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ABSTRACT

Context and aims. Melatonin is a powerful antioxidant regulating various biological functions,
including alleviating male reproductive damage under pathological conditions. Here, we aim to
analyse the effect of melatonin on normal male reproduction in mice. Methods. Male mice
received an intraperitoneal injection of melatonin (10 mg/kg body weight) for 35 consecutive days.
The testis and epididymis morphology, and epididymal sperm parameters were examined. PCNA,
HSPA2, SYCP3, ZO-1 and CYP11A1 expressions in epididymis or testis were detected by
immunohistochemistry or Western blotting. Male fertility was determined by in vivo and in vitro
fertilisation (IVF) experiments. The differentially expressed sperm proteins were identified by
proteomics. Key results. No visible structural changes and oxidative damage in the testis and
epididymis, and no significant side effects on testis weight, testosterone levels, sperm motility, and
sperm morphology were observed in the melatonin-treatment group compared with the control
group. Spermatogenesis-related molecules of PCNA, SYCP3, ZO-1, and CYP11A1 showed no
significant differences in melatonin-treated testis. However, PCNA and HSPA2 increased their
expressions in the epididymal initial segments in the melatonin-treatment group. Normal sperm
fertilisation, two-cell and blastocyst development were observed in the melatonin-treated group,
but melatonin significantly enhanced the sperm binding ability characterised as more sperm binding
to one oocyte (control 7.2 ± 1.3 versus melatonin 11.8 ± 1.5). Sperm proteomics demonstrated
that melatonin treatment enhanced the biological process of cell adhesion in sperm.
Conclusions and implications. This study suggests that melatonin can promote sperm
maturation and sperm function, providing important information for further research on the
physiological function and protective effect of melatonin in male reproduction.
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Melatonin is an endogenous neurohormone mainly synthesised by the pineal glands, 
which regulates sleep cycles and circadian rhythms (Sun et al. 2020). It also performs 
antioxidant, anti-inflammatory, free radical removal and other functions, and participates 
in the regulation of various biological functions through these roles (Bruni et al. 2015). 
These major properties make it useful in the regulation of pathophysiological mechanisms 
of neurological diseases, respiratory diseases, older adult disorders, and so on (Alamdari 
et al. 2021; Mao et al. 2021; Wang et al. 2021). 

As a natural health product and supplement, melatonin is readily purchased from 
drugstores and pharmacies, and is commonly used for sleep-related disorders treatment 
such as anxiety, insomnia and jet lag (Erland and Saxena 2017). However, the exact 
pharmacological dose, duration, and differences of melatonin in normal physiological 
functions are not clear (Claustrat and Leston 2015). 
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Melatonin is synthesised not only by the pineal gland, but 
also by reproductive organs (Huai et al. 2012). It is also 
thought to play an important role in reproductive develop-
ment and regulation (Zi et al. 2022). Due to living habits, 
work pressure, environmental pollution and other factors, 
more and more men have sub-health status, and the age of 
marriage and child bearing is getting older (Whiteford et al. 
2013). All these factors lead to an increase in male infertility 
year by year. Male infertility is now a global problem that 
attracts increasing social attention (Barratt et al. 2017). 
Oxidative stress (OS) plays a main role in most sub- or 
infertility cases caused by male factors (Gibb et al. 2020). 
Reactive oxygen species (ROS) are derived from cell 
metabolism or other biological processes, and they can act as 
mediators and regulators of cell metabolism and apoptosis 
(Huang et al. 2020). Appropriate production of ROS is 
crucial for sperm function, such as sperm capacitation and 
sperm-egg recognition, and binding (Gualtieri et al. 2021). 
However, excessive production of ROS will cause sperm 
damage leading to defective sperm function, which may 
result from the effects of ROS on spermatogenesis in the 
testis, sperm maturation in the epididymis, and sperm itself 
(Gibb et al. 2020). Melatonin could ameliorate reproductive 
dysfunctions in males associated with pathological conditions 
and toxicant exposure (Rocha et al. 2015). Melatonin also has 
been used to regulate sleep cycles and the other systemic 
diseases, and it also serves as a promising antioxidant for 
improving male sub-fertility (Tordjman et al. 2017; Zi et al. 
2022). As a commonly used antioxidant, the effects of melatonin 
in reproductively normal males have received less attention. 

