cd8e70ea7b929f56371605e51CAS | 17567164PubMed |

Siddiqui, M. A., Gastal, E. L., Ju, J. C., Gastal, M. O., Beg, M. A., and Ginther, O. J. (2009). Nuclear configuration, spindle morphology and cytoskeletal organization of in vivo maturing horse oocytes. Reprod. Domest. Anim. 44, 435–440.
Nuclear configuration, spindle morphology and cytoskeletal organization of in vivo maturing horse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MrisFWgsA%3D%3D&md5=86b9b1b2038a03b60b4970ece71ffc72CAS | 18992126PubMed |

Song, X. X., Xu, Z., Piao, Y. J., Park, C. K., and Niwa, K. (2008). Effect of chondroitin sulfate C on sperm capacitation and fertilization parameters in vitro in pigs. Anim. Reprod. Sci. 108, 144–156.
Effect of chondroitin sulfate C on sperm capacitation and fertilization parameters in vitro in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVejtLjE&md5=66c38c94f44886859b724de4b91072d8CAS | 17826011PubMed |

Sostaric, E., Georgiou, A. S., Wong, C. H., Watson, P. F., Holt, W. V., and Fazeli, A. (2006). Global profiling of surface plasma membrane proteome of oviductal epithelial cells. J. Proteome Res. 5, 3029–3037.
Global profiling of surface plasma membrane proteome of oviductal epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVyrsbfN&md5=04aeee2f970f3fc3a26812791d472843CAS | 17081054PubMed |

Stalheim, O. H., Gallagher, J. E., and Deyoe, B. L. (1975). Scanning electron microscopy of the bovine, equine, porcine, and caprine uterine tube (oviduct). Am. J. Vet. Res. 36, 1069–1075.
| 1:STN:280:DyaE2M3itlaitQ%3D%3D&md5=08db05b000698639ec339cbf1a35370bCAS | 1155826PubMed |

Suarez, S. S. (2008). Regulation of sperm storage and movement in the mammalian oviduct. Int. J. Dev. Biol. 52, 455–462.
Regulation of sperm storage and movement in the mammalian oviduct.Crossref | GoogleScholarGoogle Scholar | 18649258PubMed |

Talevi, R., and Gualtieri, R. (2010). Molecules involved in sperm-oviduct adhesion and release. Theriogenology 73, 796–801.
Molecules involved in sperm-oviduct adhesion and release.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFGltrw%3D&md5=715743a45fe897bde19cde1fe2d7bc22CAS | 19682733PubMed |

Thomas, P. G., and Ball, B. A. (1996). Cytofluorescent assay to quantify adhesion of equine spermatozoa to oviduct epithelial cells in vitro. Mol. Reprod. Dev. 43, 55–61.
Cytofluorescent assay to quantify adhesion of equine spermatozoa to oviduct epithelial cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFeiuw%3D%3D&md5=3f30912b359e2ba8448a7c4dae6d9516CAS | 8720113PubMed |

Thomas, P. G., Ball, B. A., and Brinsko, S. P. (1994a). Interaction of equine spermatozoa with oviduct epithelial cell explants is affected by estrous cycle and anatomic origin of explant. Biol. Reprod. 51, 222–228.
Interaction of equine spermatozoa with oviduct epithelial cell explants is affected by estrous cycle and anatomic origin of explant.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FjsFGltA%3D%3D&md5=592d662cb88762c9a99f82ae280754b1CAS | 7948476PubMed |

Thomas, P. G., Ball, B. A., Miller, P. G., Brinsko, S. P., and Southwood, L. (1994b). A subpopulation of morphologically normal, motile spermatozoa attach to equine oviductal epithelial cell monolayers. Biol. Reprod. 51, 303–309.
A subpopulation of morphologically normal, motile spermatozoa attach to equine oviductal epithelial cell monolayers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FjsFGktQ%3D%3D&md5=b5e3eef1d62456feae4c9aeb11d96403CAS | 7948486PubMed |

Thomas, P. G., Ball, B. A., and Brinsko, S. P. (1995a). Changes associated with induced capacitation influence the interaction between equine spermatozoa and oviduct epithelial cell monolayers. Biology of Reproduction Monograph Series 1, 697–705.

