Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Successful chimera production in the Hungarian goose (Anser anser domestica) by intracardiac injection of blastodermal cells in 3-day-old embryos

Nikoletta Sztán A , Bence Lázár A B , Nóra Bodzsár A , Barbara Végi A , Krisztina Liptói A , Bertrand Pain C and Eszter Patakiné Várkonyi A D
+ Author Affiliations
- Author Affiliations

A Research Centre for Farm Animal Gene Conservation, Isaszegi Street 200, Gödöllő, H-2100, Hungary.

B National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent Györgyi Albert Street 4, H-2100, Hungary.

C U1208, INSERM, USC1361, INRA, Stem Cell and Brain Research Institute, 18, Ae Doyen Lépine, 69500 Bron, France.

D Corresponding author. Email: varkonyi.eszter@hagk.hu

Reproduction, Fertility and Development 29(11) 2206-2216 https://doi.org/10.1071/RD16289
Submitted: 26 July 2016  Accepted: 14 February 2017   Published: 27 March 2017

Abstract

The conservation of genetic resources of avian species has become increasingly important over the past decade. The aim of the present study was to develop a genome preservation technique for the Hungarian goose Anser anser domestica. To this end, we developed a novel approach combining the simplicity of isolating a blastodermal cell suspension, which includes forming primordial germ cells (PGCs), with the efficiency of targeting future gonads by injecting these cells into the cardiac vein of the developing host embryo. First, we determined that the migratory period of PGCs in goose embryos was between 69 and 84 h of development. Then, we injected the blastodermal cell suspension into the bloodstream of recipient embryos at this stage of development and monitored donor cell transmission into the genital tract. In all, 249 embryos were injected; three were found to be chimeras in gonadal tissues, whereas only one was a chimera in other tissues. Based on these results, it is concluded that this method is suitable for producing chimeras in the domestic goose. The optimal time of cell injection was found to be between 74 and 76 h. The present study is the first report of the generation of chimeras in the domestic goose using intracardiac transplantation of embryonic cells.

Additional keywords: developmental stages, embryonic stem cell; genetic conservation, waterfowl.


References

Aige-Gil, V., and Simkiss, K. (1991a). Sterilising embryos for transgenic chimaeras. Br. Poult. Sci. 32, 427–438.
Sterilising embryos for transgenic chimaeras.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3MzntFWgtg%3D%3D&md5=f2c841eed0e00f6c8e11a7c124410d6aCAS |

Aige-Gil, V., and Simkiss, K. (1991b). Sterilisation of avian embryos with busulphan. Res. Vet. Sci. 50, 139–144.
Sterilisation of avian embryos with busulphan.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3ktVSiug%3D%3D&md5=a45c73b8d265089b80f5e5eac6700ca9CAS |

Atsumi, Y., Yazawa, S., Usui, F., Nakamura, Y., Yamamoto, Y., Tagami, T., Hiramatsu, K., Kagami, H., and Ono, T. (2009). Depletion of primordial germ cells (PGCs) by X-irradiation to extraembryonic region of chicken embryos and expression of xenotransplanted quail PGCs. J. Poult. Sci. 46, 136–143.
Depletion of primordial germ cells (PGCs) by X-irradiation to extraembryonic region of chicken embryos and expression of xenotransplanted quail PGCs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVOgtLs%3D&md5=b3ba50cebfe977aeee13e97e86aefc91CAS |

Bachelard, E., Raucci, F., Montillet, G., and Pain, B. (2015). Identification of side population cells in chicken embryonic gonads. Theriogenology 83, 377–384.
Identification of side population cells in chicken embryonic gonads.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslyrtbrP&md5=3582f5c3a8de2876d2fb805da858dabbCAS |

Barna, J., Végi, B., Váradi, É., and Liptói, K. (2010). Comparative study on cryopreservation procedures of gander sperm. World Poult. Sci. J. 66, 508.

