Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Differential gene expression in porcine oviduct during the oestrous cycle

O. S. Acuña A B D E , M. Avilés A D E , R. López-Úbeda C D E , A. Guillén-Martínez A D E , C. Soriano-Úbeda C D E , A. Torrecillas F , P. Coy C D E and M. J. Izquierdo-Rico A D E G
+ Author Affiliations
- Author Affiliations

A Key Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, 30100, Murcia, Spain.

B Key Veterinary Faculty, Autonomous University of Sinaloa, Culiacan, 80246, Sinaloa, Mexico.

C Key Department of Physiology, Veterinary Faculty, University of Murcia, 30100, Murcia, Spain.

D Key International Excellence Campus for Higher Education and Research (Campus Mare Nostrum).

E Key IMIB-Arrixaca (Institute for Biomedical Research of Murcia).

F Key Molecular Biology Section, SAI, University of Murcia, 30100, Murcia, Spain.

G Corresponding author. Email: mjoseir@um.es

Reproduction, Fertility and Development 29(12) 2387-2399 https://doi.org/10.1071/RD16457
Submitted: 15 November 2016  Accepted: 3 April 2017   Published: 19 May 2017

Abstract

The oviduct undergoes changes under the influence of steroid hormones during the oestrous cycle. However, the molecular mechanisms underlying oviductal regulation are not fully understood. The aim of the present study was to identify the gene expression profile of the porcine oviduct in different stages of the cycle using microarray technology. A systematic study was performed on animals at four different stage: prepubertal gilts, and sows in the preovulatory, postovulatory and luteal phase of the oestrous cycle. The porcine oviduct expressed a total of 4929 genes. Moreover, significant differences in the expression of several genes were detected as the oestrous cycle progressed. Analysis of the differentially expressed genes indicated that a total of 86, 89 and 15 genes were upregulated in prepubertal gilts, preovulatory and luteal sows respectively compared with levels observed in postovulatory sows. Moreover, 80, 51 and 64 genes were downregulated in prepubertal, preovulatory and luteal animals respectively compared with the postovulatory sows. The concentrations of 10 selected transcripts were quantified by real-time reverse transcription–polymerase chain reaction to validate the cDNA array hybridisation data. Conversely, for some genes, localisation of corresponding protein expression in the oviduct was analysed by immunohistochemistry (i.e. cholecystokinin, glutathione peroxidase 2, mucin 1, phosphatidylethanolamine binding protein 4 and tachykinin 3) and mass spectrometry analysis of oviductal fluid allowed identification of peptides from all five proteins. The results of the present study demonstrate that gene expression in the porcine oviduct is clearly regulated during the oestrous cycle, with some oviductal proteins that could be related to several reproductive processes described here for the first time.

Additional keywords: fertilisation, microarray, pig, transcriptome.


References

Abe, H. (1996). The mammalian oviductal epithelium: regional variations in cytological and functional aspects of the oviductal secretory cells. Histol. Histopathol. 11, 743–768.
| 1:STN:280:DyaK28vjs12nug%3D%3D&md5=5af14803b6c83183f3c6167fa293cacdCAS |

Al-Azemi, M., Refaat, B., Aplin, J., and Ledger, W. (2009). The expression of MUC1 in human Fallopian tube during the menstrual cycle and in ectopic pregnancy. Hum. Reprod. 24, 2582–2587.
The expression of MUC1 in human Fallopian tube during the menstrual cycle and in ectopic pregnancy.CrossRef | 1:CAS:528:DC%2BD1MXhtFOqurfI&md5=3946261755ecd482cf696ed2cbbcd57dCAS |

Almiñana, C., Heath, P. R., Wilkinson, S., Sanchez-Osorio, J., Cuello, C., Parrilla, I., Gil, M. A., Vazquez, J. L., Vazquez, J. M., and Roca, J. (2012). Early developing pig embryos mediate their own environment in the maternal tract. PLoS One 7, e33625.
Early developing pig embryos mediate their own environment in the maternal tract.CrossRef |

