Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Evaluation of SmartFlare probe applicability for verification of RNAs in early equine conceptuses, equine dermal fibroblast cells and trophoblastic vesicles

S. Budik A D , W. Tschulenk C , S. Kummer B , I. Walter B C and C. Aurich A
+ Author Affiliations
- Author Affiliations

A Platform for Artificial Insemination and Embryo Transfer, University of Veterinary Medicine, Vienna, Veterinärplatz 1 A-1210 Vienna, Austria.

B VetCore Facility for Research, University of Veterinary Medicine, Vienna, Veterinärplatz 1 A-1210 Vienna, Austria.

C Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, Vienna, Veterinärplatz 1 A-1210 Vienna, Austria.

D Corresponding author. Email: sven.budik@vetmeduni.ac.at

Reproduction, Fertility and Development - https://doi.org/10.1071/RD16362
Submitted: 3 September 2016  Accepted: 25 January 2017   Published online: 2 March 2017

Abstract

Live cell RNA imaging has become an important tool for studying RNA localisation, dynamics and regulation in cultured cells. Limited information is available using these methods in more complex biological systems, such as conceptuses at different developmental stages. So far most of the approaches rely on microinjection of synthetic constructs into oocytes during or before fertilisation. Recently, a new generation of RNA-specific probes has been developed, the so named SmartFlare probes (Merck Millipore). These consist of a central 15-nm gold particle with target-specific DNAs immobilised on its surface. Because of their central gold particle, SmartFlare probes are detectable by transmission electron microscopy. The aim of the present study was to investigate the uptake and distribution of SmartFlare probes in equine conceptuses at developmental stages suitable for embryo transfer (Days 6–10), equine trophoblast vesicles and equine dermal fibroblast cell cultures, and to determine whether differences among these cell types and structures exist. Probe uptake was followed by transmission electron microscopy and fluorescence microscopy. Although the embryonic zona pellucida did not reduce uptake of the probe, the acellular capsule fully inhibited probe internalisation. Nanogold particles were taken up by endocytosis by all cell types examined in a similar manner with regard to time and intracellular migration. They were processed in endosomal compartments and accumulated within lysosomal structures after longer incubation times. In conclusion, the SmartFlare probe is applicable in equine conceptuses, but its use is limited to the developmental stages before the formation of the embryonic capsule.

Additional keywords: RNA detection, living cells, zona pellucida, equine embryonic capsule, lysosomal compartment.


References

Aurich, C., Seeber, P., and Müller-Schlösser, F. (2007). Comparison of different extenders with defined protein composition for storage of stallion spermatozoa at 5°C. Reprod. Domest. Anim. 42, 445–448.
Comparison of different extenders with defined protein composition for storage of stallion spermatozoa at 5°C.CrossRef | 1:STN:280:DC%2BD2svhvV2qtQ%3D%3D&md5=ff45587953f05127fc732e30af909bbcCAS | open url image1

Beckelmann, J., Budik, S., Bartel, C., and Aurich, C. (2012). Evaluation of Xist expression in preattachment equine embryos. Theriogenology 78, 1429–1436.
Evaluation of Xist expression in preattachment equine embryos.CrossRef | 1:CAS:528:DC%2BC38Xht1KjurvK&md5=b66ba3e985ecb1412a2f6e20c8e302d1CAS | open url image1

Beckelmann, J., Budik, S., Helmreich, M., Palm, F., Walter, I., and Aurich, C. (2013). Sex-dependent insulin like growth factor-1 expression in preattachment equine embryos. Theriogenology 79, 193–199.
Sex-dependent insulin like growth factor-1 expression in preattachment equine embryos.CrossRef | 1:CAS:528:DC%2BC38Xhs1Sht73F&md5=37428df86318613b14fb4b723384966dCAS | open url image1

Betteridge, K. J. (2007). Equine embryology: an inventory of unanswered questions. Theriogenology 68, S9–S21.
Equine embryology: an inventory of unanswered questions.CrossRef | 1:CAS:528:DC%2BD2sXotlaiurc%3D&md5=f3c2a18f162c6c39ad0303d7991d4730CAS | open url image1

Betteridge, K. J., Eaglesome, M. D., Mitchell, D., Flood, P. F., and Beriault, R. (1982). Development of horse embryos up to twenty-two days after ovulation: observations on fresh specimens. J. Anat. 135, 191–209.
| 1:STN:280:DyaL3s%2FjtVGnsg%3D%3D&md5=2bd822bf9f341f8631654e1f05a4ef8cCAS | open url image1

Bousquet, D., Guillomot, M., and Betteridge, K. J. (1987). Equine zona pellucida and capsule: some physicochemical and antigenic properties. Gamete Res. 16, 121–132.
Equine zona pellucida and capsule: some physicochemical and antigenic properties.CrossRef | 1:CAS:528:DyaL2sXhtlGqsb0%3D&md5=a763eaaaaa052bb6f301e2629216b447CAS | open url image1

Bruyas, J. F. (1997). Contribution a l’etude de la congelation de embryons equins: une approche metabolique et cellulaire. PhD Thesis, École nationale supérieure agronomique de Rennes, Rennes.

