Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH FRONT

Fibroblast growth factor 2 induces the precocious development of endothelial cell networks in bovine luteinising follicular cells

Mhairi Laird A B C , Kathryn J. Woad A B , Morag G. Hunter B , George E. Mann B and Robert S. Robinson A D

A School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK.

B School of Biosciences, University of Nottingham, Sutton Bonington campus, Loughborough, Leicestershire LE12 5RD, UK.

C Present address: Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.

D Corresponding author. Email: bob.robinson@nottingham.ac.uk

Reproduction, Fertility and Development 25(2) 372-386 http://dx.doi.org/10.1071/RD12182
Submitted: 9 June 2012  Accepted: 11 October 2012   Published: 16 November 2012

Abstract

The transition from follicle to corpus luteum represents a period of intense angiogenesis; however, the exact roles of angiogenic factors during this time remain to be elucidated. Thus, the roles of vascular endothelial growth factor (VEGF) A, fibroblast growth factor (FGF) 2 and LH in controlling angiogenesis were examined in the present study. A novel serum-free luteinising follicular angiogenesis culture system was developed in which progesterone production increased during the first 5 days and was increased by LH (P < 0.01). Blockade of signalling from FGF receptors (SU5402; P < 0.001) and, to a lesser extent, VEGF receptors (SU1498; P < 0.001) decreased the development of endothelial cell (EC) networks. Conversely, FGF2 dose-dependently (P < 0.001) induced the precocious transition of undeveloped EC islands into branched networks associated with a twofold increase in the number of branch points (P < 0.001). In contrast, VEGFA had no effect on the area of EC networks or the number of branch points. LH had no effect on the area of EC networks, but it marginally increased the number of branch points (P < 0.05) and FGF2 production (P < 0.001). Surprisingly, progesterone production was decreased by FGF2 (P < 0.01) but only on Day 5 of culture. Progesterone production was increased by SU5402 (P < 0.001) and decreased by SU1498 (P < 0.001). These results demonstrate that FGF and VEGF receptors play a fundamental role in the formation of luteal EC networks in vitro, which includes a novel role for FGF2 in induction of EC sprouting.

Additional keywords: angiogenesis, cow, sprouting.


References

Amselgruber, W. M., Schafer, M., and Sinowatz, F. (1999). Angiogenesis in the bovine corpus luteum: an immunocytochemical and ultrastructural study. Anat. Histol. Embryol. 28, 157–166.
Angiogenesis in the bovine corpus luteum: an immunocytochemical and ultrastructural study.CrossRef | 10458020PubMed | open url image1

Ball, S. G., Shuttleworth, C. A., and Kielty, C. M. (2007). Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J. Cell Biol. 177, 489–500.
Vascular endothelial growth factor can signal through platelet-derived growth factor receptors.CrossRef | 17470632PubMed | open url image1

Beckman, J. D., Grazul-Bilska, A. T., Johnson, M. L., Reynolds, L. P., and Redmer, D. A. (2006). Isolation and characterization of ovine luteal pericytes and effects of nitric oxide on pericyte expression of angiogenic factors. Endocrine 29, 467–476.
Isolation and characterization of ovine luteal pericytes and effects of nitric oxide on pericyte expression of angiogenic factors.CrossRef | 16943586PubMed | open url image1

Berisha, B., Schams, D., Kosmann, M., Amselgruber, W., and Einspanier, R. (2000). Expression and tissue concentration of vascular endothelial growth factor, its receptors, and localization in the bovine corpus luteum during estrous cycle and pregnancy. Biol. Reprod. 63, 1106–1114.
Expression and tissue concentration of vascular endothelial growth factor, its receptors, and localization in the bovine corpus luteum during estrous cycle and pregnancy.CrossRef | 10993833PubMed | open url image1

Berisha, B., Steffl, M., Amselgruber, W., and Schams, D. (2006). Changes in fibroblast growth factor 2 and its receptors in bovine follicles before and after GnRH application and after ovulation. Reproduction 131, 319–329.
Changes in fibroblast growth factor 2 and its receptors in bovine follicles before and after GnRH application and after ovulation.CrossRef | 16452725PubMed | open url image1

Berisha, B., Steffl, M., Welter, H., Kliem, H., Meyer, H. H. D., Schams, D., and Amselgruber, W. (2008). Effect of the luteinising hormone surge on regulation of vascular endothelial growth factor and extracellular matrix-degrading proteinases and their inhibitors in bovine follicles. Reprod. Fertil. Dev. 20, 258–268.
Effect of the luteinising hormone surge on regulation of vascular endothelial growth factor and extracellular matrix-degrading proteinases and their inhibitors in bovine follicles.CrossRef | 18255015PubMed | open url image1