Bednarczyk, M., Łakota, P., and Siwek, M. (2000). Improvement of hatchability of chicken eggs injected by blastoderm cells. Poult. Sci. 79, 1823–1828.
Improvement of hatchability of chicken eggs injected by blastoderm cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7ks1Gqug%3D%3D&md5=7a98d422569a11ebe5729d77babf739fCAS |

Bednarczyk, M., Lakota, P., Slomski, R., Plawski, A., Lipinski, D., Siemieniako, B., Lisowski, M., Czekalski, P., Grajewski, B., and Dluzniewska, P. (2002). Reconstitution of a chicken breed by inter se mating of germline chimeric birds. Poult. Sci. 81, 1347–1353.
Reconstitution of a chicken breed by inter se mating of germline chimeric birds.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38votlynug%3D%3D&md5=2aa551539efb69c509503ac7aea881adCAS |

Bednarczyk, M., Lakota, P., and Grajewski, B. (2003). Ocena przezywalnosci zarodków kaczych i gęsich po iniekcji do jamy podzarodikowej komórek blastodermalnych dawców [Evaluating survival chances of duck and goose embryos injected into the subgerminal cavity with blastodermal cells of donors]. Med. Weter. 59, 521–524.

Bene, Sz., Kovács, G., Polgár, J. P., and Szabó, F. (2014). Néhány tényező hatása különböző házilúd-genotípusok tojásainak kelési idejére és keltethetőségére [Some effects on hatching time and hatchability of eggs of goose of different genotype]. Hung. Veter. J./Magy. Allatorvosok 136, 32–40.

Blesbois, E., Govoroun, M., Hidas, A., Liptói, K., Pain, B., Seigneurin, F., et al. (2012). Development of avian reproductive biotechnologies for the management of genetic diversity: CRYOBIRDS. Worlds Poult. Sci. J. 68, 281–284.

Buchholz, W. G., Pearce, J. M., Pierson, B. J., and Scribner, K. T. (1998). Dinucleotide repeat polymorphisms in waterfowl (family Anatidae): characterization of a sex-linked (Z-specific) and 14 autosomal loci. Anim. Genet. 29, 323–325.
| 1:CAS:528:DyaK1cXlvVCntLs%3D&md5=3fdaa89c0eeaeb442b10689cef76bdc4CAS |

Carsience, R. S., Clark, M. E., Verrinder Gibbin, A. M., and Etches, R. J. (1993). Germline chimeric chickens from dispersed donor blastodermal cells and compromised recipient embryos. Development 117, 669–675.
| 1:STN:280:DyaK3szitFKisg%3D%3D&md5=6b50c4e61c797af4956a9ba4884ae238CAS |

Dubos, F., Seigneurin, F., Mialon-Richard, M. M., Grasseau, I., Guy, G., and Blesbois, E. (2006). Cryopreservation of Landese gander semen. In ‘Symposium COA/INRA Scientific Cooperation in Agriculture, Tainan (Taiwan, R.O.C.), 7–10 November 2006’. pp. 169–172.

Dupuy, V., Nersessian, B., and Bakst, M. R. (2002). Embryonic development from first cleavage through seventy-two hours incubation in two strains of pekin duck (Anas platyrhynchos). Poult. Sci. 81, 860–868.
Embryonic development from first cleavage through seventy-two hours incubation in two strains of pekin duck (Anas platyrhynchos).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zjs1Kktg%3D%3D&md5=269387d9e942309c21ff312af65e3ecdCAS |

Eising, C. M., and Groothuis, T. G. G. (2002). Long-term effects of maternal yolk androgens: an experimental approach. In ‘Proceedings of the International Society of Behavioural Ecology 9th Congress, Montreal, Canada, 7–12 July 2002’. pp. 35–36.

England, M. A., and Matsumura, G. (1993). Primordial germ cells in the primitive streak stages chick embryo as studied by scanning electron microscopy. J. Anat. 183, 67–73.

Etches, R. J., Clark, M. E., Toner, A., Liu, G., and Gibbins, A. M. (1996). Contributions to somatic and germline lineages of chicken blastodermal cells maintained in culture. Mol. Reprod. Dev. 45, 291–298.
Contributions to somatic and germline lineages of chicken blastodermal cells maintained in culture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s%2Fntleitw%3D%3D&md5=86c3c2c1fbef07c4e45850986bdf87a8CAS |

Eyal-Giladi, H., and Kochav, S. (1976). From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Dev. Biol. 49, 321–337.
From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. I. General morphology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE287ovVantw%3D%3D&md5=fbca1bf2f7a672e255cfe1c096a2aeddCAS |

Fraser, R. A., Carsience, R. S., Clark, M. E., Etches, R. J., and Gibbins, A. M. (1993). Efficient incorporation of transfected blastodermal cells into chimeric chicken embryos. Int. J. Dev. Biol. 37, 381–385.
| 1:STN:280:DyaK2c7it1WjtA%3D%3D&md5=56f8315ce8ff06cf3f3e72208d02569dCAS |

