Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Altered pregnancy outcomes in mice following treatment with the hyperglycaemia mimetic, glucosamine, during the periconception period

Cheryl J. Schelbach A , Rebecca L. Robker A , Brenton D. Bennett A , Ashley D. Gauld A , Jeremy G. Thompson A and Karen L. Kind B C

A The Robinson Institute, The Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA 5005, Australia.

B The Robinson Institute, The Research Centre for Reproductive Health, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.

C Corresponding author. Email: karen.kind@adelaide.edu.au

Reproduction, Fertility and Development 25(2) 405-416 http://dx.doi.org/10.1071/RD11313
Submitted: 16 December 2011  Accepted: 31 March 2012   Published: 21 May 2012

Abstract

Exposure of cumulus–oocyte complexes to the hyperglycaemia mimetic, glucosamine, during in vitro maturation impairs embryo development, potentially through upregulation of the hexosamine biosynthesis pathway. This study examined the effects of in vivo periconception glucosamine exposure on reproductive outcomes in young healthy mice, and further assessed the effects in overweight mice fed a high-fat diet. Eight-week-old mice received daily glucosamine injections (20 or 400 mg kg–1) for 3–6 days before and 1 day after mating (periconception). Outcomes were assessed at Day 18 of gestation. Glucosamine treatment reduced litter size independent of dose. A high-fat diet (21% fat) for 11 weeks before and during pregnancy reduced fetal size. No additional effects of periconception glucosamine (20 mg kg–1) on pregnancy outcomes were observed in fat-fed mice. In 16-week-old mice fed the control diet, glucosamine treatment reduced fetal weight and increased congenital abnormalities, but did not alter litter size. As differing effects of glucosamine were observed in 8-week-old and 16-week-old mice, maternal age effects were assessed. Periconception glucosamine at 8 weeks reduced litter size, whereas glucosamine at 16 weeks reduced fetal size. Thus, in vivo periconception glucosamine exposure perturbs reproductive outcomes in mice, with the nature of the outcomes dependent upon maternal age.

Additional keywords: fetal development, hexosamine biosynthesis pathway.


References

Adebowale, A., Du, J., Liang, Z., Leslie, J. L., and Eddington, N. D. (2002). The bioavailability and pharmacokinetics of glucosamine hydrochloride and low molecular weight chondroitin sulfate after single and multiple doses to beagle dogs. Biopharm. Drug Dispos. 23, 217–225.
The bioavailability and pharmacokinetics of glucosamine hydrochloride and low molecular weight chondroitin sulfate after single and multiple doses to beagle dogs.CrossRef | 1:CAS:528:DC%2BD38XnsFemsr4%3D&md5=b128def7721c9bf4623872e729a464dbCAS | 12214321PubMed | open url image1

Aghazadeh-Habashi, A., Sattari, S., Pasutto, F., and Jamali, F. (2002). Single dose pharmacokinetics and bioavailability of glucosamine in the rat. J. Pharm. Pharm. Sci. 5, 181–184.
| 1:CAS:528:DC%2BD38XmtlWjtr0%3D&md5=d68ffe8066910bb660f2b5ae2271e8ddCAS | 12207871PubMed | open url image1

Ali, S., and Dornhorst, A. (2011). Diabetes in pregnancy: health risks and management. Postgrad. Med. J. 87, 417–427.
Diabetes in pregnancy: health risks and management.CrossRef | 21368321PubMed | open url image1

Anderson, J. W., Nicolosi, R. J., and Borzelleca, J. F. (2005). Glucosamine effects in humans: a review of effects on glucose metabolism, side effects, safety considerations and efficacy. Food Chem. Toxicol. 43, 187–201.
Glucosamine effects in humans: a review of effects on glucose metabolism, side effects, safety considerations and efficacy.CrossRef | 1:CAS:528:DC%2BD2MXhtVGkug%3D%3D&md5=3aa303a496aeb999730830fb9e906178CAS | 15621331PubMed | open url image1

Barrientos, C., Racotta, R., and Quevedo, L. (2010). Glucosamine attenuates increases of intraabdominal fat, serum leptin levels and insulin resistance induced by a high-fat diet in rats. Nutr. Res. 30, 791–800.
Glucosamine attenuates increases of intraabdominal fat, serum leptin levels and insulin resistance induced by a high-fat diet in rats.CrossRef | 1:CAS:528:DC%2BC3cXhsFantbrI&md5=d8740c4f7fc61a7831e60eebe080b87dCAS | 21130299PubMed | open url image1

Buse, M. G. (2006). Hexosamines, insulin resistance and the complications of diabetes: current status. Am. J. Physiol. Endocrinol. Metab. 290, E1–E8.
Hexosamines, insulin resistance and the complications of diabetes: current status.CrossRef | 1:CAS:528:DC%2BD28XhsVSisrg%3D&md5=d290e1ff94e80fe23cbc4df9e2e51810CAS | 16339923PubMed | open url image1

Buse, M. G., Robinson, K. A., Gettys, T. W., McMahon, E. G., and Gulve, E. A. (1997). Increased activity of the hexosamine synthesis pathway in muscles of insulin-resistant ob/ob mice. Am. J. Physiol. Endocrinol. Metab. 272, E1080–E1088.
| 1:CAS:528:DyaK2sXktlOgsLs%3D&md5=13678b4c5f1a5fa557a7d9a6715417fbCAS | open url image1