Almiñana, C., Caballero, I., Heath, P. R., Maleki-Dizaji, S., Parrilla, I., Cuello, C., Gil, M. A., Vazquez, J. L., Vazquez, J. M., and Roca, J. (2014). The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa. BMC Genomics 15, 293.
The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa.CrossRef |

Amir, M., Romano, S., Goldman, S., and Shalev, E. (2009). Plexin-B1, glycodelin and MMP7 expression in the human fallopian tube and in the endometrium. Reprod. Biol. Endocrinol. 7, 152.
Plexin-B1, glycodelin and MMP7 expression in the human fallopian tube and in the endometrium.CrossRef |

An, L.-P., Maeda, T., Sakaue, T., Takeuchi, K., Yamane, T., Du, P.-G., Ohkubo, I., and Ogita, H. (2012). Purification, molecular cloning and functional characterization of swine phosphatidylethanolamine-binding protein 4 from seminal plasma. Biochem. Biophys. Res. Commun. 423, 690–696.
Purification, molecular cloning and functional characterization of swine phosphatidylethanolamine-binding protein 4 from seminal plasma.CrossRef | 1:CAS:528:DC%2BC38XpvVOls7Y%3D&md5=fc137fb8eea4adb446f18d6d211c3a67CAS |

Avilés, M., Gutiérrez-Adán, A., and Coy, P. (2010). Oviductal secretions: will they be key factors for the future ARTs? Mol. Hum. Reprod. 16, 896–906.
Oviductal secretions: will they be key factors for the future ARTs?CrossRef |

Bauersachs, S., Blum, H., Mallok, S., Wenigerkind, H., Rief, S., Prelle, K., and Wolf, E. (2003). Regulation of ipsilateral and contralateral bovine oviduct epithelial cell function in the postovulation period: a transcriptomics approach. Biol. Reprod. 68, 1170–1177.
Regulation of ipsilateral and contralateral bovine oviduct epithelial cell function in the postovulation period: a transcriptomics approach.CrossRef | 1:CAS:528:DC%2BD3sXisVert7g%3D&md5=5a7d774c071457b72d2012ff9b2af317CAS |

Bauersachs, S., Rehfeld, S., Ulbrich, S., Mallok, S., Prelle, K., Wenigerkind, H., Einspanier, R., Blum, H., and Wolf, E. (2004). Monitoring gene expression changes in bovine oviduct epithelial cells during the oestrous cycle. J. Mol. Endocrinol. 32, 449–466.
Monitoring gene expression changes in bovine oviduct epithelial cells during the oestrous cycle.CrossRef | 1:CAS:528:DC%2BD2cXjslKjt7w%3D&md5=19233065d034d0e4b5e8fe1d230bffc7CAS |

Buhi, W. C. (2002). Characterization and biological roles of oviduct-specific, oestrogen-dependent glycoprotein. Reproduction 123, 355–362.
Characterization and biological roles of oviduct-specific, oestrogen-dependent glycoprotein.CrossRef | 1:CAS:528:DC%2BD38Xit1Clsr0%3D&md5=8b10f41489ba9d2f9f9db1ff95a82d8cCAS |

Buhi, W. C., and Alvarez, I. M. (2003). Identification, characterization and localization of three proteins expressed by the porcine oviduct. Theriogenology 60, 225–238.
Identification, characterization and localization of three proteins expressed by the porcine oviduct.CrossRef | 1:CAS:528:DC%2BD3sXjs1CqsrY%3D&md5=87e1c88f955eae3d7b774fb5cf1fcf90CAS |

Buhi, W. C., Alvarez, I. M., and Kouba, A. J. (2000). Secreted proteins of the oviduct. Cells Tissues Organs 166, 165–179.
Secreted proteins of the oviduct.CrossRef | 1:CAS:528:DC%2BD3cXjtVyru74%3D&md5=507454753abd8f26654ded61f8c6bbd2CAS |