De Smet, F., Segura, I., De Bock, K., Hohensinner, P. J., and Carmeliet, P. (2009). Mechanisms of vessel branching filopodia on endothelial tip cells lead the way. Arterioscler. Thromb. Vasc. Biol. 29, 639–649.
Mechanisms of vessel branching filopodia on endothelial tip cells lead the way.CrossRef | 19265031PubMed | open url image1

Eilken, H. M., and Adams, R. H. (2010). Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr. Opin. Cell Biol. 22, 617–625.
Dynamics of endothelial cell behavior in sprouting angiogenesis.CrossRef | 20817428PubMed | open url image1

Finney, D. J. (1988). Was this in your statistics textbook? 3. Design and analysis. Exp. Agric. 24, 421–432. open url image1

Fraser, H. M., Dickson, S. E., Lunn, S. F., Wulff, C., Morris, K. D., Carroll, V. A., and Bicknell, R. (2000). Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor. Endocrinology 141, 995–1000.
Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor.CrossRef | 10698175PubMed | open url image1

Fraser, H. M., Hastings, J. M., Allan, D., Morris, K. D., Rudge, J. S., and Wiegand, S. J. (2012). Inhibition of delta-like ligand 4 induces luteal hypervascularization followed by functional and structural luteolysis in the primate ovary. Endocrinology 153, 1972–1983.
Inhibition of delta-like ligand 4 induces luteal hypervascularization followed by functional and structural luteolysis in the primate ovary.CrossRef | 22334711PubMed | open url image1

Gabler, C., Plath-Gabler, A., Killian, G. J., Berisha, B., and Schams, D. (2004). Expression pattern of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) system members in bovine corpus luteum endothelial cells during treatment with FGF-2, VEGF or oestradiol. Reprod. Domest. Anim. 39, 321–327.
Expression pattern of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) system members in bovine corpus luteum endothelial cells during treatment with FGF-2, VEGF or oestradiol.CrossRef | 15367264PubMed | open url image1

Gilbert, I., Robert, C., Dieleman, S., Blondin, P., and Sirard, M. A. (2011). Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period. Reproduction 141, 193–205.
Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period.CrossRef | 21123518PubMed | open url image1

Gridley, T. (2007). Notch signaling in vascular development and physiology. Development 134, 2709–2718.
Notch signaling in vascular development and physiology.CrossRef | 17611219PubMed | open url image1

Hatziapostolou, M., Polytarchou, C., Katsoris, P., Courty, J., and Papadimitriou, E. (2006). Heparin affinity regulatory peptide/pleiotrophin mediates fibroblast growth factor 2 stimulatory effects on human prostate cancer cells. J. Biol. Chem. 281, 32 217–32 226.
Heparin affinity regulatory peptide/pleiotrophin mediates fibroblast growth factor 2 stimulatory effects on human prostate cancer cells.CrossRef | open url image1

Hazzard, T. M., Rohan, R. M., Molskness, T. A., Fanton, J. W., D’Amato, R. J., and Stouffer, R. L. (2002). Injection of antiangiogenic agents into the macaque preovulatory follicle: disruption of corpus luteum development and function. Endocrine 17, 199–206.
Injection of antiangiogenic agents into the macaque preovulatory follicle: disruption of corpus luteum development and function.CrossRef | 12108520PubMed | open url image1

Hirschberg, R. M., Plendl, J., and Kaessmeyer, S. (2012). Alpha smooth muscle actin in the cycling ovary: an immunohistochemical study. Clin. Hemorheol. Microcirc. 50, 113–129.
| 22538540PubMed | open url image1

Hünigen, H., Bisplinghoff, P., Plendl, J., and Bahramsoltani, M. (2008). Vascular dynamics in relation to immunolocalisation of VEGF-A, VEGFR-2 and Ang-2 in the bovine corpus luteum. Acta Histochem. 110, 462–472.
Vascular dynamics in relation to immunolocalisation of VEGF-A, VEGFR-2 and Ang-2 in the bovine corpus luteum.CrossRef | 18541291PubMed | open url image1

Irving-Rodgers, H. F., Catanzariti, K. D., Aspden, W. J., D’Occhio, M. J., and Rodgers, R. J. (2006). Remodeling of extracellular matrix at ovulation of the bovine ovarian follicle. Mol. Reprod. Dev. 73, 1292–1302.
Remodeling of extracellular matrix at ovulation of the bovine ovarian follicle.CrossRef | 16865721PubMed | open url image1