Butkinaree, C., Park, K., and Hart, G. W. (2010). O-linked beta-n-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signalling and transcription in response to nutrients and stress. Biochim. Biophys. Acta 1800, 96–106.
O-linked beta-n-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signalling and transcription in response to nutrients and stress.CrossRef | 1:CAS:528:DC%2BC3cXotVWitQ%3D%3D&md5=9f02671e67f7416e67e60e429ac1730eCAS | 19647786PubMed | open url image1

Cardozo, E., Pavone, M. E., and Hirshfeld-Cytron, J. E. (2011). Metabolic syndrome and oocyte quality. Trends Endocrinol. Metab. 22, 103–109.
Metabolic syndrome and oocyte quality.CrossRef | 1:CAS:528:DC%2BC3MXjsFCqsrs%3D&md5=a6c31c964382763edfdb7084e111ad82CAS | 21277789PubMed | open url image1

Chan, A., Scott, J., Nguyen, A.-M., and Sage, L. (2009). ‘Pregnancy outcome in South Australia 2008’. (Adelaide Pregnancy Outcome Unit, SA Health, Government of South Australia: Adelaide.)

Colagiuri, S., Borch-Johnsen, K., Glumer, C., and Vistisen, D. (2005). There really is an epidemic of Type 2 diabetes. Diabetologia 48, 1459–1463.
There really is an epidemic of Type 2 diabetes.CrossRef | 1:STN:280:DC%2BD2MvivFGmtg%3D%3D&md5=281dc9ea11234b7c064758ac879c9855CAS | 16007413PubMed | open url image1

Combs, C. A., and Kitzmiller, J. L. (1991). Spontaneous abortion and congenital malformations in diabetes. Baillieres Clin. Obstet. Gynaecol. 5, 315–331.
Spontaneous abortion and congenital malformations in diabetes.CrossRef | 1:STN:280:DyaK38%2FmtlKgtA%3D%3D&md5=631f9932851c417b43777f8276a97781CAS | 1954716PubMed | open url image1

Considine, R. V., Cooksey, R. C., Williams, L. B., Fawcett, R. L., Zhang, P., Ambrosius, W. T., Whitfield, R. M., Jones, R., Inman, M., Huse, J., and McClain, D. A. (2000). Hexosamines regulate leptin production in human subcutaneous adipocytes. J. Clin. Endocrinol. Metab. 85, 3551–3556.
Hexosamines regulate leptin production in human subcutaneous adipocytes.CrossRef | 1:CAS:528:DC%2BD3cXnsFOgtr8%3D&md5=b840e7283ecd5855fa87728eb7b6b9a4CAS | 11061500PubMed | open url image1

Cooksey, R. C., and McClain, D. A. (2011). Increased hexosamine pathway flux and high-fat feeding are not additive in inducing insulin resistance: evidence for a shared pathway. Amino Acids 40, 841–846.
Increased hexosamine pathway flux and high-fat feeding are not additive in inducing insulin resistance: evidence for a shared pathway.CrossRef | 1:CAS:528:DC%2BC3MXitFGqsr8%3D&md5=0d61dfcd45a3640efcfba713daba1f9aCAS | 20658157PubMed | open url image1

Delbaere, I., Verstraelen, H., Goetgeluk, S., Martens, G., De Backer, G., and Temmerman, M. (2007). Pregnancy outcome in primiparae of advanced maternal age. Eur. J. Obstet. Gynecol. Reprod. Biol. 135, 41–46.
Pregnancy outcome in primiparae of advanced maternal age.CrossRef | 17118520PubMed | open url image1

Diamond, M. P., Moley, K. H., Pellicer, A., Vaughn, W. K., and DeCherney, A. H. (1989). Effects of streptozotocin- and alloxan-induced diabetes mellitus on mouse follicular and early embryo development. J. Reprod. Fertil. 86, 1–10.
Effects of streptozotocin- and alloxan-induced diabetes mellitus on mouse follicular and early embryo development.CrossRef | 1:STN:280:DyaL1MzivVymsQ%3D%3D&md5=3deff5eeaff329bad622dcd845c3af5aCAS | 2526873PubMed | open url image1

Dostrovsky, N. R., Towheed, T. E., Hudson, R. W., and Anastassiades, T. P. (2011). The effect of glucosamine on glucose metabolism in humans: a systematic review of the literature. Osteoarthritis Cartilage 19, 375–380.
The effect of glucosamine on glucose metabolism in humans: a systematic review of the literature.CrossRef | 1:STN:280:DC%2BC3MzgtVSrtQ%3D%3D&md5=7fd5029eb598b60c60e4a0d625f695aaCAS | 21251987PubMed | open url image1

Dunstan, D. W., Zimmet, P. Z., Welborn, T. A., De Courten, M. P., Cameron, A. J., Sicree, R. A., Dwyer, T., Colagiuri, S., Jolley, D., Knuiman, M., Atkins, R., and Shaw, J. E. (2002). The rising prevalence of diabetes and impaired glucose tolerance: the Australian Diabetes, Obesity and Lifestyle Study. Diabetes Care 25, 829–834.
The rising prevalence of diabetes and impaired glucose tolerance: the Australian Diabetes, Obesity and Lifestyle Study.CrossRef | 11978676PubMed | open url image1

