Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Differential gene-expression profiles from canine cumulus cells of ovulated versus in vitro-matured oocytes

Su-Jin Cho A B E , Kyeong-Lim Lee A , Yu-Gon Kim A , Dong-Hoon Kim C , Jae-Gyu Yoo D , Byoung-Chul Yang C , Jin-Ki Park C and Il-Keun Kong A B F

A Department of Animal Science, Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Gyeongsangnam-Do, Republic of Korea.

B Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Gyeongsangnam-Do, Republic of Korea.

C Animal Biotechnology Division, National Institute of Animal Science, Suwon 441-706, Gyeonggi-Do, Republic of Korea.

D Dairy Science Division, National Institute of Animal Science, Cheonan 331-801, Chungcheongnam-Do, Republic of Korea.

E Present address: Department of Infertility Institute Clinical Laboratory, Saewha Hospital, Busan 607-843, Republic of Korea.

F Corresponding author. Email: ikong7900@gmail.com

Reproduction, Fertility and Development 28(3) 278-285 http://dx.doi.org/10.1071/RD14086
Submitted: 10 March 2014  Accepted: 18 May 2014   Published: 9 July 2014

Abstract

We compared the nuclear maturation status and gene-expression profiles of canine cumulus cells (CCs) derived from cumulus–oocyte complexes (COCs) that were spontaneously ovulated versus those that were matured in vitro. Cumulus–oocyte complexes were retrieved from uteri by surgical flushing (after spontaneous ovulation) or by ovariectomy follicle aspiration and in vitro maturation. The objective of Experiment 1 was to investigate the nuclear maturation status of in vivo- versus in vitro-matured oocytes. The objective of Experiment 2 was to compare gene-expression profiles of CCs derived from in vivo- versus in vitro-matured COCs. Genes analysed are related to cell maturation, development and apoptosis, including GDF9, MAPK1, PTX3, CX43, Bcl2 and BAX; mRNA expression for all of these genes, except for GDF9, differed (P < 0.05) between in vivo- and in vitro-matured CCs. In conclusion, we found that gene-expression profiles are related to the quality of CCs and therefore posit that monitoring gene expression could be a useful strategy to guide attempts to improve in vitro culture systems.

Additional keywords: development, dog, in vitro maturation, oogenesis, reproduction.


References

Adhikari, D., Liu, K., and Shen, Y. (2012). Cdk1 drives meiosis and mitosis through two different mechanisms. Cell Cycle 11, 2763–2764.
Cdk1 drives meiosis and mitosis through two different mechanisms.CrossRef | 1:CAS:528:DC%2BC38XhtlWgtL7N&md5=3a500512bd47ce4bbc76131e44af926fCAS | 22801537PubMed | open url image1

Adriaenssens, T., Segers, I., Wathlet, S., and Smitz, J. (2011). The cumulus cell gene-expression profile of oocytes with different nuclear maturity and potential for blastocyst formation. J. Assist. Reprod. Genet. 28, 31–40.
The cumulus cell gene-expression profile of oocytes with different nuclear maturity and potential for blastocyst formation.CrossRef | 20859762PubMed | open url image1

Albertini, D. F., Combelles, C. M., Benecchi, E., and Carabatsos, M. J. (2001). Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 121, 647–653.
Cellular basis for paracrine regulation of ovarian follicle development.CrossRef | 1:CAS:528:DC%2BD3MXktVaisbY%3D&md5=7569099776287372934728c14c3cdb09CAS | 11427152PubMed | open url image1

Apparicio, M., Alves, A. E., Pires-Butler, E. A., Ribeiro, A. P., Covizzi, G. J., and Vicente, W. R. (2011). Effects of hormonal supplementation on nuclear maturation and cortical granule distribution of canine oocytes during various reproductive stages. Reprod. Domest. Anim. 46, 896–903.
Effects of hormonal supplementation on nuclear maturation and cortical granule distribution of canine oocytes during various reproductive stages.CrossRef | 1:CAS:528:DC%2BC3MXhtlemtrrE&md5=44874d77e84a3c0085d1c7b6200fb209CAS | 21352384PubMed | open url image1

