Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Breed differences in fetal and placental development and feto-maternal amino acid status following nutrient restriction during early and mid pregnancy in Scottish Blackface and Suffolk sheep

C. J. Ashworth A B C , C. M. Dwyer B , K. McIlvaney B , M. Werkman B and J. A. Rooke B
+ Author Affiliations
- Author Affiliations

A The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.

B Sustainable Livestock Systems Group, Scottish Agricultural College, West Mains Road, Edinburgh, EH9 3JG, UK.

C Corresponding author. Email: cheryl.ashworth@roslin.ed.ac.uk

Reproduction, Fertility and Development 23(8) 1024-1033 https://doi.org/10.1071/RD10290
Submitted: 3 November 2010  Accepted: 6 May 2011   Published: 22 September 2011

Abstract

This study assessed the effect of feeding 0.75 energy requirements between Days 1 and 90 of pregnancy on placental development and feto-placental amino acid status on Day 125 of pregnancy in Scottish Blackface and Suffolk ewes carrying a single fetus. Such moderate nutrient restriction did not affect placental size, placentome number or the distribution of placentome types. Although fetal weight was unaffected by maternal nutrition, fetuses carried by nutrient restricted mothers had relatively lighter brains and gastrocnemius muscles. Suffolk fetuses were heavier and longer with a greater abdominal circumference, relatively lighter brains, hearts and kidneys, but heavier spleens, livers and gastrocnemius muscles than Blackface fetuses. Total placentome weight was greater in Suffolk than Blackface ewes. Ewe breed had a greater effect on amino acid concentrations than nutrition. Ratios of maternal to fetal amino acid concentrations were greater in Suffolk ewes than Blackface ewes, particularly for some essential amino acids. The heavier liver and muscles in Suffolk fetuses may suggest increased amino acid transport across the Suffolk placenta in the absence of breed differences in gross placental efficiency. These data provide evidence of differences in nutrient handling and partitioning between the maternal body and the fetus in the two breeds studied.


References

Agricultural and Food Research Council (1993). ‘Energy and Protein Requirements of Ruminants.’ (CAB International: Wallingford, UK.)

Belkacemi, L., Nelson, D. M., Desai, M., and Ross, M. G. (2010). Maternal under nutrition influences fetal-placental development. Biol. Reprod. 83, 325–331.
Maternal under nutrition influences fetal-placental development.CrossRef | 1:CAS:528:DC%2BC3cXhtVyrsrrO&md5=147b337e5820c8ca742dd9eb80388c7fCAS | 20445129PubMed |

Bell, A. W., and Ehrhardt, R. A. (2002). Regulation of placental nutrient transport and implications for fetal growth. Nutr. Res. Rev. 15, 211–230.
Regulation of placental nutrient transport and implications for fetal growth.CrossRef | 1:CAS:528:DC%2BD38Xps1Kls7s%3D&md5=ffe01efd140f23f8b78eda12f5b63c36CAS | 19087405PubMed |

Cetin, I. (2001). Amino acid interconversions in the feto-placental unit: the animal model and human studies in vivo. Pediatr. Res. 49, 148–154.
Amino acid interconversions in the feto-placental unit: the animal model and human studies in vivo.CrossRef | 1:CAS:528:DC%2BD3MXhtValt74%3D&md5=676283623e62f68a7ac3423d74c3b4e1CAS | 11158506PubMed |

Cetin, I., Fennessey, P. V., Sparks, J. W., Meshia, G., and Battaglia, F. C. (1992). Fetal serine fluxes across fetal liver, hindlimb, and placenta in late gestation. Am. J. Physiol. 263, E786–E793.
| 1:CAS:528:DyaK3sXksVOh&md5=febeffcaddc3e03f8b4c8bfdfa5c0147CAS | 1415701PubMed |

Coan, P. M., Vaughan, O. R., Sekita, Y., Finn, S. L., Burton, G. J., Constancia, M., and Fowden, A. L. (2010). Adaptations in placental phenotype support fetal growth during under nutrition of pregnant mice. J. Physiol. 588, 527–538.
Adaptations in placental phenotype support fetal growth during under nutrition of pregnant mice.CrossRef | 1:CAS:528:DC%2BC3cXhvV2js7o%3D&md5=6f058a9616d83f3c21c182ce8b4fca8dCAS | 19948659PubMed |

Coombs, T. M., and Dwyer, C. M. (2008). Effects of prenatal undernutrition in early gestation on the ewe-lamb bond and lamb behaviour in Suffolk and Scottish Blackface Sheep. In ‘Proceedings of the 42nd International Congress of the International Society for Applied Ethology’. p. 38. (Society for Applied Ethology: Dublin.)