Carrasco, L. C., Romar, R., Avilés, M., Gadea, J., and Coy, P. (2008). Determination of glycosidase activity in porcine oviductal fluid at the different phases of the estrous cycle. Reproduction 136, 833–842.
Determination of glycosidase activity in porcine oviductal fluid at the different phases of the estrous cycle.CrossRef | 1:CAS:528:DC%2BD1MXns1Crug%3D%3D&md5=3e59c2e8d73863992f88d0e16a654332CAS |

Cejudo Roman, A., Pinto, F. M., Dorta, I., Almeida, T. A., Hernández, M., Illanes, M., Tena-Sempere, M., and Candenas, L. (2012). Analysis of the expression of neurokinin B, kisspeptin, and their cognate receptors NK3R and KISS1R in the human female genital tract. Fertil. Steril. 97, 1213–1219.
Analysis of the expression of neurokinin B, kisspeptin, and their cognate receptors NK3R and KISS1R in the human female genital tract.CrossRef | 1:CAS:528:DC%2BC38XjvVektr8%3D&md5=e214d3b09b10e9d9f5ffa7918e0e4e7cCAS |

Cerny, K. L., Garrett, E., Walton, A. J., Anderson, L. H., and Bridges, P. J. (2015). A transcriptomal analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle. Reprod. Biol. Endocrinol. 13, 84.
A transcriptomal analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle.CrossRef | 1:STN:280:DC%2BC28%2FpvFyktg%3D%3D&md5=f19c2b6f2f13db99b805156f21e45cacCAS |

Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources National Research Council (1980). ‘Guide for the Care and Use of Laboratory Animals.’ (U.S. Department of Health, Education, and Welfare: Bethesda, MD.)

Coy, P., and Avilés, M. (2010). What controls polyspermy in mammals, the oviduct or the oocyte? Biol. Rev. Camb. Philos. Soc. 85, 593–605.

Coy, P., Cánovas, S., Mondéjar, I., Saavedra, M. D., Romar, R., Grullón, L., Matás, C., and Avilés, M. (2008). Oviduct-specific glycoprotein and heparin modulate sperm–zona pellucida interaction during fertilization and contribute to the control of polyspermy. Proc. Natl Acad. Sci. USA 105, 15809–15814.
Oviduct-specific glycoprotein and heparin modulate sperm–zona pellucida interaction during fertilization and contribute to the control of polyspermy.CrossRef | 1:CAS:528:DC%2BD1cXht1yitrjL&md5=9135ab8e9bef20d97b3ab660cc6d4dc0CAS |

Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., and Lempicki, R. A. (2003). DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4, P3.
DAVID: database for annotation, visualization, and integrated discovery.CrossRef |

Drevet, J. R. (2006). The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Mol. Cell. Endocrinol. 250, 70–79.
The antioxidant glutathione peroxidase family and spermatozoa: a complex story.CrossRef | 1:CAS:528:DC%2BD28XksVGjt78%3D&md5=6cc751f5edeaffa38e6bd20557f88c42CAS |

Evans, A., and O’Doherty, J. (2001). Endocrine changes and management factors affecting puberty in gilts. Livest. Prod. Sci. 68, 1–12.
Endocrine changes and management factors affecting puberty in gilts.CrossRef |

Fazeli, A., Affara, N. A., Hubank, M., and Holt, W. V. (2004). Sperm-induced modification of the oviductal gene expression profile after natural insemination in mice. Biol. Reprod. 71, 60–65.
Sperm-induced modification of the oviductal gene expression profile after natural insemination in mice.CrossRef | 1:CAS:528:DC%2BD2cXltFKktLY%3D&md5=7b58b8020adc420b3c3c8c306a83cfc9CAS |