Assou, S., Anahory, T., Pantesco, V., Le Carrour, T., Pellestor, F., Klein, B., Reyftmann, L., Dechaud, H., De Vos, J., and Hamamah, S. (2006). The human cumulus–oocyte complex gene-expression profile. Hum. Reprod. 21, 1705–1719.
The human cumulus–oocyte complex gene-expression profile.CrossRef | 1:CAS:528:DC%2BD28Xms1Ont7s%3D&md5=e28bd806130527e3e68de9ffb5f2ec23CAS | 16571642PubMed | open url image1

Bukowska, D., Kempisty, B., Piotrowska, H., Zawierucha, P., Brussow, K. P., Jaskowski, J. M., and Nowicki, M. (2012). The in vitro culture supplements and selected aspects of canine oocytes maturation. Pol. J. Vet. Sci. 15, 199–205.
The in vitro culture supplements and selected aspects of canine oocytes maturation.CrossRef | 1:CAS:528:DC%2BC38XpvVSnsr8%3D&md5=4fd2126a4d3eb5f9c5621883d79d5144CAS | 22708378PubMed | open url image1

Conti, M. (2002). Specificity of the cyclic adenosine 3′,5′-monophosphate signal in granulosa cell function. Biol. Reprod. 67, 1653–1661.
Specificity of the cyclic adenosine 3′,5′-monophosphate signal in granulosa cell function.CrossRef | 1:CAS:528:DC%2BD38XptVelsrc%3D&md5=48ca6d575817fd7da8f0dcf715d4fdf7CAS | 12444038PubMed | open url image1

D’Alessandris, C., Canipari, R., Di Giacomo, M., Epifano, O., Camaioni, A., Siracusa, G., and Salustri, A. (2001). Control of mouse cumulus cell–oocyte complex integrity before and after ovulation: plasminogen activator synthesis and matrix degradation. Endocrinology 142, 3033–3040.
Control of mouse cumulus cell–oocyte complex integrity before and after ovulation: plasminogen activator synthesis and matrix degradation.CrossRef | 1:CAS:528:DC%2BD3MXksleltro%3D&md5=e4a425533f92091346261233e1a7c2ecCAS | 11416025PubMed | open url image1

Deb, G. K., Dey, S. R., Bang, J. I., Cho, S. J., Park, H. C., Lee, J. G., and Kong, I. K. (2011). 9-Cis retinoic acid improves developmental competence and embryo quality during in vitro maturation of bovine oocytes through the inhibition of oocyte tumour necrosis factor-alpha gene expression. J. Anim. Sci. 89, 2759–2767.
9-Cis retinoic acid improves developmental competence and embryo quality during in vitro maturation of bovine oocytes through the inhibition of oocyte tumour necrosis factor-alpha gene expression.CrossRef | 1:CAS:528:DC%2BC3MXhtFWqtrjE&md5=a08fa2ef190535cb31da3471e3709f2fCAS | 21478451PubMed | open url image1

De los Reyes, M., Palomino, J., Parraguez, V. H., Hidalgo, M., and Saffie, P. (2011). Mitochondrial distribution and meiotic progression in canine oocytes during in vivo and in vitro maturation. Theriogenology 75, 346–353.
Mitochondrial distribution and meiotic progression in canine oocytes during in vivo and in vitro maturation.CrossRef | 1:STN:280:DC%2BC3M%2FlsFeisw%3D%3D&md5=53c333a7573a3b79cff72a47892d53ceCAS | 21074834PubMed | open url image1

De los Reyes, M., Palomino, J., Jofré, S., Villarroel, A., and Moreno, R. (2012). Golgi apparatus and endoplasmic reticulum dynamic during meiotic development in canine oocytes. Reprod. Domest. Anim. 47, 93–97.
Golgi apparatus and endoplasmic reticulum dynamic during meiotic development in canine oocytes.CrossRef | 23279474PubMed | open url image1

De los Reyes, M., Rojas, C., Parraguez, V. H., and Palomino, J. (2013). Expression of growth differentiation factor 9 (GDF-9) during in vitro maturation in canine oocytes. Theriogenology 80, 587–596.
Expression of growth differentiation factor 9 (GDF-9) during in vitro maturation in canine oocytes.CrossRef | 1:CAS:528:DC%2BC3sXhtV2rtrzL&md5=558d357544459727c1ec81bed3a02e63CAS | 23849650PubMed | open url image1