In the present study, we investigate the effects of melatonin 
application on spermatogenesis and sperm maturation, and 
explore its effect on male fertility by evaluating sperm quality. 
The application of melatonin in the physiological state can 
promote mice sperm quality to a certain extent, which provides 
useful information for in-depth study of the molecular 
mechanism of melatonin in male reproduction, and the role 
of melatonin application in male reproductive protection 
related to various oxidative stress. 

Methods

Animal experiments

Six-week-old male C57 mice (about 20–22 g) were purchased 
from Beijing Vital River Laboratory Animal Technology 
company and raised in specific pathogen free (SPF) environ-
ment under stable temperature 22 (± 2)°C, and humidity 
45 (± 5) % in a 12 h/12 h light/dark cycle. All mice were 
given free access to food and drinking water. All experiments 
were approved by the Medical Ethics Committee of Yantai 
Yuhuangding Hospital. 

Twenty mice were randomly divided into control and 
melatonin-treated groups with 10 mice in each group. Mice 
(n = 5) were kept in one cage. Mice in the control group 

received an intraperitoneal injection of 100 μL normal saline 
(0.9% NaCl with 0.5% ethanol) daily for 35 days, while mice 
in the melatonin-treated group received an intraperitoneal 
injection of melatonin (10 mg/kg body weight, dissolved in 
0.9% NaCl + 0.5% ethanol) daily for 35 days. The dosage 
and duration of melatonin treatment referred to our previous 
report (Wang et al. 2022a; Zi et al. 2022), and the admini-
stration of melatonin was performed at 9 am every day. On the 
35th day, all mice were killed (1.25% 2,2,2-tribromoethanol 
sterile anesthetic, 0.2mL/kg, intraperitoneal injection), one of 
the testes and epididymides of each mouse were collected for 
fixation in Bouin’s solution (HT10132, Sigma, St. Louis, MO, 
USA) for immunochemistry staining and microscopic evalua-
tion, and the other testis and epididymis were collected for 
sperm preparation and mRNA and protein extraction. Blood 
was collected for serum testosterone detection. The serum 
testosterone levels were measured using Unicel DXI800 
automatic chemiluminescence immunoassay analyser (Beckman 
Coulter, Brea, CA, USA). Testosterone reagent kit was used 
according to manufacturer’s instructions (Elecsys Testosterone, 
Roche Diagnostics GmbH, Mannheim, Germany). The relative 
weight of the testis was indicated as g/g relative to body 
weight. The cauda epididymal spermatozoa was collected 
by cutting the cauda epididymis tubules into small pieces to 
release the spermatozoa into pre-warmed sperm washing 
buffer (PSW-100, Nidacon, Molndal, Sweden). The sperm 
parameters were evaluated by computer-assisted sperm 
analysis (CASA) (Hamilton Thorne, Beverly, MA, USA). The 
abnormal sperm including curved back sperm head and bent 
sperm midpiece were averagely counted from five control and 
five melatonin-treated mice, respectively. The observations 
were made by two researchers under a light microscope 
(DM LB2, Leica, Nussloch, Germany) at the magnification 
of 40×. About 400 sperm were counted for each mouse. 

Sperm capacitation and acrosome reaction assay

The sperm capacitation status was evaluated by using 
chlortetracycline (CTC) staining assay. Briefly, the cauda 
epididymal sperm (106 sperm/mL) from five control or five 
melatonin-treated mice were collected and incubated in 
capacitation medium (C-TYH medium, 72021, SUDGEN, 
Nanjing, China) at 37°C, 5% CO2 for 60 min for sperm 
capacitation. The percentage of hyperactivated sperm were 
evaluated by using CASA detection between control and 
melatonin-treatment mice. The criteria that define hyperac-
tivated sperm was that: curvilinear velocity (VCL) 
>150 μm/s, lateral head displacement (ALH) >7.0 μm, and 
linearity coefficient (LIN) <50%. Then 100 μL sperm 
suspension were incubated with CTC solution (750 mmol/L 
CTC in 130 mmol/L NaCl, 5 mmol/L cysteine, 20 mmol/L 
Tris-HCl, pH 7.8) for 10 min, and the nuclei were stained 
by DAPI solution. Then the sperm suspension was fixed by 
4% paraformaldehyde and CTC staining patterns were 
observed by using an Axio Observer.Z1/7 fluorescence 
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microscope (Carl Zeiss, Inc., Oberkochen, Germany). At least 
200 spermatozoa were evaluated in each slide and classified 
into three staining patterns: pattern F of non-capacitated 
sperm with green fluorescence staining over the sperm head; 
pattern B of capacitated sperm with no staining in post-
acrosomal region; pattern AR of acrosome reacted sperm 
with no acrosome staining. The capacitation status was 
displayed as the percentage of pattern B sperm. 