Fenwick, M. A., Llewellyn, S., Fitzpatrick, R., Kenny, D. A., Murphy, J. J., Patton, J., and Wathes, D. C. (2008). Negative energy balance in dairy cows is associated with specific changes in IGF-binding protein expression in the oviduct. Reproduction 135, 63–75.
Negative energy balance in dairy cows is associated with specific changes in IGF-binding protein expression in the oviduct.CrossRef | 1:CAS:528:DC%2BD1cXhs1CksLg%3D&md5=c37783b3685be31662a54a2133dab736CAS |

Fink, H., Rex, A., Voits, M., and Voigt, J.-P. (1998). Major biological actions of CCK – a critical evaluation of research findings. Exp. Brain Res. 123, 77–83.
Major biological actions of CCK – a critical evaluation of research findings.CrossRef | 1:CAS:528:DyaK1cXmslSru7k%3D&md5=02cae79f0b66807f678009f2ca243f7cCAS |

George, S. H., Greenaway, J., Milea, A., Clary, V., Shaw, S., Sharma, M., Virtanen, C., and Shaw, P. A. (2011). Identification of abrogated pathways in fallopian tube epithelium from BRCA1 mutation carriers. J. Pathol. 225, 106–117.
Identification of abrogated pathways in fallopian tube epithelium from BRCA1 mutation carriers.CrossRef | 1:CAS:528:DC%2BC3MXpt1Cns7o%3D&md5=3ca369ada537529580693f8d1d92677dCAS |

Georgiou, A. S., Sostaric, E., Wong, C. H., Snijders, A. P., Wright, P. C., Moore, H. D., and Fazeli, A. (2005). Gametes alter the oviductal secretory proteome. Mol. Cell. Proteomics 4, 1785–1796.
Gametes alter the oviductal secretory proteome.CrossRef | 1:CAS:528:DC%2BD2MXht1Cgtb%2FK&md5=cdbf3ab4288b5c9c01412e63fecd710aCAS |

Georgiou, A. S., Snijders, A. P., Sostaric, E., Aflatoonian, R., Vazquez, J. L., Vazquez, J. M., Roca, J., Martinez, E. A., Wright, P. C., and Fazeli, A. (2007). Modulation of the oviductal environment by gametes. J. Proteome Res. 6, 4656–4666.
Modulation of the oviductal environment by gametes.CrossRef | 1:CAS:528:DC%2BD2sXhtlWmu73O&md5=7ee2c189f3c08f050219461677d15f8eCAS |

Ghosh, P., Saha, S. K., Bhattacharya, S., Bhattacharya, S., Mukherjee, S., and Roya, S. S. (2007). Tachykinin family genes and their receptors are differentially expressed in the hypothyroid ovary and pituitary. Cell. Physiol. Biochem. 20, 357–368.
Tachykinin family genes and their receptors are differentially expressed in the hypothyroid ovary and pituitary.CrossRef | 1:CAS:528:DC%2BD2sXps1SgsL8%3D&md5=ffc74c6c8d5f8d90b1d8a1aafcf49b84CAS |

Hong, F., Breitling, R., McEntee, C. W., Wittner, B. S., Nemhauser, J. L., and Chory, J. (2006). RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22, 2825–2827.
RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis.CrossRef | 1:CAS:528:DC%2BD28XhtFyqt77I&md5=58c1498215fba6f1b359244adf807cb8CAS |

Hunter, R. H. F. (1991). Oviduct function in pigs, with particular reference to the pathological condition of polyspermy. Mol. Reprod. Dev. 29, 385–391.
Oviduct function in pigs, with particular reference to the pathological condition of polyspermy.CrossRef | 1:STN:280:DyaK3Mzmt12msQ%3D%3D&md5=761ea90a46d06ea071390cf2012a5a25CAS |

Hunter, R. H. F. (2005). The Fallopian tubes in domestic mammals: how vital is their physiological activity? Reprod. Nutr. Dev. 45, 281–290.
The Fallopian tubes in domestic mammals: how vital is their physiological activity?CrossRef |