Dragovic, R. A., Ritter, L. J., Schulz, S. J., Amato, F., Armstrong, D. T., and Gilchrist, R. B. (2005). Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology 146, 2798–2806.
Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion.CrossRef | 1:CAS:528:DC%2BD2MXkslehsrg%3D&md5=7e2d4bc68290e5a21f973a0bf3db1643CAS | 15761035PubMed | open url image1

Edry, I., Sela-Abramovich, S., and Dekel, N. (2006). Meiotic arrest of oocytes depends on cell-to-cell communication in the ovarian follicle. Mol. Cell. Endocrinol. 252, 102–106.
Meiotic arrest of oocytes depends on cell-to-cell communication in the ovarian follicle.CrossRef | 1:CAS:528:DC%2BD28Xmtlajs7c%3D&md5=7fb6289df89a7096eb442005b50fc2b6CAS | 16647194PubMed | open url image1

Edwards, R. G. (1965). Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature 208, 349–351.
Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes.CrossRef | 1:STN:280:DyaF287lsVagsg%3D%3D&md5=c5204ba8baa74de5f5e682beac2e079dCAS | 4957259PubMed | open url image1

Elvin, J. A., Clark, A. T., Wang, P., Wolfman, N. M., and Matzuk, M. M. (1999). Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol. Endocrinol. 13, 1035–1048.
Paracrine actions of growth differentiation factor-9 in the mammalian ovary.CrossRef | 1:CAS:528:DyaK1MXjs1yns7c%3D&md5=5a5888f9786f0d703e4e420eff0139c8CAS | 10379900PubMed | open url image1

Eppig, J. J., Schultz, R. M., O’Brien, M., and Chesnel, F. (1994). Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev. Biol. 164, 1–9.
Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes.CrossRef | 1:STN:280:DyaK2c3pvFSjtA%3D%3D&md5=e8ac826ca4b55d302b6f02b49714d9daCAS | 8026614PubMed | open url image1

Fauser, B. C., Diedrich, K., Bouchard, P., Dominguez, F., Matzuk, M., Franks, S., Hamamah, S., Simon, C., Devroey, P., Ezcurra, D., and Howles, C. M. (2011). Contemporary genetic technologies and female reproduction. Evian Annual Reproduction (EVAR) Workshop Group 2010 Hum. Reprod. Update 17, 829–847.
| 1:STN:280:DC%2BC3MbpvFantQ%3D%3D&md5=12ee2a8f4ec446db63e80e3441f75595CAS | 21896560PubMed | open url image1

Feuerstein, P., Cadoret, V., Dalbies-Tran, R., Guerif, F., Bidault, R., and Royere, D. (2007). Gene expression in human cumulus cells: one approach to oocyte competence. Hum. Reprod. 22, 3069–3077.
Gene expression in human cumulus cells: one approach to oocyte competence.CrossRef | 1:CAS:528:DC%2BD2sXhtlKltLjP&md5=8bcb7a8d059f4d7d63ae3130604f9a6bCAS | 17951581PubMed | open url image1

Gershon, E., Plaks, V., and Dekel, N. (2008). Gap junctions in the ovary: expression, localisation and function. Mol. Cell. Endocrinol. 282, 18–25.
Gap junctions in the ovary: expression, localisation and function.CrossRef | 1:CAS:528:DC%2BD1cXitVegt7s%3D&md5=c23097b092f68584ba6edfa6c215adc0CAS | 18162286PubMed | open url image1

Gilchrist, R. B. (2011). Recent insights into oocyte–follicle cell interactions provide opportunities for the development of new approaches to in vitro maturation. Reprod. Fertil. Dev. 23, 23–31.
Recent insights into oocyte–follicle cell interactions provide opportunities for the development of new approaches to in vitro maturation.CrossRef | 21366977PubMed | open url image1