Einstein, F. H., Fishman, S., Bauman, J., Thompson, R. F., Huffman, D. M., Atzmon, G., Barzilai, N., and Muzumdar, R. H. (2008). Enhanced activation of a nutrient-sensing pathway with age contributes to insulin resistance. FASEB J. 22, 3450–3457.
Enhanced activation of a nutrient-sensing pathway with age contributes to insulin resistance.CrossRef | 1:CAS:528:DC%2BD1cXht1SqsrnP&md5=65f398f7ea9fb472d09c87b90a686f47CAS | 18566293PubMed | open url image1

Ericsson, A., Säljö, K., Sjöstrand, E., Jansson, N., Prasad, P. D., Powell, T. L., and Jansson, T. (2007). Brief hyperglycaemia in the early pregnant rat increases fetal weight at term by stimulating placental growth and affecting placental nutrient transport. J. Physiol. 581, 1323–1332.
Brief hyperglycaemia in the early pregnant rat increases fetal weight at term by stimulating placental growth and affecting placental nutrient transport.CrossRef | 1:CAS:528:DC%2BD2sXnslyis7o%3D&md5=03f16423293645e7ace1361fb2a4e444CAS | 17430988PubMed | open url image1

Fleming, T. P., Lucas, E. S., Watkins, A. J., and Eckert, J. J. (2012). Adaptive responses of the embryo to maternal diet and consequences for post-implantation development. Reprod. Fertil. Dev. 24, 35–44.
Adaptive responses of the embryo to maternal diet and consequences for post-implantation development.CrossRef | open url image1

Fowler, R. E. (1988). An autoradiographic study of gonadotrophin regulation of labelled glycoconjugates within preovulatory mouse follicles during the final stages of oocyte maturation, using [3H] glucosamine as the radioactive precursor. J. Reprod. Fertil. 83, 759–772.
An autoradiographic study of gonadotrophin regulation of labelled glycoconjugates within preovulatory mouse follicles during the final stages of oocyte maturation, using [3H] glucosamine as the radioactive precursor.CrossRef | 1:CAS:528:DyaL1cXlt1alu70%3D&md5=eaffb069ad16bcf83cee768a69440d77CAS | 3411566PubMed | open url image1

Fowler, R. E., and Barratt, E. (1989). The uptake of [3H] glucosamine-labelled glycoconjugates into the perivitelline space of preimplantation mouse embryos. Hum. Reprod. 4, 821–825.
| 1:CAS:528:DyaK3MXhvVaktr4%3D&md5=d39108d271673c60c3c9cf331e983c7aCAS | 2606961PubMed | open url image1

Fowler, R. E., and Guttridge, K. (1987). An autoradiographic study using [3H] glucosamine of gonadotrophin regulation of proteoglycan and glycoprotein synthesis in developing mouse follicles. J. Reprod. Fertil. 81, 415–426.
An autoradiographic study using [3H] glucosamine of gonadotrophin regulation of proteoglycan and glycoprotein synthesis in developing mouse follicles.CrossRef | 1:CAS:528:DyaL1cXotFY%3D&md5=f9781903e4adc3a55c6b7d611a5f9ecaCAS | 3430461PubMed | open url image1

Friede, A., Baldwin, W., Rhodes, P. H., Buehler, J. W., and Strauss, L. T. (1988). Older maternal age and infant mortality in the United States. Obstet. Gynecol. 72, 152–157.
| 1:STN:280:DyaL1c3ns1Cjsw%3D%3D&md5=85cdecc09cdffdbff7244b82a9d03bc2CAS | 3393358PubMed | open url image1

Fulop, N., Mason, M. M., Dutta, K., Wang, P., Davidoff, A. J., Marchase, R. B., and Chatham, J. C. (2007). Impact of Type 2 diabetes and aging on cardiomyocyte function and O-linked n-acetylglucosamine levels in the heart. Am. J. Physiol. Cell Physiol. 292, C1370–C1378.
Impact of Type 2 diabetes and aging on cardiomyocyte function and O-linked n-acetylglucosamine levels in the heart.CrossRef | 1:CAS:528:DC%2BD2sXks1GqtbY%3D&md5=ff48fcdf9aef4b3c9311c47613a0ce29CAS | 17135297PubMed | open url image1

Greene, M. F. (1999). Spontaneous abortions and major malformations in women with diabetes mellitus. Semin. Reprod. Endocrinol. 17, 127–136.
Spontaneous abortions and major malformations in women with diabetes mellitus.CrossRef | 1:STN:280:DyaK1MvlslKksw%3D%3D&md5=b1b27cbaebe72104aad5124304fe074aCAS | 10528364PubMed | open url image1

Hansen, J. P. (1986). Older maternal age and pregnancy outcome: a review of the literature. Obstet. Gynecol. Surv. 41, 726–742.
Older maternal age and pregnancy outcome: a review of the literature.CrossRef | 1:STN:280:DyaL2s7ksFCjsQ%3D%3D&md5=9156ea0e4eed016258eca8751520eb09CAS | 2950347PubMed | open url image1