Hunter, R. H. F. (2012). Components of oviduct physiology in eutherian mammals. Biol. Rev. Camb. Philos. Soc. 87, 244–255.
Components of oviduct physiology in eutherian mammals.CrossRef | 1:STN:280:DC%2BC387htFKitw%3D%3D&md5=bd3a1a9777e35ac06bf2b1e92eb53fc0CAS |

Kapelnikov, A., Zelinger, E., Gottlieb, Y., Rhrissorrakrai, K., Gunsalus, K. C., and Heifetz, Y. (2008). Mating induces an immune response and developmental switch in the Drosophila oviduct. Proc. Natl Acad. Sci. USA 105, 13912–13917.
Mating induces an immune response and developmental switch in the Drosophila oviduct.CrossRef | 1:CAS:528:DC%2BD1cXhtFKiurbJ&md5=62549ff16967e1b1a98b5300d00e6e2eCAS |

Kikuchi, K., Kashiwazaki, N., Noguchi, J., Shimada, A., Takahashi, R., Hirabayashi, M., Shino, M., Ueda, M., and Kaneko, H. (1999). Developmental competence, after transfer to recipients, of porcine oocytes matured, fertilized, and cultured in vitro. Biol. Reprod. 60, 336–340.
Developmental competence, after transfer to recipients, of porcine oocytes matured, fertilized, and cultured in vitro.CrossRef | 1:CAS:528:DyaK1MXotlyhtQ%3D%3D&md5=3f2c9ed65d7285a370d08f8554bf2367CAS |

Lee, Y.-L., Lee, K.-F., Xu, J.-S., He, Q.-Y., Chiu, J.-F., Lee, W. M., Luk, J. M., and Yeung, W. S. (2004). The embryotrophic activity of oviductal cell-derived complement C3b and iC3b, a novel function of complement protein in reproduction. J. Biol. Chem. 279, 12763–12768.
The embryotrophic activity of oviductal cell-derived complement C3b and iC3b, a novel function of complement protein in reproduction.CrossRef | 1:CAS:528:DC%2BD2cXitl2gt7c%3D&md5=65be2d9511d5d9b6918ed3735537b726CAS |

Lee, Y.-L., Cheong, A. W., Chow, W.-N., Lee, K.-F., and Yeung, W. S. (2009). Regulation of complement-3 protein expression in human and mouse oviducts. Mol. Reprod. Dev. 76, 301–308.
Regulation of complement-3 protein expression in human and mouse oviducts.CrossRef | 1:CAS:528:DC%2BD1MXit1Khs7s%3D&md5=cfa30067aed1ab0826f5472a3bb4c185CAS |

Leese, H. J. (1988). The formation and function of oviduct fluid. J. Reprod. Fertil. 82, 843–856.
The formation and function of oviduct fluid.CrossRef | 1:STN:280:DyaL1c3gtVWitA%3D%3D&md5=030f6b9caa079f6dc32233b279c538c5CAS |

Liu, Q., Xie, Q.-z., Zhou, Y., and Yang, J. (2015). Osteopontin is expressed in the oviduct and promotes fertilization and preimplantation embryo development of mouse. Zygote 23, 622–630.
Osteopontin is expressed in the oviduct and promotes fertilization and preimplantation embryo development of mouse.CrossRef | 1:CAS:528:DC%2BC2MXhtF2isrbE&md5=dc79d325d6879fa64c285d239b490c5dCAS |

López-Úbeda, R., García-Vázquez, F. A., Romar, R., Gadea, J., Muñoz, M., Hunter, R. H. F., and Coy, P. (2015). Oviductal transcriptome is modified after insemination during spontaneous ovulation in the sow. PLoS One 10, e0130128.
Oviductal transcriptome is modified after insemination during spontaneous ovulation in the sow.CrossRef |

