Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells

Fernando Campos-Chillon A , Todd A. Farmerie B , Gerrit J. Bouma C , Colin M. Clay C and Elaine M. Carnevale C D
+ Author Affiliations
- Author Affiliations

A California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA.

B Washington State University, PO Box 647520, Pullman, WA 99164, USA.

C Colorado State University, 1693 Campus Delivery, Fort Collins, CO 80523, USA.

D Corresponding author. Email: emc@colostate.edu

Reproduction, Fertility and Development 27(6) 925-933 https://doi.org/10.1071/RD14472
Submitted: 26 November 2014  Accepted: 18 February 2015   Published: 19 March 2015

Abstract

We hypothesised that advanced mare age is associated with follicle and oocyte gene alterations. The aims of the study were to examine quantitative and temporal differences in mRNA for LH receptor (LHR), amphiregulin (AREG) and epiregulin (EREG) in granulosa cells, phosphodiesterase (PDE) 4D in cumulus cells and PDE3A, G-protein-coupled receptor 3 (GPR3), growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and mitochondrial (mt) DNA in oocytes. Samples were collected from dominant follicles of Young (3–12 years) and Old (≥20 years) mares at 0, 6, 9 and 12 h after administration of equine recombinant LH. LHR mRNA declined after 0 h in Young mares, with no time effect in Old mares. For both ages, gene expression of AREG was elevated at 6 and 9 h and EREG was expression was elevated at 9 h, with higher expression in Old than Young mares. Cumulus cell PDE4D expression increased by 6 h (Old) and 12 h (Young). Oocyte GPR3 expression peaked at 9 and 12 h in Young and Old mares, respectively. Expression of PDE3A increased at 6 h, with the increase greater in oocytes from Old than Young mares at 6 and 9 h. Mean GDF9 and BMP15 transcripts were higher in Young than Old, with a peak at 6 h. Copy numbers of mtDNA did not vary over time in oocytes from Young mares, but a temporal decrease was observed in oocytes from Old mares. The results support an age-associated asynchrony in the expression of genes that are essential for follicular and oocyte maturation before ovulation.

Additional keywords: AREG, BMP15, EREG, follicular aspiration, GDF9, GPR3, PDE3A, PDE4D.


References

Altermatt, J. L., Suh, T. K., Stokes, J. E., and Carnevale, E. M. (2009). Effects of age and equine follicle-stimulating hormone (eFSH) on collection and viability of equine oocytes assessed by morphology and developmental competency after intracytoplasmic sperm injection (ICSI). Reprod. Fertil. Dev. 21, 615–623.
Effects of age and equine follicle-stimulating hormone (eFSH) on collection and viability of equine oocytes assessed by morphology and developmental competency after intracytoplasmic sperm injection (ICSI).CrossRef | 1:CAS:528:DC%2BD1MXksF2rtbc%3D&md5=21ee49d7434170275d715474414153b4CAS | 19383268PubMed |

American College of Obstetricians and Gynecologists Committee on Gynecologic Practice and Practice Committee (2014). Female age-related fertility decline. Committee Opinion No. 589. Fertil. Steril. 101, 633–634.
Female age-related fertility decline. Committee Opinion No. 589.CrossRef | 24559617PubMed |

Ascoli, M., Fanelli, F., and Segaloff, D. L. (2002). The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr. Rev. 23, 141–174.
The lutropin/choriogonadotropin receptor, a 2002 perspective.CrossRef | 1:CAS:528:DC%2BD38XjsFWjtr4%3D&md5=fa25dba1bd344b17888b6f1e6e59c333CAS | 11943741PubMed |

Ashkenazi, H., Cao, X., Motola, S., Popliker, M., Conti, M., and Tsafriri, A. (2005). Epidermal growth factor family members: endogenous mediators of the ovulatory response. Endocrinology 146, 77–84.
Epidermal growth factor family members: endogenous mediators of the ovulatory response.CrossRef | 1:CAS:528:DC%2BD2cXhtFGmt7jP&md5=7d58c338080346e44e34017a665f547aCAS | 15459120PubMed |