Dandrea, J., Wilson, V., Gopalakrishnan, G., Heasman, L., Budge, H., Stephenson, T., and Symonds, M. E. (2001). Maternal nutritional manipulation of placental growth and glucose transporter 1 (GLUT-1) abundance in sheep. Reproduction 122, 793–800.
Maternal nutritional manipulation of placental growth and glucose transporter 1 (GLUT-1) abundance in sheep.CrossRef | 1:CAS:528:DC%2BD3MXos1Ohu7g%3D&md5=908c8b8a978f0ad017d856d3c159afdeCAS | 11690540PubMed |

de Boo, H. A., and Harding, J. E. (2007). Taurine as a marker for foetal wellbeing? Neonatology 91, 145–154.
Taurine as a marker for foetal wellbeing?CrossRef | 1:CAS:528:DC%2BD2sXjtlyktr4%3D&md5=1fde8f5d1136e815ef93047a1235b644CAS | 17377398PubMed |

Dwyer, C. M., Calvert, S. K., Farish, M., Donbavand, J., and Pickup, H. E. (2005). Breed, litter and parity effects on placental weight and placentome number, and consequences for the neonatal behaviour of the lamb. Theriogenology 63, 1092–1110.
Breed, litter and parity effects on placental weight and placentome number, and consequences for the neonatal behaviour of the lamb.CrossRef | 1:STN:280:DC%2BD2M%2Fot1Klsg%3D%3D&md5=de774d4c2e4b59f448172f2e86bcc082CAS | 15710196PubMed |

Fowden, A. L. (1994). Fetal metabolism and energy balance. In ‘Textbook of Fetal Physiology’. (Eds G. D. Thorburn and R. Harding.) pp. 70–82. (Oxford University Press: Oxford, UK.)

Fowden, A. L., Ward, J. W., Wooding, F. P., Forhead, A. J., and Constancia, M. (2006). Programming placental nutrient transport capacity. J. Physiol. 572, 5–15.
| 1:CAS:528:DC%2BD28Xkt1GhtLw%3D&md5=da403a36cc4f302a08f22d6f2b3a902cCAS | 16439433PubMed |

Harding, J. E. (2001). The nutritional basis of the fetal origins of adult disease. Int. J. Epidemiol. 30, 15–23.
The nutritional basis of the fetal origins of adult disease.CrossRef | 1:STN:280:DC%2BD3MvgvVGhug%3D%3D&md5=3ceebdac3ffed6d718f42ed0faf888bfCAS | 11171842PubMed |

Harding, J. E., and Johnston, B. M. (1995). Nutrition and fetal growth. Reprod. Fertil. Dev. 7, 539–547.
Nutrition and fetal growth.CrossRef | 1:STN:280:DyaK287oslCqsg%3D%3D&md5=c108f73f44909d0a519bee72a37a5f8dCAS | 8606966PubMed |

Heasman, L., Clarke, L., Firth, K., Stephenson, T., and Symonds, M. E. (1998). Influence of restricted maternal nutrition in early to mid gestation on placental and fetal development at term in sheep. Pediatr. Res. 44, 546–551.
Influence of restricted maternal nutrition in early to mid gestation on placental and fetal development at term in sheep.CrossRef | 1:CAS:528:DyaK1cXmslCiurc%3D&md5=18581205cc5ea98cde04c394359fc61bCAS | 9773844PubMed |

Jobgen, W. S., Ford, S. P., Jogben, S. C., Feng, C. P., Hess, B. W., Nathanielsz, P. W., Li, P., and Wu, G. (2008). Baggs ewes adapt to maternal under nutrition and maintain conceptus growth by maintaining fetal plasma concentrations of amino acids. J. Anim. Sci. 86, 820–826.
Baggs ewes adapt to maternal under nutrition and maintain conceptus growth by maintaining fetal plasma concentrations of amino acids.CrossRef | 1:CAS:528:DC%2BD1cXjvFertbk%3D&md5=aafadbc1691c3fbf058b63a1b8a9f6feCAS | 18156363PubMed |