Margis, R., Dunand, C., Teixeira, F. K., and Margis-Pinheiro, M. (2008). Glutathione peroxidase family - an evolutionary overview. FEBS J. 275, 3959–3970.
Glutathione peroxidase family - an evolutionary overview.CrossRef | 1:CAS:528:DC%2BD1cXpsVygtbY%3D&md5=d409be4951abd396afcfcf9c16f4c07cCAS |

Mondéjar, I., Acuña, O., Izquierdo-Rico, M., Coy, P., and Avilés, M. (2012). The oviduct: functional genomic and proteomic approach. Reprod. Domest. Anim. 47, 22–29.
The oviduct: functional genomic and proteomic approach.CrossRef |

Mondéjar, I., Martínez-Martínez, I., Avilés, M., and Coy, P. (2013). Identification of potential oviductal factors responsible of the zona pellucida hardening and monospermy during fertilization in mammals. Biol. Reprod. 89, 67.
Identification of potential oviductal factors responsible of the zona pellucida hardening and monospermy during fertilization in mammals.CrossRef |

Nagai, T., Funahashi, H., Yoshioka, K., and Kikuchi, K. (2006). Up date of in vitro production of porcine embryos. Front. Biosci. 11, 2565–2573.
Up date of in vitro production of porcine embryos.CrossRef | 1:CAS:528:DC%2BD28XlvVagtr0%3D&md5=f12b42660a8ea8b0a858137c9e8978cdCAS |

Niederberger, C. (2014). Re: epididymal specific, selenium-independent GPX5 protects cells from oxidative stress-induced lipid peroxidation and DNA mutation. J. Urol. 191, 1355.
Re: epididymal specific, selenium-independent GPX5 protects cells from oxidative stress-induced lipid peroxidation and DNA mutation.CrossRef | 1:CAS:528:DC%2BC2cXkvFSitbg%3D&md5=5bc45981497090a2411ee8621474e6afCAS |

Persson, H., Rehfeld, J. F., Ericsson, A., Schalling, M., Pelto-Huikko, M., and Hökfelt, T. (1989). Transient expression of the cholecystokinin gene in male germ cells and accumulation of the peptide in the acrosomal granule: possible role of cholecystokinin in fertilization. Proc. Natl Acad. Sci. USA 86, 6166–6170.
Transient expression of the cholecystokinin gene in male germ cells and accumulation of the peptide in the acrosomal granule: possible role of cholecystokinin in fertilization.CrossRef | 1:CAS:528:DyaL1MXlsVOit7g%3D&md5=554f1e86ed934c33c5800942c8c42070CAS |

Pinto, F. M., Ravina, C. G., Subiran, N., Cejudo-Román, A., Fernández-Sánchez, M., Irazusta, J., Garrido, N., and Candenas, L. (2010). Autocrine regulation of human sperm motility by tachykinins. Reprod. Biol. Endocrinol. 8, 104.
Autocrine regulation of human sperm motility by tachykinins.CrossRef |

Ravina, C. G., Seda, M., Pinto, F., Orea, A., Fernández-Sánchez, M., Pintado, C. O., and Candenas, M. L. (2007). A role for tachykinins in the regulation of human sperm motility. Hum. Reprod. 22, 1617–1625.
A role for tachykinins in the regulation of human sperm motility.CrossRef | 1:CAS:528:DC%2BD2sXot1ejtL8%3D&md5=c95761f5e2fb6e3b797bc903ae86809dCAS |

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., and Smyth, G. K. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47.
Limma powers differential expression analyses for RNA-sequencing and microarray studies.CrossRef |

Roldán-Olarte, M., García, D. C., Jiménez-Díaz, M., Valdecantos, P. A., and Miceli, D. C. (2012). In vivo and in vitro expression of the plasminogen activators and urokinase type plasminogen activator receptor (u-PAR) in the pig oviduct. Anim. Reprod. Sci. 136, 90–99.
In vivo and in vitro expression of the plasminogen activators and urokinase type plasminogen activator receptor (u-PAR) in the pig oviduct.CrossRef |