Heilig, C. W., Saunders, T., Brosius, F. C., Moley, K., Heilig, K., Baggs, R., Guo, L., and Conner, D. (2003). Glucose transporter-1-deficient mice exhibit impaired development and deformities similar to diabetic embryopathy. Proc. Natl. Acad. Sci. USA 100, 15 613–15 618.
Glucose transporter-1-deficient mice exhibit impaired development and deformities similar to diabetic embryopathy.CrossRef | 1:CAS:528:DC%2BD2cXhtVChtw%3D%3D&md5=ecf86a2a35f3b78d72b0b6ab5b1f92efCAS | open url image1

Horal, M., Zhang, Z., Stanton, R., Virkamaki, A., and Loeken, M. R. (2004). Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: involvement in diabetic teratogenesis. Birth Defects Res. A Clin. Mol. Teratol. 70, 519–527.
Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: involvement in diabetic teratogenesis.CrossRef | 1:CAS:528:DC%2BD2cXns1Sms70%3D&md5=e30e86bfc0fac715b2094347ddb2853aCAS | 15329829PubMed | open url image1

Hsieh, T. T., Liou, J. D., Hsu, J. J., Lo, L. M., Chen, S. F., and Hung, T. T. (2010). Advanced maternal age and adverse perinatal outcomes in an Asian population. Eur. J. Obstet. Gynecol. Reprod. Biol. 148, 21–26.
Advanced maternal age and adverse perinatal outcomes in an Asian population.CrossRef | 19773110PubMed | open url image1

Jacobsson, B., Ladfors, L., and Milsom, I. (2004). Advanced maternal age and adverse perinatal outcome. Obstet. Gynecol. 104, 727–733.
Advanced maternal age and adverse perinatal outcome.CrossRef | 15458893PubMed | open url image1

Jones, H. N., Woollett, L. A., Barbour, N., Prasad, P. D., Powell, T. L., and Jansson, T. (2009). High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/Bl6 mice. FASEB J. 23, 271–278.
High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/Bl6 mice.CrossRef | 1:CAS:528:DC%2BD1MXlsVOktA%3D%3D&md5=dd890c97dc80899fb47ca08d7377951eCAS | 18827021PubMed | open url image1

Jungheim, E. S. (2010). Current knowledge of obesity’s effects in the pre- and peri-conceptional periods and avenues for future research. Am. J. Obstet. Gynecol. 203, 525–530.
Current knowledge of obesity’s effects in the pre- and peri-conceptional periods and avenues for future research.CrossRef | 20739012PubMed | open url image1

Jungheim, E. S., and Moley, K. H. (2008). The impact of Type 1 and Type 2 diabetes mellitus on the oocyte and the preimplantation embryo. Semin. Reprod. Med. 26, 186–195.
The impact of Type 1 and Type 2 diabetes mellitus on the oocyte and the preimplantation embryo.CrossRef | 1:CAS:528:DC%2BD1cXkt1WgsrY%3D&md5=23d6699103b3649ba49580b24ef9974fCAS | 18302110PubMed | open url image1

Jungheim, E. S., Schoeller, E. L., Marquard, K. L., Louden, E. D., Schaffer, J. E., and Moley, K. H. (2010). Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology 151, 4039–4046.
Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring.CrossRef | 1:CAS:528:DC%2BC3cXht1Oju7rN&md5=54ba19f3577315ea559618de02c445a6CAS | 20573727PubMed | open url image1

Kaneto, H., Xu, G., Song, K.-H., Suzuma, K., Bonner-Weir, S., Sharma, A., and Weir, G. C. (2001). Activation of the hexosamine pathway leads to deterioration of pancreatic β-cell function through the induction of oxidative stress. J. Biol. Chem. 276, 31 099–31 104.
Activation of the hexosamine pathway leads to deterioration of pancreatic β-cell function through the induction of oxidative stress.CrossRef | 1:CAS:528:DC%2BD3MXmsVejsr8%3D&md5=38ca1a6414ee3ce4b21d51fe40318344CAS | open url image1

Kimura, K., Iwata, H., and Thompson, J. G. (2008). The effect of glucosamine concentration on the development and sex ratio of bovine embryos. Anim. Reprod. Sci. 103, 228–238.
The effect of glucosamine concentration on the development and sex ratio of bovine embryos.CrossRef | 1:CAS:528:DC%2BD2sXhsVSmtLfL&md5=911f3e52001d3726295ca884e71651f2CAS | 17198747PubMed | open url image1

Kitzmiller, J. L., Block, J. M., Brown, F. M., Catalano, P. M., Conway, D. L., Coustan, D. R., Gunderson, E. P., Herman, W. H., Hoffman, L. D., Inturrisi, M., Jovanovic, L. B., Kjos, S. I., Knopp, R. H., Montoro, M. N., Ogata, E. S., Paramsothy, P., Reader, D. M., Rosenn, B. M., Thomas, A. M., and Kirkman, M. S. (2008). Managing pre-existing diabetes for pregnancy: summary of evidence and consensus recommendation for care. Diabetes Care 31, 1060–1079.
Managing pre-existing diabetes for pregnancy: summary of evidence and consensus recommendation for care.CrossRef | 1:CAS:528:DC%2BD1cXmsFGrtbg%3D&md5=7dfdf78eaf6ef0b85955391e749fa810CAS | 18445730PubMed | open url image1