For acrosome reaction assay, the capacitated sperm 
suspension was treated with 10 μm A23187 ionophore in 
0.1% (v/v) dimethyl sulphoxide at 37°C, 5% CO2 for 
30 min, then stained by FITC-PSA (L0770, Sigma, St. Louis, 
MO, USA) for 30 min and the nuclei were stained by 
propidium iodide (PI), and washed with phosphate buffered 
saline (PBS) before mounting on slides for evaluation under 
Axio Observer.Z1/7 fluorescence microscope. Average 200 
spermatozoa were calculated for each side. 

Western blotting

Protein extractions were performed by grinding the testis 
tissues with liquid nitrogen, and dissolving by Radio 
Immunoprecipitation Assay (RIPA, 50 mM Tris, 150 mM 
NaCl, 1% Triton X-100, 1% sodium deoxycholate and 0.1% 
SDS) lysis buffer. After centrifugation and protein concen-
tration measurement by bicinchoninic acid (BCA) protein 
quantification kit (D131, Shandong Cellgene Technology 
Co., Yantai, China). A total of 50 μg proteins from each sample 
were loaded in 12% gels for sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE). Polyvinylidene 
difluoride (PVDF) membranes were used for protein transfer 
at 100 V for 1 h, then was blocked with 5% (w/v) skimmed 
milk for 1 h at room temperature (RT) and incubated with 
primary antibody (anti-PCNA, ab92552; anti-SYCP3, anti-
ab97672; anti-CYP11A1, ab272494; anti-ZO-1, ab221547, 
Abcam, Cambridge, UK; HSPA2, DF8101; anti-ACTB, AF7018, 
Affinity Biosciences, JiangSu, China) at 4°C overnight. The 
membranes were washed three times with 0.5% (v/v) 
Tween-20 in Tris-buffered saline (TBS) and then incubated 
with appropriate HRP-conjugated secondary antibody (ZB2305, 
Zhong-Shan Golden Bridge, Beijing, China; 1:5000) at RT for 
1 h. After being washed by Tris-buffered saline with Tween-20 
(TBST), the protein bands were detected by an ECL kit 
(KF8001, Affinity Biosciences) using ChemiScope 6200 Touch 
(CLINX Science Instruments, Shanghai, China) and quantified 
with ImageJ software (National Institutes of Health, 
Bethesda, MD, USA) using ACTB as the loading control. The 
relative expression of each protein was calculated by 
recording its average grey values normalised to the value of 
ACTB. The experiments were repeated at least three times. 

Histological and immunohistochemical
(IHC) assay

Paraffin embedded epididymis specimens which were 
obtained from five mice in the control group and five mice 

in the melatonin-treated group were cut into 5 μm thick 
sections, then were placed in xylene and ethanol for dewaxing 
and dehydration. For histological examination, the sections 
were stained with hematoxylin and eosin (H&E), and the 
morphological structures were observed under a light micro-
scope (DM LB2, Leica). For immunohistochemical staining, 
after antigen repair in citrate buffer solution (0.01 M, pH 
6.0) using a microwave under medium heat for 20 min, the 
sections were blocked with 3% bovine serum albumin (BSA). 
Then the sections were incubated with primary antibody 
(anti-PCNA, ab92552, Abcam; HSPA2, DF8101, Affinity 
Biosciences) at 4°C overnight. After washing in PBS buffer 
for three times, the sections were incubated with HRP-
conjugated secondary antibody (ZB2305, Zhong-Shan Golden 
Bridge; 1:400) for 1 h at 37°C. 3,3 0-diaminobenzidine (DAB) 
kit (ZLI-9018, Zhong-Shan Biotechnology, Beijing, China) 
was used to display the peroxidase active sites, and hema-
toxylin counterstain was performed to stain nuclei. The 
sections were dehydrated and examined under light microscopy 
(DM LB2, Leica). Pre-immune IgG was used as the negative 
control. The staining was performed on two epididymis 
sections from each mouse. The average intensity of positive 
staining in initial segment epididymis was recorded by 
ImageJ software and statistically compared by GraphPad 
Prism 8 (GraphPad Prism, La Jolla, CA, USA). 