Budik, S., Palm, F., Walter, I., Helmreich, M., and Aurich, C. (2012). Increasing expression of oxytocin and vasopressin receptors in the equine conceptus between Days 10 and 16 of pregnancy Reprod. Fertil. Dev. 24, 641–648.
Increasing expression of oxytocin and vasopressin receptors in the equine conceptus between Days 10 and 16 of pregnancyCrossRef | 1:CAS:528:DC%2BC38XnvFehu7g%3D&md5=cc3c2704f5be3dcb3f8642fa99ba2424CAS | open url image1

Choi, Y. H., Gustafson-Seabury, A., Velez, I. C., Hartman, D. L., Bliss, S., Riera, F. L., Roldán, J. E., Chowdhary, B., and Hinrichs, K. (2010). Viability of equine embryos after puncture of the capsule and biopsy for preimplantation genetic diagnosis. Reproduction 140, 893–902.
Viability of equine embryos after puncture of the capsule and biopsy for preimplantation genetic diagnosis.CrossRef | 1:CAS:528:DC%2BC3MXisFKqtbs%3D&md5=89a825bf795b92cffb1da461be0142ddCAS | open url image1

Colchen, S., Battut, I., Fieni, F., Tainturier, D., Siliart, S., and Bruyas, J. F. (2000). Quantitative histological analysis of equine embryos at exactly 156 and 168 h after ovulation. J. Reprod. Fertil. Suppl. 56, 527–537. open url image1

Flood, P. F., Betteridge, K. J., and Diocee, M. S. (1982). Transmission electron microscopy of horse embryos 3–16 days after ovulation. J. Reprod. Fertil. Suppl. 32, 319–327.
| 1:STN:280:DyaL3s7mtl2ltw%3D%3D&md5=edfa19dd323fbd17b098b84383ccf7e4CAS | open url image1

Fu, B., Ren, L., Liu, D., Ma, J. Z., An, T. Z., Yang, X. Q., Ma, H., Guo, Z. H., Zhu, M., and Bai, J. (2016). Using a nano-flare probe to detect RNA in live donor cells prior to somatic cell nuclear transfer. Cell Biol. Int. 40, 7–15.
Using a nano-flare probe to detect RNA in live donor cells prior to somatic cell nuclear transfer.CrossRef | 1:CAS:528:DC%2BC2MXitVymtLrN&md5=759464a5c1d16afca7a9608c39c4f38aCAS | open url image1

Fujiwara, Y., Kikuchi, H., Aizawa, S., Furuta, A., Hatanaka, Y., Konya, C., Uchida, K., Wada, K., and Kabuta, T. (2013). Direct uptake and degradation of DNA by lysosomes. Autophagy 9, 1167–1171.
Direct uptake and degradation of DNA by lysosomes.CrossRef | 1:CAS:528:DC%2BC2cXktFehs7Y%3D&md5=1c7b98255e58c6916691719079332ba9CAS | open url image1

Gilleron, J., Querbes, W., Zeigerer, A., Borodovsky, A., Marsico, G., Schubert, U., Manygoats, K., Seifert, S., Andree, C., Stöter, M., Epstein-Barash, H., Zhang, L., Koteliansky, V., Fitzgerald, K., Fava, E., Bickle, M., Kalaidzidis, Y., Akinc, A., Maier, M., and Zerial, M. (2013). Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646.
Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape.CrossRef | 1:CAS:528:DC%2BC3sXpvVymtbg%3D&md5=76964c421bff5859316452a5b1b5428bCAS | open url image1

Guillomot, M., and Betteridge, K. J. (1984). Permeability of the capsule of the equine embryo. In ‘Proceedings of the Society for the Study of Fertility and the Société Francaise pour l’Etude de la Fertilite; winter meeting, 7–9 December 1984’. (Fresnes, France.) Abstract 58.