Joseph, C., Hunter, M. G., Sinclair, K. D., and Robinson, R. S. (2012). The expression, regulation and function of secreted protein, acidic, cysteine-rich in the follicle–luteal transition. Reproduction 144, 361–372.
The expression, regulation and function of secreted protein, acidic, cysteine-rich in the follicle–luteal transition.CrossRef | 22733805PubMed | open url image1

Kanda, S., Miyata, Y., and Kanetake, H. (2004). Fibroblast growth factor-2-mediated capillary morphogenesis of endothelial cells requires signals via Flt-1/vascular endothelial growth factor receptor-1: possible involvement of c-Akt. J. Biol. Chem. 279, 4007–4016.
Fibroblast growth factor-2-mediated capillary morphogenesis of endothelial cells requires signals via Flt-1/vascular endothelial growth factor receptor-1: possible involvement of c-Akt.CrossRef | 14610089PubMed | open url image1

Katanasaka, Y., Ida, T., Asai, T., Maeda, N., and Oku, N. (2008). Effective delivery of an angiogenesis inhibitor by neovessel-targeted liposomes. Int. J. Pharm. 360, 219–224.
| 18565703PubMed | open url image1

Kobayashi, S., Berisha, B., Amselgruber, W. M., Schams, D., and Miyamoto, A. (2001). Production and localisation of angiotensin II in the bovine early corpus luteum: a possible interaction with luteal angiogenic factors and prostaglandin F2 alpha. J. Endocrinol. 170, 369–380.
Production and localisation of angiotensin II in the bovine early corpus luteum: a possible interaction with luteal angiogenic factors and prostaglandin F2 alpha.CrossRef | 11479133PubMed | open url image1

Kuhnert, F., Tam, B. Y. Y., Sennino, B., Gray, J. T., Yuan, J., Jocson, A., Nayak, N. R., Mulligan, R. C., McDonald, D. M., and Kuo, C. J. (2008). Soluble receptor-mediated selective inhibition of VEGFR and PDGFR beta signaling during physiologic and tumor angiogenesis. Proc. Natl Acad. Sci. USA 105, 10 185–10 190.
Soluble receptor-mediated selective inhibition of VEGFR and PDGFR beta signaling during physiologic and tumor angiogenesis.CrossRef | open url image1

Kurz, H., Fehr, J., Nitschke, R., and Burkhardt, H. (2008). Pericytes in the mature chorioallantoic membrane capillary plexus contain desmin and alpha-smooth muscle actin: relevance for non-sprouting angiogenesis. Histochem. Cell Biol. 130, 1027–1040.
Pericytes in the mature chorioallantoic membrane capillary plexus contain desmin and alpha-smooth muscle actin: relevance for non-sprouting angiogenesis.CrossRef | 18688635PubMed | open url image1

Lee, A., Christenson, L. K., Patton, P. E., Burry, K. A., and Stouffer, R. L. (1997). Vascular endothelial growth factor production by human luteinized granulosa cells in vitro. Hum. Reprod. 12, 2756–2761.
Vascular endothelial growth factor production by human luteinized granulosa cells in vitro.CrossRef | 9455848PubMed | open url image1

Lowry, S. R. (1992). Use and misuse of multiple comparisons in animal-experiments. J. Anim. Sci. 70, 1971–1977.
| 1634420PubMed | open url image1

Masri, F. A., Xu, W., Comhair, S. A. A., Asosingh, K., Koo, M., Vasanji, A., Drazba, J., Anand-Apte, B., and Erzurum, S. C. (2007). Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L548–L554.
Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension.CrossRef | 17526595PubMed | open url image1

Miyamoto, A., Shirasuna, K., Shimizu, T., Bollwein, H., and Schams, D. (2010). Regulation of corpus luteum development and maintenance: specific roles of angiogenesis and action of prostaglandin F2alpha. Soc. Reprod. Fertil. Suppl. 67, 289–304.
| 21755680PubMed | open url image1

Mohammadi, M., McMahon, G., Sun, L., Tang, C., Hirth, P., Yeh, B. K., Hubbard, S. R., and Schlessinger, J. (1997). Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276, 955–960.
Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors.CrossRef | 9139660PubMed | open url image1