Beg, M. A., and Ginther, O. J. (2006). Follicle selection in cattle and horses: role of intrafollicular factors. Reproduction 132, 365–377.
Follicle selection in cattle and horses: role of intrafollicular factors.CrossRef | 1:CAS:528:DC%2BD28XhtFCgt77F&md5=485347c17ca5bb51263f3ca4e39eae6dCAS | 16940278PubMed |

Bezard, J., Magistrini, M., Duchamp, G., and Palmer, E. (1989). Chronology of equine fertilisation and embryonic development in vivo and in vitro. Equine Vet. J. 8, 105–110.
Chronology of equine fertilisation and embryonic development in vivo and in vitro.CrossRef |

Bunel, A., Nivet, A. L., Blondin, P., Vigneault, C., Richard, F. J., and Sirard, M. A. (2014). Cumulus cell gene expression associated with pre-ovulatory acquisition of developmental competence in bovine oocytes. Reprod. Fertil. Dev. 26, 855–865.
Cumulus cell gene expression associated with pre-ovulatory acquisition of developmental competence in bovine oocytes.CrossRef | 1:CAS:528:DC%2BC2cXhtFynsbjO&md5=51d2fefda6a5ae393dab719e637c7072CAS | 23827322PubMed |

Carabatsos, M. J., Sellitto, C., Goodenough, D. A., and Albertini, D. F. (2000). Oocyte–granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev. Biol. 226, 167–179.
Oocyte–granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence.CrossRef | 1:CAS:528:DC%2BD3cXntFSjtrY%3D&md5=6ce5f614a887dcb63266f5b4a9fd8f21CAS | 11023678PubMed |

Carnevale, E. M. (2008). The mare model for follicular maturation and reproductive aging in the woman. Theriogenology 69, 23–30.
The mare model for follicular maturation and reproductive aging in the woman.CrossRef | 1:CAS:528:DC%2BD2sXhsVSmu7nN&md5=b1d730b243c0636c9f9498a2aecbc1f0CAS | 17976712PubMed |

Carnevale, E. M., and Ginther, O. J. (1995). Defective oocytes as a cause of subfertility in old mares. In: ‘Equine Reproduction VI’. (Eds D. C. Sharp and F. W. Bazer.) pp. 209–214. (Society for the Study of Reproduction: Madison, WI.)

Carnevale, E. M., Bergfelt, D. R., and Ginther, O. J. (1993a). Aging effects on follicular activity and concentrations of FSH, LH, and progesterone in mares. Anim. Reprod. Sci. 31, 287–299.
Aging effects on follicular activity and concentrations of FSH, LH, and progesterone in mares.CrossRef | 1:CAS:528:DyaK3sXltV2nsb0%3D&md5=447aae172b61b197d75fb8805cae2dfaCAS |

Carnevale, E. M., Griffin, P. G., and Ginther, O. J. (1993b). Age-associated subfertility before entry of embryos into the uterus in mares. Equine Vet. J. Suppl. 25, 31–35.
Age-associated subfertility before entry of embryos into the uterus in mares.CrossRef |

Carnevale, E. M., Maclellan, L. J., Coutinho da Silva, M. A., Scott, T. J., and Squires, E. L. (2000). Comparison of culture and insemination techniques for equine oocyte transfer. Theriogenology 54, 981–987.
Comparison of culture and insemination techniques for equine oocyte transfer.CrossRef | 1:STN:280:DC%2BD3M%2Fot1Cisw%3D%3D&md5=88d00f25912447b6f17486cab9450e8cCAS | 11097049PubMed |

Conti, M., Andersen, C. B., Richard, F., Mehats, C., Chun, S. Y., Horner, K., Jin, C., and Tsafriri, A. (2002). Role of cyclic nucleotide signaling in oocyte maturation. Mol. Cell. Endocrinol. 187, 153–159.
Role of cyclic nucleotide signaling in oocyte maturation.CrossRef | 1:CAS:528:DC%2BD38Xjt1Sqtro%3D&md5=11ddb99ed749ba5d29b0d1aa8823ce9fCAS | 11988323PubMed |