Gilchrist, R. B., Ritter, L. J., and Armstrong, D. T. (2004). Oocyte–somatic cell interactions during follicle development in mammals. Anim. Reprod. Sci. 82-83, 431–446.
Oocyte–somatic cell interactions during follicle development in mammals.CrossRef | 1:CAS:528:DC%2BD2cXmtVCitLo%3D&md5=6f6e01045ad5886adc2a184a56efe961CAS | 15271471PubMed | open url image1

Gilchrist, R. B., Ritter, L. J., Myllymaa, S., Kaivo-Oja, N., Dragovic, R. A., Hickey, T. E., Ritvos, O., and Mottershead, D. G. (2006). Molecular basis of oocyte paracrine signalling that promotes granulosa cell proliferation. J. Cell Sci. 119, 3811–3821.
Molecular basis of oocyte paracrine signalling that promotes granulosa cell proliferation.CrossRef | 1:CAS:528:DC%2BD28XhtFCgt7vJ&md5=272b839e363e70365d4469d6391993b1CAS | 16926195PubMed | open url image1

Gilchrist, R. B., Lane, M., and Thompson, J. G. (2008). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 14, 159–177.
Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality.CrossRef | 1:CAS:528:DC%2BD1cXisVKmurY%3D&md5=135f5950fb7808b3facf089971dfc6a0CAS | 18175787PubMed | open url image1

Gittens, J. E., and Kidder, G. M. (2005). Differential contributions of connexin37 and connexin43 to oogenesis revealed in chimeric reaggregated mouse ovaries. J. Cell Sci. 118, 5071–5078.
Differential contributions of connexin37 and connexin43 to oogenesis revealed in chimeric reaggregated mouse ovaries.CrossRef | 1:CAS:528:DC%2BD2MXht1ynsbbO&md5=f39626e0adb09b2e7022acf395e10cdfCAS | 16254245PubMed | open url image1

Hashimoto, O., Takagi, R., Yanuma, F., Doi, S., Shindo, J., Endo, H., Hasegawa, Y., and Shimasaki, S. (2012). Identification and characterisation of canine growth differentiation factor-9 and its splicing variant. Gene 499, 266–272.
Identification and characterisation of canine growth differentiation factor-9 and its splicing variant.CrossRef | 1:CAS:528:DC%2BC38XkvVGks7s%3D&md5=1d44eb712ef149c3b255e086f4ec265eCAS | 22446043PubMed | open url image1

Hussein, T. S., Thompson, J. G., and Gilchrist, R. B. (2006). Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296, 514–521.
Oocyte-secreted factors enhance oocyte developmental competence.CrossRef | 1:CAS:528:DC%2BD28XotV2gsb4%3D&md5=71838bf836e236436aa5479298c8d51dCAS | 16854407PubMed | open url image1

Ikeda, S., Imai, H., and Yamada, M. (2003). Apoptosis in cumulus cells during in vitro maturation of bovine cumulus-enclosed oocytes. Reproduction 125, 369–376.
Apoptosis in cumulus cells during in vitro maturation of bovine cumulus-enclosed oocytes.CrossRef | 1:CAS:528:DC%2BD3sXjtVWqtLk%3D&md5=756c31818b5f4e02821fa802bf275f19CAS | 12611600PubMed | open url image1

Jang, G., Kim, M. K., Oh, H. J., Hossein, M. S., Fibrianto, Y. H., Hong, S. G., Park, J. E., Kim, J. J., Kim, H. J., Kang, S. K., Kim, D. Y., and Lee, B. C. (2007). Birth of viable female dogs produced by somatic cell nuclear transfer. Theriogenology 67, 941–947.
Birth of viable female dogs produced by somatic cell nuclear transfer.CrossRef | 1:STN:280:DC%2BD2s7hsVKkuw%3D%3D&md5=476fcb7f8dbdbe6e56d7c57305e71f13CAS | 17169419PubMed | open url image1

Kaláb, P., Sršeň, V., Farstad, W., Krogenaes, A., Motlík, J., and Hafne, A.-L. (1997). MAP kinase activation and Raf-1 synthesis in blue fox oocytes is controlled by cumulus granulosa cells. Theriogenology 47, 400.
MAP kinase activation and Raf-1 synthesis in blue fox oocytes is controlled by cumulus granulosa cells.CrossRef | open url image1