Measurements of oxidative enzymes

The homogenates of mouse testis, caput and cauda epididymis 
were prepared according the manufacturer’s instructions 
(Beyotime, Shanghai, China). The total antioxidant capacity 
(TAC), superoxide dismutase (SOD), glutathione (GSH) and 
malondialdehyde (MDA) levels were examined. Optical 
density (OD) values were read using microplate reader 
(Varioskan, Thermo Scientific, Shanghai, China) and analysed 
by using GraphPad Prism 8 software. 

Male fertility assay

Male mice fertility was assessed by mice mating experiment 
and in vitro fertility (IVF) assay. At the endpoint of melatonin 
treatment, five mice were randomly selected from each group, 
and each male mouse mated with two female mice in oestrus 
at 5 pm and were examined whether there was a vaginal plug 
formation the next morning. Female mice with vaginal plugs 
were kept alone. The ratio of pregnancy in female mice was 
assessed by comparing the number of pregnant females 
with the number of females having vaginal plug, and the 
number of offspring produced by pregnant females was recorded. 

Normal female mice were super-ovulated via intraperi-
toneal injection of 5 IU pregnant mare serum gonadotrophin 
(PMSG) and human chorionic gonadotrophin (hCG) at 48 h 
intervals. Cumulus oocyte complexes (COCs) were obtained 
after 14–17 h of injection of hCG. After cervical dislocation 
of female mice, COCs were transferred to microscopic 
droplets of 200 μL HTF medium (72002, SUDGEN, Nanjing, 
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China), which were incubated at 37°C with saturated 
humidity, and 5% CO2. Caudal epididymis obtained sperm 
were transferred to pre-incubated C-TYH medium (72021, 
SUDGEN) for 30 min, which were incubated at 37°C with 
saturated humidity, and 5% CO2. About 104 sperm were trans-
ferred into HTF medium containing oocytes. After incubation 
for 4 h, fertilised oocytes were washed and transferred into a 
KSOM medium (M1430, AIBEI, Nanjing, China). The average 
numbers of sperm binding to oocyte were counted. About 35 
oocytes were obtained from each female mouse. Fertilisation 
rate was displayed as the percentage of the number of 
pronucleus formation oocytes/M II oocytes. The percentage 
of the two-cell embryos/the number of pronucleus formation 
oocytes was considered the embryo development rate, and the 
percentage of the blastocyst/ the number of the two cell 
embryos was considered the blastocyst formation rate. 