Conti, M., Hsieh, M., Park, J. Y., and Su, Y. Q. (2006). Role of the epidermal growth factor network in ovarian follicles. Mol. Endocrinol. 20, 715–723.
Role of the epidermal growth factor network in ovarian follicles.CrossRef | 1:CAS:528:DC%2BD28Xkt1Oqu78%3D&md5=06e54b48b788fbdb26f0c72936d36585CAS | 16051667PubMed |

Cushman, R. A., Allan, M. F., Kuehn, L. A., Snelling, W. M., Cupp, A. S., and Freetly, H. C. (2009). Evaluation of antral follicle count and ovarian morphology in crossbred beef cows: investigation of influence of stage of the estrous cycle, age, and birth weight. J. Anim. Sci. 87, 1971–1980.
Evaluation of antral follicle count and ovarian morphology in crossbred beef cows: investigation of influence of stage of the estrous cycle, age, and birth weight.CrossRef | 1:CAS:528:DC%2BD1MXms1eju7w%3D&md5=2c69738c716c7123ea25c1fe00937e0eCAS | 19286826PubMed |

DiLuigi, A., Weitzman, V. N., Pace, M. C., Siano, L. J., Maier, D., and Mehlmann, L. M. (2008). Meiotic arrest in human oocytes is maintained by a G(s) signaling pathway. Biol. Reprod. 78, 667–672.
Meiotic arrest in human oocytes is maintained by a G(s) signaling pathway.CrossRef | 1:CAS:528:DC%2BD1cXjvVaiur8%3D&md5=ea51e1d2c466fc3dcf234997026c8d1dCAS | 18184921PubMed |

Donnison, M., and Pfeffer, P. L. (2004). Isolation of genes associated with developmentally competent bovine oocytes and quantitation of their levels during development. Biol. Reprod. 71, 1813–1821.
Isolation of genes associated with developmentally competent bovine oocytes and quantitation of their levels during development.CrossRef | 1:CAS:528:DC%2BD2cXhtVWgsr%2FL&md5=bc65b49d5abe93e684bd4c99dcf53565CAS | 15286031PubMed |

El Shourbagy, S. H., Spikings, E. C., Freitas, M., and St John, J. C. (2006). Mitochondria directly influence fertilisation outcome in the pig. Reproduction 131, 233–245.
Mitochondria directly influence fertilisation outcome in the pig.CrossRef | 1:CAS:528:DC%2BD28XisFalsL4%3D&md5=81e347d8550baa8858c909052e562a0dCAS | 16452717PubMed |

Han, S. J., Vaccari, S., Nedachi, T., Andersen, C. B., Kovacina, K. S., Roth, R. A., and Conti, M. (2006). Protein kinase B/Akt phosphorylation of PDE3A and its role in mammalian oocyte maturation. EMBO J. 25, 5716–5725.
Protein kinase B/Akt phosphorylation of PDE3A and its role in mammalian oocyte maturation.CrossRef | 1:CAS:528:DC%2BD28XhtlShsbzO&md5=98d991b44d424e5371aad6e886612c0aCAS | 17124499PubMed |

Hsieh, R. H., Au, H. K., Yeh, T. S., Chang, S. J., Cheng, Y. F., and Tzeng, C. R. (2004). Decreased expression of mitochondrial genes in human unfertilized oocytes and arrested embryos. Fertil. Steril. 81, 912–918.
Decreased expression of mitochondrial genes in human unfertilized oocytes and arrested embryos.CrossRef | 1:CAS:528:DC%2BD2MXitFGhsb8%3D&md5=5245c70bfce2d07fb11db6e1a614551dCAS | 15019829PubMed |

Hsieh, M., Lee, D., Panigone, S., Homer, K., Chen, R., Theologis, A., Lee, D. C., Threadgill, D. W., and Conti, M. (2007). Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol. Cell. Biol. 27, 1914–1924.
Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation.CrossRef | 1:CAS:528:DC%2BD2sXit1Wgu74%3D&md5=be93cc934352fca4b72bf486bd6342ddCAS | 17194751PubMed |