Kempisty, B., Wozna, M., Piotrowska, H., Bukowska, D., Jackowska, M., Antosik, P., Jaskowski, J. M., and Brussow, K. P. (2012). The expression of genes encoding zona pellucida glycoproteins in canine cumulus–oocyte complexes cultured in vitro in media supplemented with progesterone and oestradiol. Theriogenology 77, 684–693.
The expression of genes encoding zona pellucida glycoproteins in canine cumulus–oocyte complexes cultured in vitro in media supplemented with progesterone and oestradiol.CrossRef | 1:CAS:528:DC%2BC38XptVarsA%3D%3D&md5=ad564c3ed69126d2a8fa78842d552367CAS | 22115812PubMed | open url image1

Kempisty, B., Ziółkowska, A., Piotrowska, H., Zawierucha, P., Antosik, P., Bukowska, D., Ciesiółka, S., Jaśkowski, J. M., Brüssow, K. P., Nowicki, M., and Zabel, M. (2013). Real-time proliferation of porcine cumulus cells is related to the protein levels and cellular distribution of Cdk4 and Cx43. Theriogenology 80, 411–420.
Real-time proliferation of porcine cumulus cells is related to the protein levels and cellular distribution of Cdk4 and Cx43.CrossRef | 1:CAS:528:DC%2BC3sXhtVKrt7rE&md5=633129b181ad57ce6a728467bcb9b7daCAS | 23827822PubMed | open url image1

Kim, M. K., Fibrianto, Y. H., Oh, H. J., Jang, G., Kim, H. J., Lee, K. S., Kang, S. K., Lee, B. C., and Hwang, W. S. (2005). Effects of oestradiol-17beta and progesterone supplementation on in vitro nuclear maturation of canine oocytes. Theriogenology 63, 1342–1353.
Effects of oestradiol-17beta and progesterone supplementation on in vitro nuclear maturation of canine oocytes.CrossRef | 1:CAS:528:DC%2BD2MXhslWntbY%3D&md5=76080bfbcd88b18cddf6bd2777a23dfeCAS | 15725442PubMed | open url image1

Lee, B. C., Kim, M. K., Jang, G., Oh, H. J., Yuda, F., Kim, H. J., Hossein, M. S., Kim, J. J., Kang, S. K., Schatten, G., and Hwang, W. S. (2005). Dogs cloned from adult somatic cells. Nature 436, 641.
Dogs cloned from adult somatic cells.CrossRef | 1:CAS:528:DC%2BD2MXmvFentLY%3D&md5=e109e37ddd0a2d0ebba51fb4e11db592CAS | 16079832PubMed | open url image1

Leon, P. M., Campos, V. F., Kaefer, C., Begnini, K. R., McBride, A. J., Dellagostin, O. A., Seixas, F. K., Deschamps, J. C., and Collares, T. (2013). Expression of apoptotic genes in immature and in vitro-matured equine oocytes and cumulus cells. Zygote 21, 279–285.
Expression of apoptotic genes in immature and in vitro-matured equine oocytes and cumulus cells.CrossRef | 1:CAS:528:DC%2BC3sXpvFeksLs%3D&md5=b061327a3e34af2d8cdc49bdf26a79bcCAS | 21933470PubMed | open url image1

Liang, S., Kang, J., Jin, H., Liu, X., Li, J., Li, S., Lu, Y., Wang, W., and Yin, X. J. (2012). The influence of 9-cis-retinoic acid on nuclear and cytoplasmic maturation and gene expression in canine oocytes during in vitro maturation. Theriogenology 77, 1198–1205.
The influence of 9-cis-retinoic acid on nuclear and cytoplasmic maturation and gene expression in canine oocytes during in vitro maturation.CrossRef | 1:CAS:528:DC%2BC38Xjs1alt7g%3D&md5=608063968445fce5824b9077f92d7c25CAS | 22225683PubMed | open url image1