Jones, B. N., Paabo, S., and Stein, S. (1981). Amino-acid analysis and enzymatic sequence determination of peptides by an improved orthophthaldialdehyde pre-column labelling procedure. J. Liq. Chromatogr. 4, 565–586.
Amino-acid analysis and enzymatic sequence determination of peptides by an improved orthophthaldialdehyde pre-column labelling procedure.CrossRef | 1:CAS:528:DyaL3MXktlyht7Y%3D&md5=f792be293751e0e756ff70e012effe66CAS |

Kwon, H., Spencer, T. E., Bazer, F. W., and Wu, G. (2003). Developmental changes of amino acids in ovine fetal fluids. Biol. Reprod. 68, 1813–1820.
Developmental changes of amino acids in ovine fetal fluids.CrossRef | 1:CAS:528:DC%2BD3sXjt12ltLs%3D&md5=809a3dfd1904cbd6304839a13ec7567bCAS | 12606398PubMed |

Kwon, H., Ford, S. P., Bazer, F. W., Spencer, T. E., Nathanielsz, P. W., Nijland, M. J., Hess, B. W., and Wu, G. (2004). Maternal nutrient restriction reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids. Biol. Reprod. 71, 901–908.
Maternal nutrient restriction reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids.CrossRef | 1:CAS:528:DC%2BD2cXntFejurY%3D&md5=6185f35b5347a213f8e5a4dd1bfc94e9CAS | 15140798PubMed |

Matsubara, C., Nishikawa, Y., Yoshida, Y., and Takamura, K. (1983). A spectrophotometric method for the determination of free fatty-acid in serum using acyl-coenzyme A synthetase and acyl-coenzyme A oxidase. Anal. Biochem. 130, 128–133.
A spectrophotometric method for the determination of free fatty-acid in serum using acyl-coenzyme A synthetase and acyl-coenzyme A oxidase.CrossRef | 1:CAS:528:DyaL3sXhsFOhtbY%3D&md5=47bac6706925d427b181704d1faae674CAS | 6869794PubMed |

Moores, R. R., Rietberg, C. C., Battaglia, F. C., Fennessey, P. V., and Meschia, G. (1993). Metabolism and transport of maternal serine by the ovine placenta: glycine production and absence of serine transport into the fetus. Pediatr. Res. 33, 590–594.
| 1:CAS:528:DyaK3sXks1yrt74%3D&md5=54b1581f6df07c2b62428877b34d88b9CAS | 8378117PubMed |

Redmer, D. A., Wallace, J. M., and Reynolds, L. P. (2004). Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. Domest. Anim. Endocrin. 27, 199–217.
Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development.CrossRef | 1:STN:280:DC%2BD2cvot1KksQ%3D%3D&md5=e43a762f73add447399cc3762346156bCAS |

Regnault, T. R. H., Friedman, J. E., Wilkening, R. B., Anthony, R. V., and Hay, W. W. (2005). Fetoplacental transport and utilization of amino acids in IUGR – a review Placenta 26, S52–S62.
Fetoplacental transport and utilization of amino acids in IUGR – a reviewCrossRef |

Rooke, J. A., Houdijk, J. G. M., McIlvaney, K., Ashworth, C. J., and Dwyer, C. M. (2010). Differential effects of maternal under nutrition between days one and ninety of pregnancy on ewe and lamb performance and lamb parasitism in hill or lowland breeds. J. Anim. Sci. 88, 3833–3842.
Differential effects of maternal under nutrition between days one and ninety of pregnancy on ewe and lamb performance and lamb parasitism in hill or lowland breeds.CrossRef | 1:CAS:528:DC%2BC3cXhsFGnsrrK&md5=d7bd2b118ccbc9f3d8fc5871ba4716a0CAS | 20675602PubMed |

Satterfield, M. C., Bazer, F. W., Spencer, T. E., and Wu, G. (2010). Sildenafil citrate treatment enhances amino acid availability in the conceptus and fetal growth in an ovine model of intrauterine growth restriction. J. Nutr. 140, 251–258.
Sildenafil citrate treatment enhances amino acid availability in the conceptus and fetal growth in an ovine model of intrauterine growth restriction.CrossRef | 1:CAS:528:DC%2BC3cXltFSlsLo%3D&md5=14a74983d5b6d6fe824b31dfb3290902CAS | 20018809PubMed |