Sasse, M., Lengwinat, T., Henklein, P., Hlinak, A., and Schade, R. (2000). Replacement of fetal calf serum in cell cultures by an egg yolk factor with cholecystokinin/gastrin-like immunoreactivity. Altern. Lab. Anim. 28, 815–831.
| 1:STN:280:DC%2BD3M7jtlSksQ%3D%3D&md5=c956df397a7a5a49185e547b2eec939aCAS |

Savaris, R. F., da Silva, L. C., da Silva Moraes, G., and Edelweiss, M. I. A. (2008). Expression of MUC1 in tubal pregnancy. Fertil. Steril. 89, 1015–1017.
Expression of MUC1 in tubal pregnancy.CrossRef |

Schroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., Lightfoot, S., Menzel, W., Granzow, M., and Ragg, T. (2006). The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7, 3.
The RIN: an RNA integrity number for assigning integrity values to RNA measurements.CrossRef |

Seytanoglu, A., Georgiou, A. S., Sostaric, E., Watson, P. F., Holt, W. V., and Fazeli, A. (2008). Oviductal cell proteome alterations during the reproductive cycle in pigs. J. Proteome Res. 7, 2825–2833.
Oviductal cell proteome alterations during the reproductive cycle in pigs.CrossRef | 1:CAS:528:DC%2BD1cXmvFCit7s%3D&md5=26e8a7d5148b862fcd3e98dee1e3eb38CAS |

Shao, R., Egecioglu, E., Weijdegård, B., Kopchick, J. J., Fernandez-Rodriguez, J., Andersson, N., and Billig, H. (2007). Dynamic regulation of estrogen receptor-α isoform expression in the mouse fallopian tube: mechanistic insight into estrogen-dependent production and secretion of insulin-like growth factors. Am. J. Physiol. Endocrinol. Metab. 293, E1430–E1442.
Dynamic regulation of estrogen receptor-α isoform expression in the mouse fallopian tube: mechanistic insight into estrogen-dependent production and secretion of insulin-like growth factors.CrossRef | 1:CAS:528:DC%2BD2sXhtlenurjO&md5=473e84e098bd206db7a58b6d415bc4ceCAS |

Shirley, B., and Reeder, R. L. (1996). Cyclic changes in the ampulla of the rat oviduct. J. Exp. Zool. 276, 164–173.
Cyclic changes in the ampulla of the rat oviduct.CrossRef | 1:STN:280:DyaK2s%2FlsFOqsQ%3D%3D&md5=ebee2ae2207c54060f1a979a370e459cCAS |

Silva, A. L., Fuhrich, D. G., Carson, D. D., Engel, B. J., and Savaris, R. F. (2014). MUC1 expression in fallopian tubes of women with hydrosalpinx. Eur. J. Obstet. Gynecol. Reprod. Biol. 180, 106–110.
MUC1 expression in fallopian tubes of women with hydrosalpinx.CrossRef | 1:CAS:528:DC%2BC2cXhtlGgsb3J&md5=44adfce4cbd86d91eafb7db488ab2c48CAS |

Slavík, T., and Fulka, J. (1999). Oviduct secretion contributes to the establishment of species specific barrier preventing penetration of oocytes with foreign spermatozoa. Folia Biol. (Praha) 45, 53–58.