Le Floch, J. P., Escuyer, P., Baudin, E., Baudin, D., and Perlemuter, L. (1990). Blood glucose area under the curve. Methodological aspects. Diabetes Care 13, 172–175.
Blood glucose area under the curve. Methodological aspects.CrossRef | 1:STN:280:DyaK3c3ns1WgsA%3D%3D&md5=c9782b93a714cb8654f8389273120911CAS | 2351014PubMed | open url image1

Love, D. C., and Hanover, J. A. (2005). The hexosamine signalling pathway: deciphering the “O-GlcNAc code”. Sci. STKE 2005, re13.
The hexosamine signalling pathway: deciphering the “O-GlcNAc code”.CrossRef | 16317114PubMed | open url image1

Marshall, S., Bacote, V., and Traxinger, R. R. (1991). Discovery of a metabolic pathway mediating glucose-induced desensitisation of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 266, 4706–4712.
| 1:CAS:528:DyaK3MXhs1WltL0%3D&md5=38dc74a7dac082cbc219315801d64c11CAS | 2002019PubMed | open url image1

Martin, J. A., Hamilton, B. E., Sutton, P. D., Ventura, S. J., Menacker, F., and Munson, M. L. (2006). ‘Births: Final data for 2004. National Vital Statistics Reports, Vol. 55, No. 1’. (National Center for Health Statistics: Hyattsville, MD, USA.)

McCance, D. R. (2011). Pregnancy and diabetes. Best Pract. Res. Clin. Obstet. Gynaecol. 25, 945–958.
| 1:CAS:528:DC%2BC3MXhsFGjtrnN&md5=9fd7a1aa41445c6b95d752168640332eCAS | open url image1

McClain, D. A. (2002). Hexosamines as mediators of nutrient sensing and regulation in diabetes. J. Diabetes Complications 16, 72–80.
Hexosamines as mediators of nutrient sensing and regulation in diabetes.CrossRef | 11872372PubMed | open url image1

McClain, D. A., and Crook, E. D. (1996). Hexosamines and insulin resistance. Diabetes 45, 1003–1009.
Hexosamines and insulin resistance.CrossRef | 1:CAS:528:DyaK28XkslSjsbY%3D&md5=772fbd12df91973151c75ef6a207fc34CAS | 8690144PubMed | open url image1

Metzger, B. E., Buchanan, T. A., Coustan, D. R., de Leiva, A., Dunger, D. B., Hadden, D. R., Hod, M., Kitzmiller, J. L., Kjos, S. L., Oats, J. N., Pettitt, D. J., Sacks, D. A., and Zoupas, C. (2007). Summary and recommendations of the Fifth International Workshop-Conference on Gestational Diabetes Mellitus. Diabetes Care 30, S251–S260.
Summary and recommendations of the Fifth International Workshop-Conference on Gestational Diabetes Mellitus.CrossRef | 1:CAS:528:DC%2BD2sXotlWhsLk%3D&md5=70ef76c8a5d7110c272fc3d7d3e8f992CAS | 17596481PubMed | open url image1

Miletic, T., Aberle, N., Mikulandra, F., Karelovic, D., Zakani, Z., Banovic, I., Tadin, I., Perisa, M., Ognjenovic, M., and Tadic, C. (2002). Perinatal outcome of pregnancies in women aged 40 and over. Coll. Antropol. 26, 251–258.
| 1:STN:280:DC%2BD38zovVKjsw%3D%3D&md5=bea2ad269741d04dc0710bdbe98140d1CAS | 12137307PubMed | open url image1

Miller, E., Hare, J. W., Cloherty, J. P., Dunn, P. J., Gleason, R. E., Soeldner, J. S., and Kitzmiller, J. L. (1981). Elevated maternal haemoglobin A1c in early pregnancy and major congenital anomalies in infants of diabetic mothers. N. Engl. J. Med. 304, 1331–1334.
Elevated maternal haemoglobin A1c in early pregnancy and major congenital anomalies in infants of diabetic mothers.CrossRef | 1:STN:280:DyaL3M7nt12itA%3D%3D&md5=624e827638811961e9c5b4ff384d7389CAS | 7012627PubMed | open url image1

Minge, C. E., Bennett, B. D., Norman, R. J., and Robker, R. L. (2008). Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality. Endocrinology 149, 2646–2656.
Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality.CrossRef | 1:CAS:528:DC%2BD1cXht1Gmsb%2FO&md5=f2989d225f5874bc6f4976c3d425701bCAS | 18276752PubMed | open url image1

Moley, K. H., Vaughn, W. K., DeCherney, A. H., and Diamond, M. P. (1991). Effect of diabetes mellitus on mouse preimplantation embryo development. J. Reprod. Fertil. 93, 325–332.
Effect of diabetes mellitus on mouse preimplantation embryo development.CrossRef | 1:STN:280:DyaK387lslSlsw%3D%3D&md5=e0a7a06809954f29001871233b929f8cCAS | 1787451PubMed | open url image1