Fujimoto, T., Ukeshima, A., and Kiyofuji, R. (1976). The origin, migration and morphology of the primordial germ cells in the chick embryo. Anat. Rec. 185, 139–153.
The origin, migration and morphology of the primordial germ cells in the chick embryo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE283gtl2lsg%3D%3D&md5=3032a7b7c5e98980f082e9e965eaa028CAS |

Ginsburg, M., and Eyal-Giladi, H. (1987). Primordial germ cells of young chick blastoderm originate from the central zone of the area pellucida irrespective of the embryo-forming process. Development 101, 209–219.
| 1:STN:280:DyaL1c7osFahsQ%3D%3D&md5=edf3cee0a848e2b98a5fec12bcb8715cCAS |

Hamburger, V., and Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92.
A series of normal stages in the development of the chick embryo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG3M%2FpvV2jtQ%3D%3D&md5=249159cdd623180249feb64e2f81e297CAS |

International Union for Conservation of Nature (IUCN) (2012). Red list. Available at http://www.iucnredlist.org/documents/summarystatistics/2012_2_RL_Stats_Table1.pdf [verified 3 December 2012].

Johnson, A. L. (1986a). Reproduction in female. In ‘Avian Physiology’. 4th edn. (Ed. P. D. Sturkie.) pp. 403–431. (Springer-Verlag: New York.)

Johnson, A. L. (1986b). Reproduction in male. In ‘Avian Physiology’. 4th edn. (Ed. P. D. Sturkie.) pp. 432–451. (Springer-Verlag: New York.)

Jung, J. G., Kim, D. K., Park, T. S., Lee, S. D., Lim, J. M., and Han, J. Y. (2005). Development of novel markers for the characterization of chicken primordial germ cells. Stem Cells 23, 689–698.
Development of novel markers for the characterization of chicken primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVWmu7Y%3D&md5=4ca719dced0059cb5b93ba867a656616CAS |

Kagami, H., Tagami, T., Matsubara, Y., Harumi, T., Hanada, H., Maruyama, K., Sakurai, M., Kuwana, T., and Naito, M. (1997). The developmental origin of primordial germ cells and the transmission of the donor-derived gametes in mixed-sex germline chimeras to the offspring in the chicken. Mol. Reprod. Dev. 48, 501–510.
The developmental origin of primordial germ cells and the transmission of the donor-derived gametes in mixed-sex germline chimeras to the offspring in the chicken.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1elt78%3D&md5=ff2a4675e5dd5bd5a8e235fee28daa66CAS |

Kino, K., Pain, B., Leibo, S. P., Cochran, M., Clark, M. E., and Etches, R. J. (1997). Production of chicken chimeras from injection of frozen–thawed blastodermal cells. Poult. Sci. 76, 753–760.
Production of chicken chimeras from injection of frozen–thawed blastodermal cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3pvFahug%3D%3D&md5=73d68eab129844c0b5ef268ae311ec78CAS |

Kútvölgyi, G., Stefler, J., and Kovács, A. (2006). Viability and acrosome staining of stallion spermatozoa by Chicago sky blue and Giemsa. Biotech. Histochem. 81, 109–117.
Viability and acrosome staining of stallion spermatozoa by Chicago sky blue and Giemsa.Crossref | GoogleScholarGoogle Scholar |

Kuwana, T. (1993). Migration of avian primordial germ cells toward the gonadal anlage. Dev. Growth Differ. 35, 237–243.
Migration of avian primordial germ cells toward the gonadal anlage.Crossref | GoogleScholarGoogle Scholar |

Lason, M., Bakst, M., Lukaszewitz, E., Rosenberger, J., and Kowalczyk, A. (2016). Goose embryo development from oviposition through 16 hours of incubation. In ‘Proceedings of XXV World’s Poultry Congress’, 5–9 September 2016, Beijing, China. (Eds N. Yang, L. Lian, J. Zheng, X. Liu, and C. Wu.) p. 585 [Abstract]. (World’s Poultry Association: Beijing, China.)