Lopes, G., Alves, M. G., Carvalho, R. A., Luvoni, G. C., and Rocha, A. (2011). DNA fragmentation in canine oocytes after in vitro maturation in TCM-199 medium supplemented with different proteins. Theriogenology 76, 1304–1312.
DNA fragmentation in canine oocytes after in vitro maturation in TCM-199 medium supplemented with different proteins.CrossRef | 1:CAS:528:DC%2BC3MXhtF2htbfP&md5=99003857e33ea13be42e005bf145e2a2CAS | 21777970PubMed | open url image1

Otoi, T., Willingham, L., Shin, T., Kraemer, D. C., and Westhusin, M. (2002). Effects of oocyte culture density on meiotic competence of canine oocytes. Reproduction 124, 775–781.
Effects of oocyte culture density on meiotic competence of canine oocytes.CrossRef | 1:CAS:528:DC%2BD3sXntVWiug%3D%3D&md5=e008d1a72120f4b0a8d6892244313e15CAS | 12530915PubMed | open url image1

Otoi, T., Shin, T., Kraemer, D. C., and Westhusin, M. E. (2007). Role of cumulus cells on in vitro maturation of canine oocytes. Reprod. Domest. Anim. 42, 184–189.
Role of cumulus cells on in vitro maturation of canine oocytes.CrossRef | 1:STN:280:DC%2BD2s7kvF2qsA%3D%3D&md5=68f5250979054fa1fae1c5f2b011b0c5CAS | 17348976PubMed | open url image1

Ouandaogo, Z. G., Frydman, N., Hesters, L., Assou, S., Haouzi, D., Dechaud, H., Frydman, R., and Hamamah, S. (2012). Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation. Hum. Reprod. 27, 2438–2447.
Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation.CrossRef | 1:CAS:528:DC%2BC38XhtFantrfJ&md5=80ae9578da333a87a21f484f07cd6a83CAS | 22617121PubMed | open url image1

Phillips, D. M., and Dekel, N. (1991). Maturation of the rat cumulus–oocyte complex: structure and function. Mol. Reprod. Dev. 28, 297–306.
Maturation of the rat cumulus–oocyte complex: structure and function.CrossRef | 1:STN:280:DyaK3M7pslGjug%3D%3D&md5=53786484dd5089bd57eeef3c0e2dea36CAS | 2015090PubMed | open url image1

Reynaud, K., Fontbonne, A., Marseloo, N., Viaris de Lesegno, C., Saint-Dizier, M., and Chastant-Maillard, S. (2006). In vivo canine oocyte maturation, fertilisation and early embryogenesis: a review. Theriogenology 66, 1685–1693.
In vivo canine oocyte maturation, fertilisation and early embryogenesis: a review.CrossRef | 16490243PubMed | open url image1

Reynaud, K., Chebrout, M., Tanguy-Dezaux, C., de la Villeon, G., and Chastant-Maillard, S. (2012). Chromatin patterns of immature canine oocytes after in vitro maturation. Reprod. Domest. Anim. 47, 70–73.
Chromatin patterns of immature canine oocytes after in vitro maturation.CrossRef | 23279469PubMed | open url image1

Richards, J. S. (2005). Ovulation: new factors that prepare the oocyte for fertilisation. Mol. Cell. Endocrinol. 234, 75–79.
Ovulation: new factors that prepare the oocyte for fertilisation.CrossRef | 1:CAS:528:DC%2BD2MXjt1SqtLk%3D&md5=3f03c4e39b56dba127263de81e0084feCAS | 15836955PubMed | open url image1

Rodrigues, B. A., Rodrigues, C. A., Salviano, M. B., Willhelm, B. R., Collares, F. J., and Rodrigues, J. L. (2013). Similar patterns of embryo development in canine oocytes cultured in vitro at oxygen tensions of 5 and 20%. Theriogenology 79, 1224–1228.
Similar patterns of embryo development in canine oocytes cultured in vitro at oxygen tensions of 5 and 20%.CrossRef | 1:STN:280:DC%2BC3srjtlWntQ%3D%3D&md5=3f372ea1c2f80bfea5f8349aedf8248fCAS | 23566669PubMed | open url image1