Nybo Andersen, A. M., Wohlfahrt, J., Christens, P., Olsen, J., and Melbye, M. (2000). Maternal age and fetal loss: population-based register linkage study. BMJ 320, 1708–1712.
Maternal age and fetal loss: population-based register linkage study.CrossRef | 1:STN:280:DC%2BD3czitlSmug%3D%3D&md5=5df389a17043c9f75793138b30a9def4CAS | 10864550PubMed | open url image1

Pantaleon, M., Tan, H. Y., Kafer, G. R., and Kaye, P. L. (2010). Toxic effects of hyperglycaemia are mediated by the hexosamine signalling pathway and O-linked glycosylation in early mouse embryos. Biol. Reprod. 82, 751–758.
Toxic effects of hyperglycaemia are mediated by the hexosamine signalling pathway and O-linked glycosylation in early mouse embryos.CrossRef | 1:CAS:528:DC%2BC3cXjslelt7g%3D&md5=df1faed222429acecea53d2ff4139050CAS | 20032283PubMed | open url image1

Parnell, S. E., Dehart, D. B., Wills, T. A., Chen, S., Hodge, C. W., Besheer, J., Waage-Baudet, H. G., Charness, M. E., and Sulik, K. K. (2006). Maternal oral intake mouse model for fetal alcohol spectrum disorders: ocular defects as a measure of effect. Alcohol. Clin. Exp. Res. 30, 1791–1798.
Maternal oral intake mouse model for fetal alcohol spectrum disorders: ocular defects as a measure of effect.CrossRef | 1:CAS:528:DC%2BD28XhtFyksL%2FE&md5=31d4eaccd61ed8b1d6dbeabcc574de7eCAS | 17010146PubMed | open url image1

Patti, M. E., Virkamaki, A., Landaker, E. J., Kahn, C. R., and Yki-Jarvinen, H. (1999). Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance of early postreceptor insulin signalling events in skeletal muscle. Diabetes 48, 1562–1571.
Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance of early postreceptor insulin signalling events in skeletal muscle.CrossRef | 1:CAS:528:DyaK1MXkvVKnu7k%3D&md5=3bd0ad886d3db4b4f993751c3eecb3dbCAS | 10426374PubMed | open url image1

Persiani, S., Roda, E., Rovati, L. C., Locatelli, M., Giacovelli, G., and Roda, A. (2005). Glucosamine oral bioavailability and plasma pharmacokinetics after increasing doses of crystalline glucosamine sulfate in man. Osteoarthritis Cartilage 13, 1041–1049.
Glucosamine oral bioavailability and plasma pharmacokinetics after increasing doses of crystalline glucosamine sulfate in man.CrossRef | 1:STN:280:DC%2BD2MnjtVOrug%3D%3D&md5=5d17805fb7e55600b74a73186f2c34a1CAS | 16168682PubMed | open url image1

Ramin, N., Thieme, R., Fischer, S., Schindler, M., Schmidt, T., Fischer, B., and Navarrete Santos, A. (2010). Maternal diabetes impairs gastrulation and insulin and IGF-I receptor expression in rabbit blastocysts. Endocrinology 151, 4158–4167.
Maternal diabetes impairs gastrulation and insulin and IGF-I receptor expression in rabbit blastocysts.CrossRef | 1:CAS:528:DC%2BC3cXhtF2qtrzO&md5=821d990d5aafd08f8231cce7b2d4c4c4CAS | 20631000PubMed | open url image1

Ray, J. G., O’Brien, T. E., and Chan, W. S. (2001). Preconception care and the risk of congenital anomalies in the offspring of women with diabetes mellitus: a meta-analysis. Q. J. Med. 94, 435–444.
Preconception care and the risk of congenital anomalies in the offspring of women with diabetes mellitus: a meta-analysis.CrossRef | 1:STN:280:DC%2BD3Mvos1Oqsg%3D%3D&md5=4890a1c02a7fa4ca19886648adbaf1a5CAS | open url image1

Robinson, K. A., Weinstein, M. L., Lindenmayer, G. E., and Buse, M. G. (1995). Effects of diabetes and hyperglycaemia on the hexosamine synthesis pathway in rat muscle and liver. Diabetes 44, 1438–1446.
Effects of diabetes and hyperglycaemia on the hexosamine synthesis pathway in rat muscle and liver.CrossRef | 1:CAS:528:DyaK2MXps1Kgsbg%3D&md5=0219bd727a341b271e544d35313a0a1eCAS | 7589852PubMed | open url image1

Rossetti, L., Hawkins, M., Chen, W., Gindi, J., and Barzilai, N. (1995). In vivo glucosamine infusion induces insulin resistance in normoglycaemic but not hyperglycaemic conscious rats. J. Clin. Invest. 96, 132–140.
In vivo glucosamine infusion induces insulin resistance in normoglycaemic but not hyperglycaemic conscious rats.CrossRef | 1:CAS:528:DyaK2MXmslyru70%3D&md5=2570a79f22cb4626fbe7de616106fdafCAS | 7615783PubMed | open url image1