Thomas, P. G., Ignotz, G. G., Ball, B. A., Brinsko, S. P., and Currie, W. B. (1995b). Effect of coculture with stallion spermatozoa on de novo protein synthesis and secretion by equine oviduct epithelial cells. Am. J. Vet. Res. 56, 1657–1662.
| 1:CAS:528:DyaK28Xktl2jtg%3D%3D&md5=6427c5cd92f6324c94e5672c63a16f71CAS | 8599529PubMed |

Thomas, P. G., Ball, B. A., Ignotz, G. G., Dobrinski, I., Parks, J. E., and Currie, W. B. (1997). Antibody directed against plasma membrane components of equine spermatozoa inhibits adhesion of spermatozoa to oviduct epithelial cells in vitro. Biol. Reprod. 56, 720–730.
Antibody directed against plasma membrane components of equine spermatozoa inhibits adhesion of spermatozoa to oviduct epithelial cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXht1Ggsb4%3D&md5=8f28a0c8ec3c318b0973255790bad916CAS | 9047018PubMed |

Töpfer-Petersen, E., Ekhlasi-Hundrieser, M., Kirchhoff, C., Leeb, T., and Sieme, H. (2005). The role of stallion seminal proteins in fertilisation. Anim. Reprod. Sci. 89, 159–170.
The role of stallion seminal proteins in fertilisation.Crossref | GoogleScholarGoogle Scholar | 16125345PubMed |

Töpfer-Petersen, E., Ekhlasi-Hundrieser, M., and Tsolova, M. (2008). Glycobiology of fertilization in the pig. Int. J. Dev. Biol. 52, 717–736.
Glycobiology of fertilization in the pig.Crossref | GoogleScholarGoogle Scholar | 18649284PubMed |

Troedsson, M. H., Liu, I. K., and Crabo, B. G. (1998). Sperm transport and survival in the mare: a review. Theriogenology 50, 807–818.
| 1:STN:280:DC%2BD3c7pvVKhuw%3D%3D&md5=da6c8a22c37ffb8d6a51900c2573439bCAS | 10734454PubMed |

Way, A. L., and Killian, G. J. (2006). Sperm binding, in vitro fertilization, and in vitro embryonic development of bovine oocytes fertilized with spermatozoa incubated with norepinephrine. Anim. Reprod. Sci. 96, 1–9.
Sperm binding, in vitro fertilization, and in vitro embryonic development of bovine oocytes fertilized with spermatozoa incubated with norepinephrine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1CitLs%3D&md5=3703f1065f31ce74e01d765d00322cdbCAS | 16303266PubMed |

Willis, P., Sekhar, K. N., Brooks, P., and Fayrer-Hosken, R. A. (1994). Electrophoretic characterization of equine oviductal fluid. J. Exp. Zool. 268, 477–485.
Electrophoretic characterization of equine oviductal fluid.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3jtFWmsg%3D%3D&md5=d7a07ac6cc805e5091cdfa8fe7fd4e32CAS | 8176362PubMed |

Yeung, W. S., Lee, K. F., Koistinen, R., Koistinen, H., Seppala, M., and Chiu, P. C. (2009). Effects of glycodelins on functional competence of spermatozoa. J. Reprod. Immunol. 83, 26–30.
Effects of glycodelins on functional competence of spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyntr3O&md5=fdb7a2ce6e5a5187b35138f6646160e9CAS | 19857900PubMed |

Zamir, N., Barkan, D., Keynan, N., Naor, Z., and Breitbart, H. (1995). Atrial natriuretic peptide induces acrosomal exocytosis in bovine spermatozoa. Am. J. Physiol. 269, E216–E221.
| 1:CAS:528:DyaK2MXns1artLs%3D&md5=6b98cba65d50c5ec31ecd8892b5754d6CAS | 7653538PubMed |

Zervos, I. A., Lavrentiadou, S. N., Tsantarliotou, M. P., Georgiadis, M. P., Kokolis, N. A., and Taitzoglou, I. A. (2010). Seasonal variation of plasminogen activator activity in spermatozoa and seminal plasma of boar, buck, bull and stallion. Reprod. Domest. Anim. 45, e440–e446.
Seasonal variation of plasminogen activator activity in spermatozoa and seminal plasma of boar, buck, bull and stallion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WrsLfJ&md5=08b5ce3c9bc75316f7bbea49334deb77CAS | 20412514PubMed |

Zhang, M., Hong, H., Zhou, B., Jin, S., Wang, C., Fu, M., Wang, S., and Xia, G. (2006). The expression of atrial natriuretic peptide in the oviduct and its functions in pig spermatozoa. J. Endocrinol. 189, 493–507.
The expression of atrial natriuretic peptide in the oviduct and its functions in pig spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFWjtbk%3D&md5=301f3b136becf139a148f2721f45e54cCAS | 16731781PubMed |