Nissen, L. J., Cao, R., Hedlund, E. M., Wang, Z., Zhao, X., Wetterskog, D., Funa, K., Brakenhielm, E., and Cao, Y. (2007). Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J. Clin. Invest. 117, 2766–2777.
Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis.CrossRef | 17909625PubMed | open url image1

Niswender, G. D. (2002). Molecular control of luteal secretion of progesterone. Reproduction 123, 333–339.
Molecular control of luteal secretion of progesterone.CrossRef | 11882010PubMed | open url image1

Ozerdem, U., and Stallcup, W. B. (2003). Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis 6, 241–249.
Early contribution of pericytes to angiogenic sprouting and tube formation.CrossRef | 15041800PubMed | open url image1

Papetti, M., Shujath, J., Riley, K. N., and Herman, I. M. (2003). FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: a role for myf-5 and Smad-mediated signaling pathways. Invest. Ophthalmol. Vis. Sci. 44, 4994–5005.
FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: a role for myf-5 and Smad-mediated signaling pathways.CrossRef | 14578427PubMed | open url image1

Presta, M., Dell’Era, P., Mitola, S., Moroni, E., Ronca, R., and Rusnati, M. (2005). Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 16, 159–178.
Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis.CrossRef | 15863032PubMed | open url image1

Ravindranath, N., Littleihrig, L., Phillips, H. S., Ferrara, N., and Zeleznik, A. J. (1992). Vascular endothelial growth factor messenger ribonucleic acid expression in the primate ovary. Endocrinology 131, 254–260.
Vascular endothelial growth factor messenger ribonucleic acid expression in the primate ovary.CrossRef | 1612003PubMed | open url image1

Redmer, D. A., Doraiswamy, V., Bortnem, B. J., Fisher, K., Jablonka-Shariff, A., Grazul-Bilska, A. T., and Reynolds, L. P. (2001). Evidence for a role of capillary pericytes in vascular growth of the developing ovine corpus luteum. Biol. Reprod. 65, 879–889.
Evidence for a role of capillary pericytes in vascular growth of the developing ovine corpus luteum.CrossRef | 11514354PubMed | open url image1

Reynolds, L., and Redmer, D. (1999). Growth and development of the corpus luteum. J. Reprod. Fertil. Suppl. 54, 181–191.
| 10692854PubMed | open url image1

Robinson, R. S., Nicklin, L. T., Hammond, A. J., Schams, D., Hunter, M. G., and Mann, G. E. (2007). Fibroblast growth factor 2 is more dynamic than vascular endothelial growth factor A during the follicle–luteal transition in the cow. Biol. Reprod. 77, 28–36.
Fibroblast growth factor 2 is more dynamic than vascular endothelial growth factor A during the follicle–luteal transition in the cow.CrossRef | 17360962PubMed | open url image1

Robinson, R. S., Hammond, A. J., Mann, G. E., and Hunter, M. G. (2008). A novel physiological culture system that mimics luteal angiogenesis. Reproduction 135, 405–413.
A novel physiological culture system that mimics luteal angiogenesis.CrossRef | 18299434PubMed | open url image1

Robinson, R. S., Woad, K. J., Hammond, A. J., Laird, M., Hunter, M. G., and Mann, G. E. (2009). Angiogenesis and vascular function in the ovary. Reproduction 138, 869–881.
Angiogenesis and vascular function in the ovary.CrossRef | 19786399PubMed | open url image1

Schams, D., and Berisha, B. (2004). Regulation of corpus luteum function in cattle: an overview. Reprod. Domest. Anim. 39, 241–251.
Regulation of corpus luteum function in cattle: an overview.CrossRef | 15225277PubMed | open url image1

Schams, D., Kosmann, M., Berisha, B., Amselgruber, W. M., and Miyamoto, A. (2001). Stimulatory and synergistic effects of luteinising hormone and insulin like growth factor 1 on the secretion of vascular endothelial growth factor and progesterone of cultured bovine granulosa cells. Exp. Clin. Endocrinol. Diabetes 109, 155–162.
Stimulatory and synergistic effects of luteinising hormone and insulin like growth factor 1 on the secretion of vascular endothelial growth factor and progesterone of cultured bovine granulosa cells.CrossRef | 11409298PubMed | open url image1

Seghezzi, G., Patel, S., Ren, C. J., Gualandris, A., Pintucci, G., Robbins, E. S., Shapiro, R. L., Galloway, A. C., Rifkin, D. B., and Mignatti, P. (1998). Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J. Cell Biol. 141, 1659–1673.
Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis.CrossRef | 9647657PubMed | open url image1