Hamilton, C. K., Combe, A., Caudle, J., Ashkar, F. A., Macaulay, A. D., Blondin, P., and King, W. A. (2012). A novel approach to sexing bovine blastocysts using male-specific gene expression. Theriogenology 77, 1587–1596.
A novel approach to sexing bovine blastocysts using male-specific gene expression.CrossRef | 1:CAS:528:DC%2BC38XltVKmt70%3D&md5=65d2e2d60510131795e88d734f3e4bcdCAS | open url image1

Hasler, J. F. (2008). Embryo transfer and in vitro fertilization. In ‘Comparative Reproductive Biology’. (Eds H. Schatten and G. Constantinescu.) pp. 171–211. (Wiley-Blackwell Publishing: New York.)

Hehnke, K. E., Thompson, D. L., Barry, B. E., White, K. L., and Wood, T. C. (1990). Formation and characterization of vesicles from day-10 horse conceptuses. Theriogenology 34, 709–719.
Formation and characterization of vesicles from day-10 horse conceptuses.CrossRef | 1:STN:280:DC%2BD283pvFKgug%3D%3D&md5=453f067cb01b2046ed03b49b28d82c3fCAS | open url image1

Held, P. (2014). Live cell imaging of RNA expression. BioTek Application Note. Available at http://www.biotek.com/resources/articles/live-cell-imaging-of-rna-expression.html [verified 5 December 2016].

Kallijärvi, J., Hämäläinen, R. H., Karlberg, N., Sainio, K., and Lehesjoki, A. E. (2006). Tissue expression of the mulibrey nanism-associated Trim37 protein in embryonic and adult mouse tissues. Histochem. Cell Biol. 126, 325–334.
Tissue expression of the mulibrey nanism-associated Trim37 protein in embryonic and adult mouse tissues.CrossRef | open url image1

Lahm, H., Doppler, S., Dreßen, M., Werner, A., Adamczyk, K., Schrambke, D., Brade, T., Laugwitz, K. L., Deutsch, M. A., Schiemann, M., Lange, R., Moretti, A., and Krane, M. (2015). Live fluorescent RNA-based detection of pluripotency gene expression in embryonic and induced pluripotent stem cells of different cell types. Stem Cells 33, 392–402.
Live fluorescent RNA-based detection of pluripotency gene expression in embryonic and induced pluripotent stem cells of different cell types.CrossRef | 1:CAS:528:DC%2BC2MXktlCmtrc%3D&md5=dd592b25a63f28d2e80eb1329e1e8103CAS | open url image1

Legrand, E. F. R. (1997). De l’importance de la capsule lors de la congélation des embryons de chevaux avec le glycerol. PhD Thesis, Faculté de Médecine de Nantes, Nantes.

Leiser, R., and Denker, H. W. (1988). The dynamic structure of rabbit blastocyst coverings. II. Ultrastructural evidence for a role of the trophoblast in neozona formation. Anat. Embryol. (Berl.) 179, 129–134.
The dynamic structure of rabbit blastocyst coverings. II. Ultrastructural evidence for a role of the trophoblast in neozona formation.CrossRef | 1:STN:280:DyaL1M7msVyhuw%3D%3D&md5=de45560044c2fbd411822c42721b3748CAS | open url image1

Mason, D., Carolan, G., Held, M., Comenge, J., and Lévy, R. (2016). The spherical nucleic acids mRNA detection paradox. ScienceOpen Research , .
The spherical nucleic acids mRNA detection paradox.CrossRef | open url image1

McClellan, S., Slamecka, J., Howze, P., Thompson, L., Finan, M., Rocconi, R., and Owen, L. (2015). mRNA detection in living cells: a next generation cancer stem cell identification technique. Methods 82, 47–54.
mRNA detection in living cells: a next generation cancer stem cell identification technique.CrossRef | 1:CAS:528:DC%2BC2MXntlWntrw%3D&md5=64e4fc722f5a9ae9eb64eff7266164adCAS | open url image1

McKinnon, A. O., and Squires, E. L. (1988). Morphologic assessment of the equine embryo. J. Am. Vet. Med. Assoc. 192, 401–406.
| 1:STN:280:DyaL1c7os1GjtQ%3D%3D&md5=67db25803d156d320695f3b61f5ce277CAS | open url image1

Miller, D. L., Waldhalm, S. J., Leopold, B. D., and Estill, C. (2002). Embryo transfer and embryonic capsules in the bobcat (Lynx rufus). Anat. Histol. Embryol. 31, 119–125.
Embryo transfer and embryonic capsules in the bobcat (Lynx rufus).CrossRef | 1:STN:280:DC%2BD38zhtlCjtg%3D%3D&md5=6950d829bd33350463029937b6730c14CAS | open url image1

Pan, Y., Leifert, A., Ruau, D., Neuss, S., Bornemann, J., Schmid, G., Brandau, W., Simon, U., and Jahnen-Dechent, W. (2009). Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5, 2067–2076.
Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage.CrossRef | 1:CAS:528:DC%2BD1MXhtFGktrvK&md5=cf4652d258d308663d80b4a5bc7d1d90CAS | open url image1