Rouhollahi Varnosfaderani, Sh., Ostadhosseini, S., Hajian, M., Hosseini, S. M., Khashouei, E. A., Abbasi, H., Hosseinnia, P., and Nasr-Esfahani, M. H. (2013). Importance of the GDF9 signaling pathway on cumulus cell expansion and oocyte competency in sheep. Theriogenology 80, 470–478.
Importance of the GDF9 signaling pathway on cumulus cell expansion and oocyte competency in sheep.CrossRef | 1:CAS:528:DC%2BC3sXpt1Crsr8%3D&md5=8e900131ed725373ede7255b512489dfCAS | open url image1

Salavati, M., Ghafari, F., Zhang, T., and Fouladi-Nashta, A. A. (2013). Influence of caffeine pretreatment on biphasic in vitro maturation of dog oocytes. Theriogenology 80, 784–792.
Influence of caffeine pretreatment on biphasic in vitro maturation of dog oocytes.CrossRef | 1:CAS:528:DC%2BC3sXht1aqsbzK&md5=bdb33e795e66e2d506dd868c72a44daaCAS | 23921184PubMed | open url image1

Salhab, M., Dhorne-Pollet, S., Auclair, S., Guyader-Joly, C., Brisard, D., Dalbies-Tran, R., Dupont, J., Ponsart, C., Mermillod, P., and Uzbekova, S. (2013). In vitro maturation of oocytes alters gene expression and signalling pathways in bovine cumulus cells. Mol. Reprod. Dev. 80, 166–182.
In vitro maturation of oocytes alters gene expression and signalling pathways in bovine cumulus cells.CrossRef | 1:CAS:528:DC%2BC3sXhs1eqs70%3D&md5=50aa2feb716350d7e7a72f23dcae4dd3CAS | 23280668PubMed | open url image1

Sasseville, M., Gagnon, M. C., Guillemette, C., Sullivan, R., Gilchrist, R. B., and Richard, F. J. (2009). Regulation of gap junctions in porcine cumulus–oocyte complexes: contributions of granulosa cell contact, gonadotrophins and lipid rafts. Mol. Endocrinol. 23, 700–710.
Regulation of gap junctions in porcine cumulus–oocyte complexes: contributions of granulosa cell contact, gonadotrophins and lipid rafts.CrossRef | 1:CAS:528:DC%2BD1MXlsFCgtrk%3D&md5=4f4ad080b10a5c0855c2efca86842bb4CAS | 19228792PubMed | open url image1

Song, H. J., Kang, E. J., Maeng, G. H., Ock, S. A., Lee, S. L., Yoo, J. G., Jeon, B. G., and Rho, G. J. (2011). Influence of epidermal growth factor supplementation during in vitro maturation on nuclear status and gene expression of canine oocytes. Res. Vet. Sci. 91, 439–445.
Influence of epidermal growth factor supplementation during in vitro maturation on nuclear status and gene expression of canine oocytes.CrossRef | 1:CAS:528:DC%2BC3MXhsVahtbjJ&md5=9fe7fa44e737f80542b18eed693f58faCAS | 20888022PubMed | open url image1

Songsasen, N., and Wildt, D. E. (2007). Oocyte biology and challenges in developing in vitro maturation systems in the domestic dog. Anim. Reprod. Sci. 98, 2–22.
Oocyte biology and challenges in developing in vitro maturation systems in the domestic dog.CrossRef | 1:CAS:528:DC%2BD2sXhs1Slu7Y%3D&md5=f45deea8f1356f1ed88caf84537af61cCAS | 17097840PubMed | open url image1

Su, Y. Q., Wigglesworth, K., Pendola, F. L., O’Brien, M. J., and Eppig, J. J. (2002). Mitogen-activated protein kinase (MAPK) activity in cumulus cells is essential for gonadotrophin-induced oocyte meiotic resumption and cumulus expansion in the mouse. Endocrinology 143, 2221–2232.
Mitogen-activated protein kinase (MAPK) activity in cumulus cells is essential for gonadotrophin-induced oocyte meiotic resumption and cumulus expansion in the mouse.CrossRef | 1:CAS:528:DC%2BD38XjvFKjtLY%3D&md5=220c002a7cf26558ed1edae78aecbce5CAS | 12021186PubMed | open url image1