Quantitative proteomics analysis of
melatonin-treated mice sperm

The Isobaric Tags for Relative and Absolute Quantification 
(iTRAQ) procedures were performed according to our previous 
publication (Liu et al. 2019). Briefly, sperm proteins from five 
control or melatonin-treated mice were extracted and pooled, 
respectively. For each mouse, 200 μg sperm proteins were 
collected and pooled in each group. Finally, 400 μg pooled 
sperm proteins in each group was used for labelling and 
identification experiments. After treatment with 20 mM 
dithiothreitol (DTT) at 56°C for 1 h and 50 mM iodoac-
etamide in the dark for 30 min, the samples were digested 
with 3 μg trypsin (sequencing grade; Promega, Madison, 
WI, USA) at 37°C overnight, and the obtained peptides 
were labelled with iTRAQ isobaric tags. The first dimensional 
separation by microLC was conducted by using Durashell RP 
column (5 μm, 150 Å, 250 mm × 4.6 mm i.d., Agela, Tianjin, 
China). A total of 10 fractions were collected for further 
LC-MS/MS analysis by using nanoflow HPLC instrument 
(EASY-nLC 1000 system, Thermo Fisher Scientific, Waltham, 
MA, USA) linked with an online Q Exactive mass spectrometer 
(Thermo Fisher Scientific) with a nanoelectrospray ion source 
(Thermo Fisher Scientific) was used. The raw data were 
processed by using the proteomic workflow of Proteome 
Discoverer 2.1 and the Mascot search engine (ver. 2.6) with 
the precursor and fragment mass tolerances set to 15 ppm 
and 20 milli-mass units (mmu), respectively. The algorithm 
was set to use trypsin as the enzyme, allowing for two 
missed cleavage sites. The fixed modification was 
carbamidomethylation (cysteine), and the variable modifi-
cations were oxidation (methionine), acety-lation (protein 
N terminus), and iTRAQ labelling (tyrosine and lysine, 
N-terminal residues). Peptide ions were filtered from the 
cut-off scores of Percolator based on P < 0.01. The false 
discovery rate was set to 1% for peptide identifications. The 
iTRAQ quantitative values were automatically calculated, 
and exported to an Excel file, the Gaussian distribution of 

ratios was recalculated manually, and all ratios were 
transformed to base 10 logarithm values. A confidence fold 
of 1.5 was used to determine the cut-off values for statisti-
cally significant changes. Technical MS replicates were 
performed. 

Broad bioinformatics analysis was performed on the iden-
tified proteins. The Gene Ontology (GO) analysis including 
molecular function and biological process was conducted 
by using online bioinformatics tools of the Database for 
Annotation, Visualisation and Integrated Discovery (DAVID) 
tools (https://david.ncifcrf.gov/). A P-value of less than 0.01 
was selected as significant. 

Statistical analysis

Data were presented as mean ± s.d. for triple repeats. All 
statistical analyses were performed by GraphPad Prism 8. 
The mean values were determined by Student’s t-test, and 
P-value less than 0.05 was considered significant. 

Results

Melatonin treatment had no significant effects on
mice testis and epididymis function

C57BL/6 mice were intraperitoneally injected with melatonin 
for 35 days, and the reproductive phenotypes were charac-
terised. The values of body weight, testosterone levels, 
percentage of motile sperm and sperm motility showed 
no significant changes between the two groups (Fig. 1). 
Melatonin could increase the sperm progressive motility but 
not significantly. Sperm capacitation status was evaluated 
by observing the percentages of CTC-stained pattern B 
sperm and the hyperactivated sperm calculated by CASA. 
After sperm incubation in capacitation medium, the percentage 
of capacitated sperm in melatonin-treatment increased, but 
not significantly. There were no significant differences in 
the average VCL, ALH values, and the percentage of 
hyperactivated and acrosome reacted sperm between two 
groups (Fig. 2). Melatonin treatment displayed no obvious 
effects on the testis and epididymis morphology. Although 
melatonin-treatment increased the proportion of stage VIII 
seminiferous tubules, there was no significant difference 
(Fig. 3). The results indicated that melatonin treatment had 
no significant adverse effects on male reproductive organs 
and their functions. 

Oxidative stress is the main marker of testicular and 
epididymal injury induced by various adverse factors. The 
testicular and epididymal superoxide dismutase (SOD), glu-
tathione peroxidase (GSH) and MDA levels between melatonin 
treatment and control group were determined, which showed 
no significant alterations (Fig. 4). The results indicated that 
melatonin did not alter the testicular and epididymal marker 
enzyme activities. 
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Fig. 1. Characteristics of testis and sperm quality in the control and melatonin treatment groups. Data
were presented as the mean± s.d. of the 10 mice in each group (control and melatonin treated). P-value less
than 0.05 was considered significance.