Hussein, T. S., Thompson, J. G., and Gilchrist, R. B. (2006). Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296, 514–521.
Oocyte-secreted factors enhance oocyte developmental competence.CrossRef | 1:CAS:528:DC%2BD28XotV2gsb4%3D&md5=00c769153fa81c05146e56febba70e9dCAS | 16854407PubMed |

Jablonka-Shariff, A., Roser, J. F., Bousfield, G. R., Michael, W. W., Sibley, L. E., Colgin, M., and Boime, I. (2007). Expression and bioactivity of a single chain recombinant equine luteinizing hormone (reLH). Theriogenology 67, 311–320.
Expression and bioactivity of a single chain recombinant equine luteinizing hormone (reLH).CrossRef | 1:CAS:528:DC%2BD28Xhtlars7rF&md5=891b48c636f24cfc5e35d0d992dbb470CAS | 17049590PubMed |

Jansen, R. P. S., and Burton, G. J. (2004). Mitochondrial dysfunction in reproduction. Mitochondrion 4, 577–600.
Mitochondrial dysfunction in reproduction.CrossRef | 1:CAS:528:DC%2BD2cXhtVCgs7nL&md5=6c0d80df249e567234fa46943a6eb5e7CAS |

Jin, S. L. C., Richard, F. J., Kuo, W. P., D’Ercole, A. J., and Conti, M. (1999). Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4D-deficient mice. Proc. Natl Acad. Sci. USA 96, 11 998–12 003.
Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4D-deficient mice.CrossRef | 1:CAS:528:DyaK1MXmvVGjsLY%3D&md5=e0f45a6459ada27c0c0a482a91fdad49CAS |

Juengel, J. L., and McNatty, K. P. (2005). The role of proteins of the transforming growth factor-β superfamily in the intraovarian regulation of follicular development. Hum. Reprod. Update 11, 144–161.
The role of proteins of the transforming growth factor-β superfamily in the intraovarian regulation of follicular development.CrossRef |

Ledent, C., Demeestere, I., Blum, D., Petermans, J., Hamalainen, T., Smits, G., and Vassart, G. (2005). Premature ovarian aging in mice deficient for Gpr3. Proc. Natl Acad. Sci. USA 102, 8922–8926.
Premature ovarian aging in mice deficient for Gpr3.CrossRef | 1:CAS:528:DC%2BD2MXlvF2qu78%3D&md5=967766b379cd5c6b4b241f760608f4b1CAS | 15956199PubMed |

Li, X., Qin, Y., Wilsher, S., and Allen, W. R. (2006). Centrosome changes during meiosis in horse oocytes and first embryonic cell cycle organization following parthenogenesis, fertilization and nuclear transfer. Reproduction 131, 661–667.
Centrosome changes during meiosis in horse oocytes and first embryonic cell cycle organization following parthenogenesis, fertilization and nuclear transfer.CrossRef | 1:CAS:528:DC%2BD28XltV2jtrw%3D&md5=89cc53f02cde381c0ca2dd5253877047CAS | 16595717PubMed |

Lindbloom, S. M., Farmerie, T. A., Clay, C. M., Seidel, G. E., and Carnevale, E. M. (2008). Potential involvement of EGF-like growth factors and phosphodiesterases in initiation of equine oocyte maturation. Anim. Reprod. Sci. 103, 187–192.
Potential involvement of EGF-like growth factors and phosphodiesterases in initiation of equine oocyte maturation.CrossRef | 1:CAS:528:DC%2BD2sXhtlWktb3L&md5=2a3e7d44535d42c669984780373c5e80CAS | 17507186PubMed |

Liu, X., Xie, F., Zamah, A. M., Cao, B., and Conti, M. (2014). Multiple pathways mediate luteinizing hormone regulation of cGMP signaling in the mouse ovarian follicle. Biol. Reprod. 91, 9.
Multiple pathways mediate luteinizing hormone regulation of cGMP signaling in the mouse ovarian follicle.CrossRef | 24740605PubMed |