Su, Y. Q., Denegre, J. M., Wigglesworth, K., Pendola, F. L., O’Brien, M. J., and Eppig, J. J. (2003). Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte–cumulus cell complex. Dev. Biol. 263, 126–138.
Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte–cumulus cell complex.CrossRef | 1:CAS:528:DC%2BD3sXot1Gksrs%3D&md5=73339e4e8bb552a32cfbb0767c753adcCAS | 14568551PubMed | open url image1

Sugiura, K., and Eppig, J. J. (2005). Control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes. Society for Reproductive Biology Founders’ Lecture 2005. Reprod. Fertil. Dev. 17, 667–674.
Control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes. Society for Reproductive Biology Founders’ Lecture 2005.CrossRef | 1:CAS:528:DC%2BD2MXhtFKkt7%2FK&md5=4d404b0559097ead51e967498e9b340eCAS | 16364219PubMed | open url image1

Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M., and de Kruif, A. (2002). Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation and fertilisation. Mol. Reprod. Dev. 61, 414–424.
Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation and fertilisation.CrossRef | 1:CAS:528:DC%2BD38XhsFCgtbk%3D&md5=95ae34ea2eaaaf29fff9fc7ea6ecb992CAS | 11835587PubMed | open url image1

Teilmann, S. C. (2005). Differential expression and localisation of connexin-37 and connexin-43 in follicles of different stages in the 4-week-old mouse ovary. Mol. Cell. Endocrinol. 234, 27–35.
Differential expression and localisation of connexin-37 and connexin-43 in follicles of different stages in the 4-week-old mouse ovary.CrossRef | 1:CAS:528:DC%2BD2MXjt1SqtLw%3D&md5=5b5d39583f69f4e144f780849a5df1e9CAS | 15836950PubMed | open url image1

Tsutsui, T. (1989). Gamete physiology and timing of ovulation and fertilisation in dogs. J. Reprod. Fertil. Suppl. 39, 269–275.
| 1:STN:280:DyaK3c7ls1agsw%3D%3D&md5=266d2e42890ae0b61a61e2b3cebf008bCAS | 2621728PubMed | open url image1

Turathum, B., Saikhun, K., Sangsuwan, P., and Kitiyanant, Y. (2010). Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes. Reprod. Biol. Endocrinol. 8, 70–78.
| 20565987PubMed | open url image1

Vitt, U. A., McGee, E. A., Hayashi, M., and Hsueh, A. J. (2000). In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats. Endocrinology 141, 3814–3820.
| 1:CAS:528:DC%2BD3cXmvVGmtr8%3D&md5=1cd8ac32299af4ccbd6ae0a850bfb7d7CAS | 11014238PubMed | open url image1

Wert, S. E., and Larsen, W. J. (1990). Pre-endocytotic alterations in cumulus cell gap junctions precede meiotic resumption in the rat cumulus–oocyte complex. Tissue Cell 22, 827–851.
Pre-endocytotic alterations in cumulus cell gap junctions precede meiotic resumption in the rat cumulus–oocyte complex.CrossRef | 1:STN:280:DyaK3M3itVehtQ%3D%3D&md5=f3f8d5fcb96b7dd92659f29b6c8e6345CAS | 2128665PubMed | open url image1

Yuan, Y. Q., Van Soom, A., Leroy, J. L., Dewulf, J., Van Zeveren, A., de Kruif, A., and Peelman, L. J. (2005). Apoptosis in cumulus cells, but not in oocytes, may influence bovine embryonic developmental competence. Theriogenology 63, 2147–2163.
Apoptosis in cumulus cells, but not in oocytes, may influence bovine embryonic developmental competence.CrossRef | 1:CAS:528:DC%2BD2MXjtFyrtb8%3D&md5=7c40ac413f5ce3e90923926a535ba97eCAS | 15826680PubMed | open url image1

Zhang, M., Ouyang, H., and Xia, G. (2009). The signal pathway of gonadotrophin-induced mammalian oocyte meiotic resumption. Mol. Hum. Reprod. 15, 399–409.
The signal pathway of gonadotrophin-induced mammalian oocyte meiotic resumption.CrossRef | 19443606PubMed | open url image1



Supplementary MaterialSupplementary Material 26.8 KB Export Citation