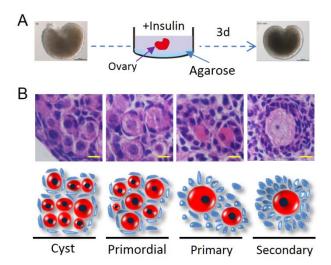
Supplementary Material

Insulin regulates primordial-follicle assembly *in vitro* by affecting germ-cell apoptosis and elevating oestrogen


Xin-Lei Feng^A, Yuan-Chao Sun^A, Min Zhang^A, Shun-Feng Cheng^A, Yan-Ni Feng^A, Jing-Cai Liu^{A,B}, Hong-Hui Wang^{A,B}, Lan Li^A, Guo-Qing Qin^C and Wei Shen^{A,D}

^AKey Laboratory of Animal Reproduction and Germplasm Enhancement, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.

^BCollege of Life Science, Qingdao Agricultural University, Qingdao 266109, China.

^CEMF Nutrition, 715 Marion Street, Winnipeg, Manitoba, R2J 0K6, Canada.

^DCorresponding author. Email: shenwei427@163.com

Fig. S1. Experiment design and folliculogenesis. (A) 0 dpp mouse ovaries were isolated and cultured *in vitro* with the presence of insulin for 3 days. (B) The structure and mode of cyst, primordial, primary and secondary follicle in culture system.

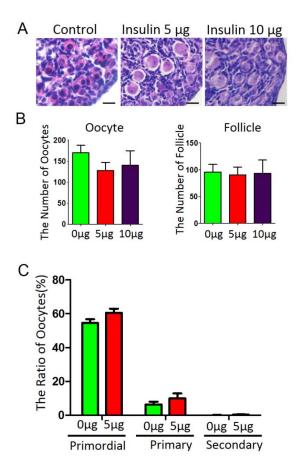
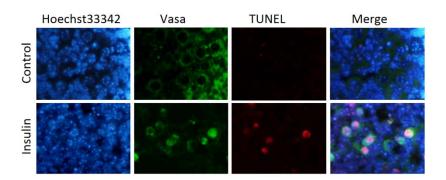



Fig. S2. Effect of insulin on follicle development. (A) Primary follicle was found in the insulin-treatment group. (B) The quantitative change of follicles and oocytes after insulin treatment. (C) The percentages of follicles at different developmental stages. The results are presented as mean \pm SD. Scale bar: 50 μ m.

Fig. S3. TUNEL and immunofluorescence. Characteristics of apoptotic cells (red), MVH (green) of oocytes and Hoechst 33342 (blue) staining of the nuclei. Scale bar: $100~\mu m$.