Shirakihara, T., Horiguchi, K., Miyazawa, K., Ehata, S., Shibata, T., Morita, I., Miyazono, K., and Saitoh, M. (2011). TGF-beta regulates isoform switching of FGF receptors and epithelial–mesenchymal transition. EMBO J. 30, 783–795.
TGF-beta regulates isoform switching of FGF receptors and epithelial–mesenchymal transition.CrossRef | 21224849PubMed | open url image1

Spicer, L. J., and Stewart, R. E. (1996). Interactions among basic fibroblast growth factor, epidermal growth factor, insulin, and insulin-like growth factor-I (IGF-I) on cell numbers and steroidogenesis of bovine thecal cells: role of IGF-I receptors. Biol. Reprod. 54, 255–263.
Interactions among basic fibroblast growth factor, epidermal growth factor, insulin, and insulin-like growth factor-I (IGF-I) on cell numbers and steroidogenesis of bovine thecal cells: role of IGF-I receptors.CrossRef | 8838024PubMed | open url image1

Strawn, L. M., McMahon, G., App, H., Schreck, R., Kuchler, W. R., Longhi, M. P., Hui, T. H., Tang, C., Levitzki, A., Gazit, A., Chen, I., Keri, G., Orfi, L., Risau, W., Flamme, I., Ullrich, A., Hirth, K. P., and Shawver, L. K. (1996). Flk-1 as a target for tumor growth inhibition. Cancer Res. 56, 3540–3545.
| 8758924PubMed | open url image1

Sugino, N., Kashida, S., Takiguchi, S., Karube, A., and Kato, H. (2000). Expression of vascular endothelial growth factor and its receptors in the human corpus luteum during the menstrual cycle and in early pregnancy. J. Clin. Endocrinol. Metab. 85, 3919–3924.
Expression of vascular endothelial growth factor and its receptors in the human corpus luteum during the menstrual cycle and in early pregnancy.CrossRef | 11061557PubMed | open url image1

Sugiura, K., Su, Y. Q., Diaz, F. J., Pangas, S. A., Sharma, S., Wigglesworth, K., O’Brien, M. J., Matzuk, M. M., Shimasaki, S., and Eppig, J. J. (2007). Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 134, 2593–2603.
Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells.CrossRef | 17553902PubMed | open url image1

Vitorino, P., and Meyer, T. (2008). Modular control of endothelial sheet migration. Genes Dev. 22, 3268–3281.
Modular control of endothelial sheet migration.CrossRef | 19056882PubMed | open url image1

Wang, Y., Chang, J., Chen, K. D., Li, S., Li, J. Y., Wu, C., and Chien, S. (2007). Selective adapter recruitment and differential signaling networks by VEGF vs. shear stress. Proc. Natl Acad. Sci. USA 104, 8875–8879.
Selective adapter recruitment and differential signaling networks by VEGF vs. shear stress.CrossRef | 17496149PubMed | open url image1

Woad, K. J., Hammond, A. J., Hunter, M., Mann, G. E., Hunter, M. G., and Robinson, R. S. (2009). FGF2 is crucial for the development of bovine luteal endothelial networks in vitro. Reproduction 138, 581–588.
FGF2 is crucial for the development of bovine luteal endothelial networks in vitro.CrossRef | 19542253PubMed | open url image1

Woad, K. J., Hunter, M. G., Mann, G. E., Laird, M., Hammond, A. J., and Robinson, R. S. (2012). Fibroblast growth factor 2 is a key determinant of vascular sprouting during bovine luteal angiogenesis. Reproduction 143, 35–43.
Fibroblast growth factor 2 is a key determinant of vascular sprouting during bovine luteal angiogenesis.CrossRef | 21998077PubMed | open url image1

Yamashita, H., Kamada, D., Shirasuna, K., Matsui, M., Shimizu, T., Kida, K., Berisha, B., Schams, D., and Miyamoto, A. (2008). Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow. Mol. Reprod. Dev. 75, 1449–1456.
Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow.CrossRef | 18213648PubMed | open url image1

Zimmermann, R. C., Hartman, T., Bohlen, P., Sauer, M. V., and Kitajewski, J. (2001). Preovulatory treatment of mice with anti-VEGF receptor 2 antibody inhibits angiogenesis in corpora lutea. Microvasc. Res. 62, 15–25.
Preovulatory treatment of mice with anti-VEGF receptor 2 antibody inhibits angiogenesis in corpora lutea.CrossRef | 11421657PubMed | open url image1



Supplementary MaterialSupplementary Material (85 KB) Export Citation