Masciarelli, S., Horner, K., Liu, C. Y., Park, S. H., Hinckley, M., Hockman, S., Nedachi, T., Jin, C., Conti, M., and Manganiello, V. (2004). Cyclic nucleotide phosphodiesterase 3A-deficient mice as a model of female infertility. J. Clin. Invest. 114, 196–205.
Cyclic nucleotide phosphodiesterase 3A-deficient mice as a model of female infertility.CrossRef | 1:CAS:528:DC%2BD2cXlvFWmsLk%3D&md5=e274028cca39566a35c1076a82317b9fCAS | 15254586PubMed |

Mayes, M. A., and Sirard, M. A. (2002). Effect of type 3 and type 4 phosphodiesterase inhibitors on the maintenance of bovine oocytes in meiotic arrest. Biol. Reprod. 66, 180–184.
Effect of type 3 and type 4 phosphodiesterase inhibitors on the maintenance of bovine oocytes in meiotic arrest.CrossRef | 1:CAS:528:DC%2BD38Xht1yrsw%3D%3D&md5=11589bdcc85f3d7bd31615f4e41350fbCAS | 11751280PubMed |

McConnell, J. M. L., and Petrie, L. (2004). Mitochondrial DNA turnover occurs during preimplantation development and can be modulated by environmental factors. Reprod. Biomed. Online 9, 418–424.
Mitochondrial DNA turnover occurs during preimplantation development and can be modulated by environmental factors.CrossRef | 1:CAS:528:DC%2BD2cXptlKqsLk%3D&md5=3d95f9b5a7b39dee1924989d0268ac73CAS |

Mehlmann, L. M. (2005a). Oocyte-specific expression of Gpr3 is required for the maintenance of meiotic arrest in mouse oocytes. Dev. Biol. 288, 397–404.
Oocyte-specific expression of Gpr3 is required for the maintenance of meiotic arrest in mouse oocytes.CrossRef | 1:CAS:528:DC%2BD2MXhtlaitrvP&md5=6ec143388b36bc17a21cede0c72af253CAS | 16289135PubMed |

Mehlmann, L. M. (2005b). Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction 130, 791–799.
Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation.CrossRef | 1:CAS:528:DC%2BD28Xkt12nsg%3D%3D&md5=61121f4380f8ed09af6ae5eddb9e4d03CAS | 16322539PubMed |

Mehlmann, L. M., Saeki, Y., Tanaka, S., Brennan, T. J., Evsikov, A. V., Pendola, F. L., Knowles, B. B., Eppig, J. J., and Jaffe, L. A. (2004). The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes. Science 306, 1947–1950.
The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes.CrossRef | 1:CAS:528:DC%2BD2cXhtVCqtbvE&md5=f2286891d51c88ba9db6de62f7872610CAS | 15591206PubMed |

Menon, K. M., Munshi, U. M., Clouser, C. L., and Nair, A. K. (2004). Regulation of luteinizing hormone/human chorionic gonadotropin receptor expression: a perspective. Biol. Reprod. 70, 861–866.
Regulation of luteinizing hormone/human chorionic gonadotropin receptor expression: a perspective.CrossRef | 1:CAS:528:DC%2BD2cXis1SitLc%3D&md5=f9de641ceae60a2721421c0947940a11CAS | 14668203PubMed |

Nivet, A. L., Vigneault, C., Blondin, P., and Sirard, M. A. (2013). Changes in granulosa cells’ gene expression associated with increased oocyte competence in bovine. Reproduction 145, 555–565.
Changes in granulosa cells’ gene expression associated with increased oocyte competence in bovine.CrossRef | 1:CAS:528:DC%2BC3sXhtVWmsbnJ&md5=8a194321f5685bf0e66c802d68d56cb7CAS | 23564726PubMed |

Panigone, S., Hsieh, M., Fu, M., Persani, L., and Conti, M. (2008). LH signaling in preovulatory follicles involves early activation of the EGFR pathway. Mol. Endocrinol. 22, 924–936.
LH signaling in preovulatory follicles involves early activation of the EGFR pathway.CrossRef | 1:CAS:528:DC%2BD1cXkt1Cnsbs%3D&md5=03c7d3fbd1ae4836d5bcc0c8a31cacaeCAS | 18187604PubMed |