Salbaum, J. M., and Kappen, C. (2011). Diabetic embryopathy: a role for the epigenome? Birth Defects Res. A Clin. Mol. Teratol. 91, 770–780.
Diabetic embryopathy: a role for the epigenome?CrossRef | 1:CAS:528:DC%2BC3MXpvVyht7c%3D&md5=6472e3498b2e74bfabfe5e6643745a16CAS | 21538816PubMed | open url image1

Schelbach, C. J., Kind, K. L., Lane, M., and Thompson, J. G. (2010). Mechanisms contributing to the reduced developmental competence of glucosamine-exposed mouse oocytes. Reprod. Fertil. Dev. 22, 771–779.
Mechanisms contributing to the reduced developmental competence of glucosamine-exposed mouse oocytes.CrossRef | 1:CAS:528:DC%2BC3cXlsVCqt7k%3D&md5=445a95480dd8ef1d7afabfd3cb3c75bcCAS | 20450829PubMed | open url image1

Setnikar, I., Palumbo, R., Canali, S., and Zanolo, G. (1993). Pharmacokinetics of glucosamine in man. Arzneimittelforschung 43, 1109–1113.
| 1:CAS:528:DyaK2cXitlShsQ%3D%3D&md5=6b67bc8e57b9c9bfe245dc50de6e7a56CAS | 8267678PubMed | open url image1

Shand, A. W., Bell, J. C., McElduff, A., Morris, J., and Roberts, C. L. (2008). Outcomes of pregnancies in women with pre-gestational diabetes mellitus and gestational diabetes mellitus; a population-based study in New South Wales, Australia, 1998–2002. Diabet. Med. 25, 708–715.
Outcomes of pregnancies in women with pre-gestational diabetes mellitus and gestational diabetes mellitus; a population-based study in New South Wales, Australia, 1998–2002.CrossRef | 1:STN:280:DC%2BD1czns1ersw%3D%3D&md5=b787bc317a410cf7adf9647996693d54CAS | 18544109PubMed | open url image1

Simmons, D. (2011). Diabetes and obesity in pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 25, 25–36.
Diabetes and obesity in pregnancy.CrossRef | 21247811PubMed | open url image1

Simon, R. R., Marks, V., Leeds, A. R., and Anderson, J. W. (2011). A comprehensive review of oral glucosamine use and effects on glucose metabolism in normal and diabetic individuals. Diabetes Metab. Res. Rev. 27, 14–27.
A comprehensive review of oral glucosamine use and effects on glucose metabolism in normal and diabetic individuals.CrossRef | 1:CAS:528:DC%2BC3MXhsl2msrg%3D&md5=078091e4a2b6ad5a4d6e180b6df96bbaCAS | 21218504PubMed | open url image1

Sivojelezova, A., Koren, G., and Einarson, A. (2007). Glucosamine use in pregnancy: an evaluation of pregnancy outcome. J. Womens Health Larchmt 16, 345–348.
Glucosamine use in pregnancy: an evaluation of pregnancy outcome.CrossRef | 17439379PubMed | open url image1

Spampinato, D., Giaccari, A., Trischitta, V., Costanzo, B. V., Morviducci, L., Buongiorno, A., Di Mario, U., Vigneri, R., and Frittitta, L. (2003). Rats that are made insulin resistant by glucosamine treatment have impaired skeletal muscle insulin receptor phosphorylation. Metabolism 52, 1092–1095.
Rats that are made insulin resistant by glucosamine treatment have impaired skeletal muscle insulin receptor phosphorylation.CrossRef | 1:CAS:528:DC%2BD3sXntVGlurc%3D&md5=7abb09d0fbe53f3a1b5797a424eb1b33CAS | 14506612PubMed | open url image1

Stothard, K. J., Tennant, P. W., Bell, R., and Rankin, J. (2009). Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA 301, 636–650.
Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis.CrossRef | 1:CAS:528:DC%2BD1MXhvVyjt70%3D&md5=b0c52bb9638dd75c783a51a2e2897171CAS | 19211471PubMed | open url image1

Sulik, K. K., Johnston, M. C., and Webb, M. A. (1981). Fetal alcohol syndrome: embryogenesis in a mouse model. Science 214, 936–938.
Fetal alcohol syndrome: embryogenesis in a mouse model.CrossRef | 1:STN:280:DyaL38%2FmtFygsw%3D%3D&md5=4706195b59174ddff525fdc468e3cc0fCAS | 6795717PubMed | open url image1

Sutton-McDowall, M. L., Gilchrist, R. B., and Thompson, J. G. (2004). Cumulus expansion and glucose utilisation by bovine cumulus–oocyte complexes during in vitro maturation: the influence of glucosamine and follicle-stimulating hormone. Reproduction 128, 313–319.
Cumulus expansion and glucose utilisation by bovine cumulus–oocyte complexes during in vitro maturation: the influence of glucosamine and follicle-stimulating hormone.CrossRef | 1:CAS:528:DC%2BD2cXot1KitLk%3D&md5=cca0c749897e2e1e952e0bc3b98bcf73CAS | 15333782PubMed | open url image1