Talevi, R., and Gualtieri, R. (2010). Molecules involved in sperm-oviduct adhesion and release. Theriogenology 73, 796–801.
Molecules involved in sperm-oviduct adhesion and release.CrossRef | 1:CAS:528:DC%2BC3cXivFGltrw%3D&md5=645067f46ea76c7c57231fc9d37b7b8aCAS |

Tauber, P. F., Wettich, W., Nohlen, M., and Zaneveld, L. J. (1985). Diffusable proteins of the mucosa of the human cervix, uterus, and fallopian tubes: distribution and variations during the menstrual cycle. Am. J. Obstet. Gynecol. 151, 1115–1125.
Diffusable proteins of the mucosa of the human cervix, uterus, and fallopian tubes: distribution and variations during the menstrual cycle.CrossRef | 1:CAS:528:DyaL2MXktVCrt7s%3D&md5=142a2d2c9557c2ce508549d9128a0ca4CAS |

Tone, A. A., Begley, H., Sharma, M., Murphy, J., Rosen, B., Brown, T. J., and Shaw, P. A. (2008). Gene expression profiles of luteal phase fallopian tube epithelium from BRCA mutation carriers resemble high-grade serous carcinoma. Clin. Cancer Res. 14, 4067–4078.
Gene expression profiles of luteal phase fallopian tube epithelium from BRCA mutation carriers resemble high-grade serous carcinoma.CrossRef | 1:CAS:528:DC%2BD1cXnvFylurs%3D&md5=dc5edaf0e6b39baad4f6e61319879e2dCAS |

Tramer, F., Rocco, F., Micali, F., Sandri, G., and Panfili, E. (1998). Antioxidant systems in rat epididymal spermatozoa. Biol. Reprod. 59, 753–758.
Antioxidant systems in rat epididymal spermatozoa.CrossRef | 1:CAS:528:DyaK1cXmsVGrsL8%3D&md5=1ac3ed504dfd9f6c35f84139ff0c2707CAS |

Ulbrich, S. E., Kettler, A., and Einspanier, R. (2003). Expression and localization of estrogen receptor α, estrogen receptor β and progesterone receptor in the bovine oviduct in vivo and in vitro. J. Steroid Biochem. Mol. Biol. 84, 279–289.
Expression and localization of estrogen receptor α, estrogen receptor β and progesterone receptor in the bovine oviduct in vivo and in vitro.CrossRef | 1:CAS:528:DC%2BD3sXjtFWgs7o%3D&md5=5858177febdbcccf77a20daae5dafe94CAS |

Winuthayanon, W., Bernhardt, M. L., Padilla-Banks, E., Myers, P. H., Edin, M. L., Hewitt, S. C., Korach, K. S., and Williams, C. J. (2015). Oviductal estrogen receptor α signaling prevents protease-mediated embryo death. eLife 4, e10453.
Oviductal estrogen receptor α signaling prevents protease-mediated embryo death.CrossRef |

Yanagimachi, R. (1994). Mammalian fertilization. In ‘The Physiology of Reproduction’. (Eds E. Knobil and J. Neill.) pp. 189–317. (Raven Press: New York, USA.)

Yang, C.-H., and Yanagimachi, R. (1989). Differences between mature ovarian and oviductal oocytes: a study using the golden hamster. Hum. Reprod. 4, 63–71.
Differences between mature ovarian and oviductal oocytes: a study using the golden hamster.CrossRef | 1:STN:280:DyaL1M3hsVKnsQ%3D%3D&md5=67d0e09d7357adb476427d820d91a040CAS |

Yániz, J. L., Lopez-Gatius, F., Santolaria, P., and Mullins, K. (2000). Study of the functional anatomy of bovine oviductal mucosa. Anat. Rec. 260, 268–278.
Study of the functional anatomy of bovine oviductal mucosa.CrossRef |

Zhang, X., Kidder, G., Watson, A., Schultz, G., and Armstrong, D. (1994). Possible roles of insulin and insulin-like growth factors in rat preimplantation development: investigation of gene expression by reverse transcription–polymerase chain reaction. J. Reprod. Fertil. 100, 375–380.
Possible roles of insulin and insulin-like growth factors in rat preimplantation development: investigation of gene expression by reverse transcription–polymerase chain reaction.CrossRef | 1:CAS:528:DyaK2cXkt1Ogu7s%3D&md5=5a4934c11f5df70ce5ac7a3a9c48b269CAS |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (465 KB) Export Citation