Park, J. Y., Richard, F., Chun, S. Y., Park, J. H., Law, E., Horner, K., Jin, S. L. C., and Conti, M. (2003). Phosphodiesterase regulation is critical for the differentiation and pattern of gene expression in granulosa cells of the ovarian follicle. Mol. Endocrinol. 17, 1117–1130.
Phosphodiesterase regulation is critical for the differentiation and pattern of gene expression in granulosa cells of the ovarian follicle.CrossRef | 1:CAS:528:DC%2BD3sXktlymtrs%3D&md5=ece8280dae4e31e5b85298885a8f72c3CAS | 12649328PubMed |

Park, J. Y., Su, Y. Q., Ariga, M., Law, E., Jin, S. L. C., and Conti, M. (2004). EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303, 682–684.
EGF-like growth factors as mediators of LH action in the ovulatory follicle.CrossRef | 1:CAS:528:DC%2BD2cXmvVKlsg%3D%3D&md5=5d954a7ad7a1fe0e2878c16ac4ee2563CAS | 14726596PubMed |

Rambags, B. P. B., van Boxtel, D. C. J., Tharasanit, T., Lenstra, J. A., Colenbrander, B., and Stout, T. A. E. (2006). Maturation in vitro leads to mitochondrial degeneration in oocytes recovered from aged but not young mares. Anim. Reprod. Sci. 94, 359–361.
Maturation in vitro leads to mitochondrial degeneration in oocytes recovered from aged but not young mares.CrossRef |

Rambags, B. P. B., van Boxtel, D. C. J., Tharasanit, T., Lenstra, J. A., Colenbrander, B., and Stout, T. A. E. (2014). Advancing maternal age predisposes to mitochondrial damage and loss during maturation of equine oocytes in vitro. Theriogenology 81, 959–965.
Advancing maternal age predisposes to mitochondrial damage and loss during maturation of equine oocytes in vitro.CrossRef | 1:CAS:528:DC%2BC2cXjsF2gurc%3D&md5=ad6e368a68b30907f0750967a230eb4dCAS |

Reader, K. L., Mottershead, D. G., Martin, G. A., Gilchrist, R. B., Heath, D. A., McNatty, K. P., and Juengel, J. L. (2014). Signalling pathways involved in the synergistic effects of human growth differentiation factor 9 and bone morphogenetic protein 15. Reprod. Fertil. Dev. , .
Signalling pathways involved in the synergistic effects of human growth differentiation factor 9 and bone morphogenetic protein 15.CrossRef | 25155366PubMed |

Reynier, P., May-Panloup, P., Chretien, M. F., Morgan, C. J., Jean, M., Savagner, F., Barriere, P., and Malthiery, Y. (2001). Mitochondrial DNA content affects the fertilizability of human oocytes. Mol. Hum. Reprod. 7, 425–429.
Mitochondrial DNA content affects the fertilizability of human oocytes.CrossRef | 1:CAS:528:DC%2BD3MXkt1CqsLg%3D&md5=0085b23718f670a2255c713cfb0e4dc4CAS | 11331664PubMed |

Richard, F. J., Tsafriri, A., and Conti, M. (2001). Role of phosphodiesterase type 3A in rat oocyte maturation. Biol. Reprod. 65, 1444–1451.
Role of phosphodiesterase type 3A in rat oocyte maturation.CrossRef | 1:CAS:528:DC%2BD3MXnvVers7w%3D&md5=d847447d2275c237c388d327df4b96cbCAS | 11673261PubMed |

Ridge, P. G., Maxwell, T. J., Foutz, S. J., Bailey, M. H., Corcoran, C. D., Tschanz, J. T., Norton, M. C., Munger, R. G., O’Brien, E., Kerber, R. A., Cawthon, R. M., and Kauwe, J. S. (2014). Mitochondrial genomic variation associated with higher mitochondrial copy number: the Cache County Study on Memory Health and Aging. BMC Bioinformatics 15, S6.
Mitochondrial genomic variation associated with higher mitochondrial copy number: the Cache County Study on Memory Health and Aging.CrossRef | 25077862PubMed |