Lee, H. C., Choi, H. J., Lee, H. G., Lim, J. M., Ono, T., and Han, J. Y. (2016). DAZL expression explains origin and central formation of primordial germ cells in chickens. Stem Cells Dev. 25, 68–79.
DAZL expression explains origin and central formation of primordial germ cells in chickens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitValsA%3D%3D&md5=a40b4076212d8b947bf23302aac93fd7CAS |

Li, H. C., Kagami, H., Matsui, K., and Ono, T. (2001). Restriction of proliferation of primordial germ cells by the irradiation of Japanese quail embryos with soft X-rays. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 130, 133–140.
Restriction of proliferation of primordial germ cells by the irradiation of Japanese quail embryos with soft X-rays.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MrmsFGktg%3D%3D&md5=e0bed38c466ffa5ffb38dfbea19da8b2CAS |

Li, Z. D., Deng, H., Liu, C. H., Song, Y. H., Sha, J., Wang, N., and Wei, H. (2002). Production of duck–chicken chimeras by transferring early blastodermal cells. Poult. Sci. 81, 1360–1364.
Production of duck–chicken chimeras by transferring early blastodermal cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38votlymsg%3D%3D&md5=e598cc041e28e00428e70af6928da47eCAS |

Łukaszewicz, E., Chrzanowska, M., Jerisz, A., and Chelmonska, B. (2004). Attempts on freezing the Greylag (Anser anser L.) gander semen. Anim. Reprod. Sci. 80, 163–173.
Attempts on freezing the Greylag (Anser anser L.) gander semen.Crossref | GoogleScholarGoogle Scholar |

Miller, S. A., Dykes, D. D., and Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215.
A simple salting out procedure for extracting DNA from human nucleated cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsVKlsrs%3D&md5=725f17b62cb22bc47d9810d75bfe0072CAS |

Naito, M. (2003). Development of avian embryo manipulation techniques and their application to germ cell manipulation. Anim. Sci. J. 74, 157–168.
Development of avian embryo manipulation techniques and their application to germ cell manipulation.Crossref | GoogleScholarGoogle Scholar |

Naito, M., Watanabe, M., Kinutani, M., Nirasawa, K., and Oishi, T. (1991). Production of quail–chick chimaeras by blastoderm cell transfer. Br. Poult. Sci. 32, 79–86.
Production of quail–chick chimaeras by blastoderm cell transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3ms1SlsQ%3D%3D&md5=2d3d6674064d9e3a9db9360480846ff0CAS |

Naito, M., Tajima, A., Yasuda, Y., and Kuwana, T. (1994). Production of germline chimeric chickens, with high transmission rate of donor-derived gametes, produced by transfer of primordial germ cells. Mol. Reprod. Dev. 39, 153–161.
Production of germline chimeric chickens, with high transmission rate of donor-derived gametes, produced by transfer of primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7islajsQ%3D%3D&md5=0697e894d8f926fb7a54f924ba2e060aCAS |

Naito, M., Sano, A., Matsubara, Y., Harumi, T., Tagami, T., Sakurai, M., and Kuwana, T. (2001). Localization of primordial germ cells or their precursors in Stage X blastoderm of chickens and their ability to differentiate into functional gametes in opposite-sex recipient gonads. Reproduction 121, 547–552.
Localization of primordial germ cells or their precursors in Stage X blastoderm of chickens and their ability to differentiate into functional gametes in opposite-sex recipient gonads.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFKgsLw%3D&md5=7b7afa48cf7bc7dc2744abc67b159473CAS |

Nakamura, Y., Usui, F., Atsumi, Y., Otomo, A., Teshima, A., Ono, T., Takeda, K., Nirasawa, K., Kagami, H., and Tagami, T. (2009). Effects of busulfan sustained-release emulsion on depletion and repopulation of primordial germ cells in early chicken embryos. J. Poult. Sci. 46, 127–135.
Effects of busulfan sustained-release emulsion on depletion and repopulation of primordial germ cells in early chicken embryos.Crossref | GoogleScholarGoogle Scholar |

Nakamura, Y., Usui, F., Ono, T., Takeda, K., Nirasawa, K., Kagami, H., and Tagami, T. (2010). Germline replacement by transfer of primordial germ cells into partially sterilized embryos in the chicken. Biol. Reprod. 83, 130–137.
Germline replacement by transfer of primordial germ cells into partially sterilized embryos in the chicken.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWqtbw%3D&md5=eff16683eb2119b5c6f7297951306a26CAS |

Pain, B., Clark, M. E., Shen, M., Nakazawa, H., Sakurai, M., Samarut, J., and Etches, R. J. (1996). Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122, 2339–2348.
| 1:CAS:528:DyaK28XltFWntrc%3D&md5=541727e1f36b040c189a1e7639b018b6CAS |

Petitte, J. N., and Clark, M. E. (1990). Production of somatic and germline chimeras in the chicken by transfer of early blastodermal cells. Development 108, 185–189.
| 1:STN:280:DyaK3c3ns1agtg%3D%3D&md5=aa80ac3f336fe1c848cbf5aa1cad27bfCAS |