Panzani, D., Rota, A., Marmorini, P., Vannozzi, I., and Camillo, F. (2014). Retrospective study of factors affecting multiple ovulations, embryo recovery, quality, and diameter in a commercial equine embryo transfer program. Theriogenology 82, 807–814.
Retrospective study of factors affecting multiple ovulations, embryo recovery, quality, and diameter in a commercial equine embryo transfer program.CrossRef | open url image1

Reed, A. N., Putman, T., Sullivan, C., and Jin, L. (2015). Application of a nanoflare probe specific to a latency associated transcript for isolation of KHV latently infected cells. Virus Res. 208, 129–135.
Application of a nanoflare probe specific to a latency associated transcript for isolation of KHV latently infected cells.CrossRef | 1:CAS:528:DC%2BC2MXhtlajur%2FF&md5=95b18521580400de440ad82cf8317134CAS | open url image1

Rosi, N. L., Giljohann, D. A., Thaxton, C. S., Lytton-Jean, A. K. R., Han, M. S., and Mirkin, C. A. (2006). Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312, 1027–1030.
Oligonucleotide-modified gold nanoparticles for intracellular gene regulation.CrossRef | 1:CAS:528:DC%2BD28Xks1Wqtbo%3D&md5=bc2508848faa0ce6fe089ec25152385aCAS | open url image1

Sadauskas, E., Wallin, H., Stoltenberg, M., Vogel, U., Doering, P., Larsen, A., and Danscher, G. (2007). Kupffer cells are central in the removal of nanoparticles from the organism. Part. Fibre Toxicol. 4, 10.
Kupffer cells are central in the removal of nanoparticles from the organism.CrossRef | open url image1

Seferos, D. S., Giljohann, D. A., Hill, H. D., Prigodich, A. E., and Mirkin, C. A. (2007). Nano-flares: probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc. 129, 15477–15479.
Nano-flares: probes for transfection and mRNA detection in living cells.CrossRef | 1:CAS:528:DC%2BD2sXhtlKru7jE&md5=1b25349cd6da15afb9522f21248189a4CAS | open url image1

Seftor, E. A., Seftor, R. E. B., Weldon, D., Kirsammer, G. T., Margaryan, N. V., Gilgur, A., and Hendrix, M. J. C. (2014). Melanoma tumor cell heterogeneity: a molecular approach to study subpopulations expressing the embryonic morphogen Nodal. Semin. Oncol. 41, 259–266.
Melanoma tumor cell heterogeneity: a molecular approach to study subpopulations expressing the embryonic morphogen Nodal.CrossRef | 1:CAS:528:DC%2BC2cXns1Cltbs%3D&md5=e9420b8003374cf3f81716bbc7c1c9c7CAS | open url image1

Squires, E. L., McCue, P. M., and Vanderwall, D. (1999). The current status of equine embryo transfer. Theriogenology 51, 91–104.
The current status of equine embryo transfer.CrossRef | 1:STN:280:DC%2BD3c7ptFCjuw%3D%3D&md5=5f581bfd56115891683649387637b8dfCAS | open url image1

Stout, T. A. E., Meadows, S., and Allen, W. R. (2005). Stage-specific formation of the equine blastocyst capsule is instrumental to hatching and to embryonic survival in vivo. Anim. Reprod. Sci. 87, 269–281.
Stage-specific formation of the equine blastocyst capsule is instrumental to hatching and to embryonic survival in vivo.CrossRef | 1:STN:280:DC%2BD2M3mvVWitQ%3D%3D&md5=91b1f8fa65bb58b969dec4492f43726bCAS | open url image1

Tremoleda, J. L., Stout, T. A., Lagutina, I., Lazzari, G., Bevers, M. M., Colenbrander, B., and Galli, C. (2003). Effects of in-vitro production on horse embryo morphology, cytoskeletal characteristics, and blastocyst capsule formation. Biol. Reprod. 69, 1895–1906.
Effects of in-vitro production on horse embryo morphology, cytoskeletal characteristics, and blastocyst capsule formation.CrossRef | 1:CAS:528:DC%2BD3sXpsVCns7k%3D&md5=b5cc16c81031a1dfa25566f1ae228cd5CAS | open url image1

Walter, I., Tschulenk, W., Budik, S., and Aurich, C. (2010). Transmission electron microscopy (TEM) of equine conceptuses at 14 and 16 days of gestation. Reprod. Fertil. Dev. 22, 405–415.
Transmission electron microscopy (TEM) of equine conceptuses at 14 and 16 days of gestation.CrossRef | open url image1



Export Citation