Santos, T. A., El Shourbagy, S., and St John, J. C. (2006). Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil. Steril. 85, 584–591.
Mitochondrial content reflects oocyte variability and fertilization outcome.CrossRef | 1:CAS:528:DC%2BD28XjsVChsr0%3D&md5=44608f7ae2e3ffae80f03b8cd2a33e56CAS | 16500323PubMed |

Sayasith, K., Lussier, J., Dore, M., and Sirois, J. (2013). Human chorionic gonadotropin-dependent up-regulation of epiregulin and amphiregulin in equine and bovien follicles during the ovulatory process. Gen. Comp. Endocrinol. 180, 39–47.
Human chorionic gonadotropin-dependent up-regulation of epiregulin and amphiregulin in equine and bovien follicles during the ovulatory process.CrossRef | 1:CAS:528:DC%2BC38XhvV2rsbjM&md5=6b470b921bd1b77c92fe337631aa397aCAS | 23178756PubMed |

Sherman, G. B., Wolfe, M. W., Farmerie, T. A., Clay, C. M., Threadgill, D. S., Sharp, D. C., and Nilson, J. H. (1992). A single gene encodes the beta-subunits of equine luteinizing hormone and chorionic gonadotropin. Mol. Endocrinol. 6, 951–959.
| 1:CAS:528:DyaK3sXkt1Wlt78%3D&md5=e95cb2f0275728e99a6f97baa2605186CAS | 1379674PubMed |

Shimada, M., Hernandez-Gonzalez, I., Gonzalez-Robayna, I., and Richards, J. S. (2006). Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: key roles for prostaglandin synthase 2 and progesterone receptor. Mol. Endocrinol. 20, 1352–1365.
Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: key roles for prostaglandin synthase 2 and progesterone receptor.CrossRef | 1:CAS:528:DC%2BD28XltlSrsb8%3D&md5=ad79a247f77c76a270922ac73fba667dCAS | 16543407PubMed |

Shoubridge, E. A., and Wai, T. (2007). Mitochondrial DNA and the mammalian oocyte. Curr. Top. Dev. Biol. 77, 87–111.
Mitochondrial DNA and the mammalian oocyte.CrossRef | 1:CAS:528:DC%2BD2sXmt1Gltbo%3D&md5=121c7deb6e125bf1e015b31d783cab46CAS | 17222701PubMed |

Siddiqui, M. A., Gastal, E. L., Ju, J. C., Gastal, M. O., Beg, M. A., and Ginther, O. J. (2009). Nuclear configuration, spindle morphology and cytoskeletal organization of in vivo maturing horse oocytes. Reprod. Domest. Anim. 44, 435–440.
Nuclear configuration, spindle morphology and cytoskeletal organization of in vivo maturing horse oocytes.CrossRef | 1:STN:280:DC%2BD1MrisFWgsA%3D%3D&md5=55bed0afa48922001990e8dbb8b8a0f3CAS | 18992126PubMed |

Su, Y. Q., Sugiura, K., Wigglesworth, K., O’Brien, M. J., Affourtit, J. P., Pangas, S. A., Matzuk, M. M., and Eppig, J. J. (2008). Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 135, 111–121.
Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells.CrossRef | 1:CAS:528:DC%2BD1cXhslGmtLw%3D&md5=65193b8da0288818ca87dc566ac4a04bCAS | 18045843PubMed |

Sugiura, K., Su, Y. Q., Diaz, F. J., Pangas, S. A., Sharma, S., Wigglesworth, K., O’Brien, M. J., Matzuk, M. M., Shimasaki, S., and Eppig, J. J. (2007). Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 134, 2593–2603.
Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells.CrossRef | 1:CAS:528:DC%2BD2sXpsFeju7k%3D&md5=df54766b689a7f23fed934c7886c6656CAS | 17553902PubMed |

Sutovsky, P., Moreno, R. D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (2000). Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol. Reprod. 63, 582–590.
Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos.CrossRef | 1:CAS:528:DC%2BD3cXltl2gurw%3D&md5=340cbccfa16c7fe9092bf2e5d5abc5e9CAS | 10906068PubMed |

Swinnin, J. V., Jospeh, D. R., and Conti, M. (1989). The mRNA encoding a high-affinity cAMP phophodiesterase is regulated by hormones and cAMP. Proc. Natl. Acad. Sci. USA 86, 8197–8201.