Petitte, J. N., Clark, M. E., Liu, G., Verrinder Gibbins, A. M., and Etches, R. J. (1990). Production of somatic and germline chimeras in the chicken by transfer of early blastodermal cells. Development 108, 185–189.
| 1:STN:280:DyaK3c3ns1agtg%3D%3D&md5=aa80ac3f336fe1c848cbf5aa1cad27bfCAS |

Raucci, F., Fuet, A., and Pain, B. (2015). In vitro generation and characterization of chicken long-term germ cells from different embryonic origins. Theriogenology , .
In vitro generation and characterization of chicken long-term germ cells from different embryonic origins.Crossref | GoogleScholarGoogle Scholar |

Reiczigel, J., Harnos, A., and Solymosi, N. (2007). ‘Biostatistica.’ (Pars Ltd.: Nagykovácsi, Hungary.)

Sawicka, D., Brzeziñska, J., and Bednarczyk, M. (2011). Cryoconservation of embryonic cells and gametes as a poultry biodiversity preservation method. Folia Biol. (Krakow) 59, 1–5.
Cryoconservation of embryonic cells and gametes as a poultry biodiversity preservation method.Crossref | GoogleScholarGoogle Scholar |

Schwabl, H. (1993). Yolk is a source of maternal testosterone for developing birds. Proc. Natl Acad. Sci. USA 90, 11446–11450.
Yolk is a source of maternal testosterone for developing birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVamur0%3D&md5=e572adfe1b7652402d6f4194da02d33aCAS |

Sellier, N., Brillard, J.-P., Dupuy, V., and Bakst, M. R. (2006). Comparative staging of embryo development in chicken, turkey, duck, goose, guinea fowl, and Japanese quail assessed from five hours after fertilization through seventy-two hours of incubation. J. Appl. Poult. Res. 15, 219–228.
Comparative staging of embryo development in chicken, turkey, duck, goose, guinea fowl, and Japanese quail assessed from five hours after fertilization through seventy-two hours of incubation.Crossref | GoogleScholarGoogle Scholar |

Stebler, J., Spieler, D., Slanchev, K., Molyneaux, K. A., Richter, U., Cojocaru, V., Tarabykin, V., Wylie, C., Kessel, M., and Raz, E. (2004). Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12. Dev. Biol. 272, 351–361.
Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1CjsLw%3D&md5=24dbe4ee8bb160dda0964235716b9d3aCAS |

Szalay, I. (2015). Characteristics of the traditional Hungarian poultry breeds. In ‘Régi magyar baromfifajták a XXI században [Old Hungarian Poultry in the 21st century]’. (Ed. Á. Wenszky) pp. 141–143. (Mezőgazda Kiadó: Budapest.)

Sztán, N., Patakiné Várkonyi, E., Liptói, K., and Barna, J. (2012). Baromfifajok embrionális sejtjeinek kezelésével szerzett tapasztalatok [Observations of embryonic cell manipulations in different poultry species]. Magy. Allatorvosok 8, 475–481.

Tajima, A. (2013). Conservation of avian genetic resources. Jpn. Poult. Sci. 50, 1–8.
Conservation of avian genetic resources.Crossref | GoogleScholarGoogle Scholar |

Tsunekawa, N., Naito, M., Sakai, Y., Nishida, T., and Noce, T. (2000). Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development 127, 2741–2750.
| 1:CAS:528:DC%2BD3cXkslOrs78%3D&md5=ea6e0ce05f025ae4b4f46f3fba861ad1CAS |

van de Lavoir, M. C., Diamond, J. H., Leighton, P. A., Mather-Love, C., Heyer, B. S., Bradshaw, R., Kerchner, A., Hooi, L. T., Gessaro, T. M., Swanberg, S. E., Delany, M. E., and Etches, R. J. (2006). Germline transmission of genetically modified primordial germ cells. Nature 441, 766–769.
Germline transmission of genetically modified primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltlKqu78%3D&md5=cb4d027480456af8663831d40114f87bCAS |

Zhou, H., and Lamont, S. J. (1999). Genetic characterization of biodiversity in highly inbred chicken lines by microsatellite markers. Anim. Genet. 30, 256–264.
Genetic characterization of biodiversity in highly inbred chicken lines by microsatellite markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVagur4%3D&md5=e48c7d4b725f959ae06d0846aedb0091CAS |