Sutton-McDowall, M. L., Mitchell, M., Cetica, P., Dalvit, G., Pantaleon, M., Lane, M., Gilchrist, R. B., and Thompson, J. G. (2006). Glucosamine supplementation during in vitro maturation inhibits subsequent embryo development: possible role of the hexosamine pathway as a regulator of developmental competence. Biol. Reprod. 74, 881–888.
Glucosamine supplementation during in vitro maturation inhibits subsequent embryo development: possible role of the hexosamine pathway as a regulator of developmental competence.CrossRef | 1:CAS:528:DC%2BD28Xjsl2jur8%3D&md5=6346693bebf8341947914828cbbf172dCAS | 16436527PubMed | open url image1

Temple, R. C., Aldridge, V. J., and Murphy, H. R. (2006). Prepregnancy care and pregnancy outcomes in women with Type 1 diabetes. Diabetes Care 29, 1744–1749.
Prepregnancy care and pregnancy outcomes in women with Type 1 diabetes.CrossRef | 16873774PubMed | open url image1

Teo, C. F., Wollaston-Hayden, E. E., and Wells, L. (2010). Hexosamine flux, the O-GlcNAc modification and the development of insulin resistance in adipocytes. Mol. Cell. Endocrinol. 318, 44–53.
Hexosamine flux, the O-GlcNAc modification and the development of insulin resistance in adipocytes.CrossRef | 1:CAS:528:DC%2BC3cXit1OnsLk%3D&md5=995e9f88623551cfa9c0a05849f5978cCAS | 19799964PubMed | open url image1

Torres, C. R., and Hart, G. W. (1984). Topography and polypeptide distribution of terminal n-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 259, 3308–3317.
| 1:CAS:528:DyaL2cXhtlOhtr4%3D&md5=a9a7f0da625f1fe93040af06e2751b2fCAS | 6421821PubMed | open url image1

Vaughan, O. R., Sferruzzi-Perri, A. N., Coan, P. M., and Fowden, A. L. (2012). Environmental regulation of placental phenotype. Reprod. Fertil. Dev. 24, 80–96.
Environmental regulation of placental phenotype.CrossRef | open url image1

Veerababu, G., Tang, J., Hoffman, R. T., Daniels, M. C., Hebert, L. F., Crook, E. D., Cooksey, R. C., and McClain, D. A. (2000). Overexpression of glutamine: fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity and impaired glucose tolerance. Diabetes 49, 2070–2078.
Overexpression of glutamine: fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity and impaired glucose tolerance.CrossRef | 1:CAS:528:DC%2BD3cXos1ejs7s%3D&md5=31f447c475201374411d2a9ad28e2bfcCAS | 11118009PubMed | open url image1

Virkamaki, A., Daniels, M. C., Hamalainen, S., Utriainen, T., McClain, D., and Yki-Jarvinen, H. (1997). Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance in multiple insulin-sensitive tissues. Endocrinology 138, 2501–2507.
Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance in multiple insulin-sensitive tissues.CrossRef | 1:CAS:528:DyaK2sXjsVemtr0%3D&md5=2cad5bfcccb93c3460f88c86e1aebdf5CAS | 9165041PubMed | open url image1

Vosseller, K., Wells, L., Lane, M. D., and Hart, G. W. (2002). Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3–L1 adipocytes. Proc. Natl. Acad. Sci. USA 99, 5313–5318.
Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3–L1 adipocytes.CrossRef | 1:CAS:528:DC%2BD38XjtFKls78%3D&md5=200b5d3ca885e9a72a5aa0ad43391a78CAS | 11959983PubMed | open url image1

Waller, D. K., Shaw, G. M., Rasmussen, S. A., Hobbs, C. A., Canfield, M. A., Siega-Riz, A. M., Gallaway, M. S., and Correa, A. (2007). Prepregnancy obesity as a risk factor for structural birth defects. Arch. Pediatr. Adolesc. Med. 161, 745–750.
Prepregnancy obesity as a risk factor for structural birth defects.CrossRef | 17679655PubMed | open url image1

Wang, Q., and Moley, K. H. (2010). Maternal diabetes and oocyte quality. Mitochondrion 10, 403–410.
Maternal diabetes and oocyte quality.CrossRef | 20226883PubMed | open url image1

Wang, Q., Ratchford, A. M., Chi, M. M.-Y., Schoeller, E., Frolova, A., Schedl, T., and Moley, K. H. (2009). Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes. Mol. Endocrinol. 23, 1603–1612.
Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes.CrossRef | 1:CAS:528:DC%2BD1MXhtlSitb%2FF&md5=c58453597793c6010509ddb97ac1163bCAS | 19574447PubMed | open url image1

Wang, Y. C., McPherson, K., Marsh, T., Gortmaker, S. L., and Brown, M. (2011). Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378, 815–825.
Health and economic burden of the projected obesity trends in the USA and the UK.CrossRef | 21872750PubMed | open url image1

Wyman, A., Pinto, A. B., Sheridan, R., and Moley, K. H. (2008). One-cell zygote transfer from diabetic to non-diabetic mouse results in congenital malformations and growth retardation in offspring. Endocrinology 149, 466–469.
One-cell zygote transfer from diabetic to non-diabetic mouse results in congenital malformations and growth retardation in offspring.CrossRef | 1:CAS:528:DC%2BD1cXht1yqsLc%3D&md5=a37a9891d61651c55e901863933008e9CAS | 18039778PubMed | open url image1



Export Citation