Thundathil, J., Filion, F., and Smith, L. C. (2005). Molecular control of mitochondrial function in preimplantation mouse embryos. Mol. Reprod. Dev. 71, 405–413.
Molecular control of mitochondrial function in preimplantation mouse embryos.CrossRef | 1:CAS:528:DC%2BD2MXlvFSltLk%3D&md5=9a7b046ebc00c7c939ee51773ec88e58CAS | 15895466PubMed |

Tsafriri, A., Chun, S. Y., Zhang, R., Hsueh, A. J. W., and Conti, M. (1996). Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells: studies using selective phosphodiesterase inhibitors. Dev. Biol. 178, 393–402.
Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells: studies using selective phosphodiesterase inhibitors.CrossRef | 1:CAS:528:DyaK28XlvVCksr0%3D&md5=a290a08816c0869dda377fcd1255875fCAS | 8812137PubMed |

Wai, T., Asangla, A., Zhang, Z., Cyr, D., Dufort, D., and Shoubridge, E. A. (2010). The role of mitochondrial DNA copy nuber in mammalian fertility. Biol. Reprod. 83, 52–62.
The role of mitochondrial DNA copy nuber in mammalian fertility.CrossRef | 1:CAS:528:DC%2BC3cXotlWqtLo%3D&md5=46ce3598089e81edd1f349205c92f95eCAS | 20130269PubMed |

Wang, L. Y., Wang, D. H., Zou, X. Y., and Xu, C. M. (2009). Mitochondrial functions on oocytes and preimplantation embryos. J. Zhejiang Univ. Sci. B 10, 483–492.
Mitochondrial functions on oocytes and preimplantation embryos.CrossRef | 1:CAS:528:DC%2BD1MXotV2qtbo%3D&md5=25f23923fe2676d4a98906ce43e41c31CAS | 19585665PubMed |

Yan, C., Wang, P., DeMayo, J., DeMayo, F. J., Elvin, J. A., Carino, C., Prasad, S. V., Skinner, S. S., Dunbar, B. S., Dube, J. L., Celeste, A. J., and Matzuk, M. M. (2001). Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 15, 854–866.
Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function.CrossRef | 1:CAS:528:DC%2BD3MXjvFKjs7o%3D&md5=79174391908d5b54202aa63d2bf763dfCAS | 11376106PubMed |

Yeo, C. X., Gilchrist, R. B., Thompson, J. G., and Lane, M. (2008). Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice. Hum. Reprod. 23, 67–73.
Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice.CrossRef | 1:CAS:528:DC%2BD2sXhsVWgsbzF&md5=fee97cfb36229062f98153978300e40aCAS | 17933754PubMed |

Yoon, M. J., Bolme, I., Colgin, M., Niswender, K. D., King, S. S., Alvarenga, M., Jablonka-Shariff, A., Pearl, C. A., and Roser, J. F. (2007). The efficacy of a single chain recombinant equine luteinizing hormone (reLH) in mares: Induction of ovulation, hormone profiles, and inter-ovulatory intervals. Domest. Anim. Endocrinol. 33, 470–479.
The efficacy of a single chain recombinant equine luteinizing hormone (reLH) in mares: Induction of ovulation, hormone profiles, and inter-ovulatory intervals.CrossRef | 1:CAS:528:DC%2BD2sXhtFenu7rO&md5=ec42c7c343221fc30977cbd773a4b72aCAS | 17658237PubMed |



Rent Article (via Deepdyve) Export Citation Cited By (3)