Symonds, M. E., Sebert, S. P., and Budge, H. (2010). Nutritional regulation of fetal growth and implications for productive life in ruminants. Animal 4, 1075–1083.
Nutritional regulation of fetal growth and implications for productive life in ruminants.CrossRef | 1:CAS:528:DC%2BC3cXmvVajsb0%3D&md5=9edcd11203e6ce8ed50353511316f9feCAS | 22444610PubMed |

Vatnick, I., Schoknecht, P. A., Darrigrand, R., and Bell, A. W. (1991). Growth and development of placenta after unilateral fetectomy in twin pregnant ewes. J. Dev. Physiol. 15, 351–356.
| 1:STN:280:DyaK38%2FptFKqsw%3D%3D&md5=86d5fdf5d85de497cb3e7b3dc53cdf5fCAS | 1753075PubMed |

Vonnahme, K. A., Hess, B. W., Nijland, M. J., Nathanielsz, P. W., and Ford, S. P. (2006). Placentomal differentiation may compensate for maternal nutrient restriction in ewes adapted to harsh range conditions. J. Anim. Sci. 84, 3451–3459.
Placentomal differentiation may compensate for maternal nutrient restriction in ewes adapted to harsh range conditions.CrossRef | 1:CAS:528:DC%2BD28Xht1CnurfO&md5=3345e857ee764bb08c32bee498db3119CAS | 17093240PubMed |

Vonnahme, K. A., Arndt, W. J., Johnson, M. L., Borowicz, P. P., and Reynolds, L. P. (2008). Effect of morphology on placentome size, vascularity, and vasoreactivity in late pregnant sheep. Biol. Reprod. 79, 976–982.
Effect of morphology on placentome size, vascularity, and vasoreactivity in late pregnant sheep.CrossRef | 1:CAS:528:DC%2BD1cXhtlSrtLnO&md5=da02ceff9bb21f22b9b0fdd68e5c87e6CAS | 18685124PubMed |

Ward, J. W., Forhead, A. J., Wooding, F. B. P., and Fowden, A. L. (2006). Functional significance and cortisol dependence of the gross morphology of ovine placentomes during late gestation. Biol. Reprod. 74, 137–145.
Functional significance and cortisol dependence of the gross morphology of ovine placentomes during late gestation.CrossRef | 1:CAS:528:DC%2BD2MXhtlCjsrbL&md5=201093a46ce96aef50f3081b3a86a4bfCAS | 16177219PubMed |

Wu, G., Bazer, F. W., Datta, S., Johnson, G. A., Li, P., Satterfield, M. C., and Spencer, T. E. (2008). Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35, 691–702.
Proline metabolism in the conceptus: implications for fetal growth and development.CrossRef | 1:CAS:528:DC%2BD1cXht1ais77O&md5=fbbe5f821e61de59d4ae5b1b87a0ff73CAS | 18330497PubMed |

Young, M., and McFadyen, I. R. (1973). Placental transfer and fetal uptake of amino acids in the pregnant ewe. J. Perinat. Med. 1, 174–182.
Placental transfer and fetal uptake of amino acids in the pregnant ewe.CrossRef | 1:CAS:528:DyaE28XhtF2jtL0%3D&md5=a4721a0c76b2bd4a7c8376a15b416fbeCAS | 4806571PubMed |

Zhang, S., Rattanatray, L., MacLaughlin, S. M., Cropley, J. E., Suter, C. M., Molloy, L., Kleeman, D., Walker, S. K., Muhlhausler, B. S., Morrison, J. L., and McMillen, I. C. (2010). Periconceptual nutrition in normal and overweight ewes leads to increased adrenal growth and epigenetic changes in adrenal IGF2/H19 gene in offspring. FASEB J. 24, 2772–2782.
Periconceptual nutrition in normal and overweight ewes leads to increased adrenal growth and epigenetic changes in adrenal IGF2/H19 gene in offspring.CrossRef | 1:CAS:528:DC%2BC3cXhtVeisbfI&md5=511adea89b3d429f374a4e36e4368e42CAS | 20371620PubMed |



Rent Article (via Deepdyve) Export Citation Cited By (6)

View Altmetrics