Melatonin increased PCNA expression in the
epididymal initial segment

To further explore the effects of melatonin on mice spermato-
genesis by checking the expressions of marker molecules, key 
proteins related to spermatogenesis processes were detected. 
PCNA expression could reflect the proliferation of germ cells 
of spermatogonia and spermatocytes, and it had an increased 
expression trend in melatonin-treated mice, but was not 
significant. SYCP3 reflected the meiosis process, ZO-1 
reflected the integrity of the blood-testis barrier, and CYP11A1 
reflected the androgen secretion capacity in Leydig cells. They 
were all detected on testis by Western blot, and showed no 
significant alterations in melatonin-treated mice (Fig. 5). 
Meanwhile, the expressions of PCNA and HSPA2 in testicular 
germ cells were identified by immunohistochemistry. The 
results showed that PCNA was mainly expressed in spermato-
gonium cells (Fig. 5a), while HSPA2 was mainly expressed in 
spermatocyte and spermatids (Supplementary Fig. S1). There 
was no significant difference in their expression levels between 
the control and the melatonin treated group. 

To explore the effects of melatonin on mice sperm matura-
tion, PCNA and HSPA2 expression in mice epididymis were 
detected by immunohistochemistry. PCNA represented the 
proliferative activity of epithelial cells. HSPA2 was related 
to sperm maturation and fertility. The results showed that 

PCNA and HSPA2 were predominantly expressed in epididy-
mal initial segments, and both had increased expressions in 
melatonin-treated mice (Fig. 6). These results indicated that 
melatonin-treatment may promote the proliferation of caput 
epididymal epithelial cells. 

Melatonin treatment enhanced sperm binding
ability to oocytes

Male fertility was determined by in vivo and in vitro 
fertilisation (IVF) experiments. After caging with normal 
female mice, no significant differences were found in the 
vaginal plug formation rate and the numbers of offspring 
between the two groups (Table 1). IVF results showed that 
melatonin treatment did not affect sperm fertility following 
normal two-cell and blastocyst development. While melatonin 
treatment significantly enhanced the sperm-binding ability to 
oocytes with more sperm-binding with one oocyte (control 
7.2 ± 1.3 versus melatonin 11.8 ± 1.5) (Fig. 7). These results 
indicated that melatonin treatment could enhance the 
interaction of sperm with oocytes. 

Sperm proteome of melatonin-treated mice

To understand the molecular basis of melatonin-treatment 
enhancing sperm function, we identified differentially 
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Fig. 2. Characteristics of sperm capacitation and acrosome reaction in the control and melatonin
treatment groups. (a) CTC fluorescence patterns of sperm with the status of non-capacitation
(pattern F), capacitation (pattern B) and acrosome reaction (AR), the percentage of pattern B
sperm were calculated; (b) the sperm parameters of VCL, ALH and the percentage of
hyperactivated sperm were calculated between control and melatonin treatment group; (c) the
percentage of acrosome reacted sperm were calculated between control and melatonin
treatment group; AR, acrosome reaction; Data were presented as the mean ± s.d. of the five
mice in each group (control and melatonin treated) and at least 200 spermatozoa were
calculated in each mice. P-value less than 0.05 was considered significance.
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Fig. 3. The effects of melatonin treatment on the morphology of mouse testis and epididymis
stained with H&E. Percentages of testicular stage VII and VIII tubules, and abnormal sperm in
control and melatonin-treated mice were calculated. Sp, spermatogonia; Ps, pachytene
spermatocyte; Rs, round spermatid; Lu, luminal; The data were analysed by t test. Data were
presented as the mean ± s.d. of the five mice in each group (control and melatonin treated).
P-value less than 0.05 was considered significance. Scale bars = 50 μm.

expressed sperm proteins between control and melatonin-
treated mice by iTRAQ proteomics, and screened 126 differ-
entially expressed proteins, including 43 up-regulated proteins 
by melatonin treatment (Table S1). A broad functional 
classification showed that these differentially expressed 
proteins were mainly related to cell adhesion molecules, 
defense/immunity, extracellular matrix, protein-binding 
modulator, translation, transmembrane signal receptor, and 
transporter. Enriched bioinformatics analysis indicated that 
up-regulated proteins were mainly involved in the biological 
processes of cell adhesion, while the biological processes of 
NF-kb and IL-1 signalling were enriched in the down-
regulated proteins (Fig. 8). 

Discussion

Melatonin, known as a circadian rhythm regulator, is synth-
esised in the pineal gland of mammals. It has the capacity 
for proliferation, anti-inflammatory, and anti-apoptotic 
properties (Frungieri et al. 2017). Melatonin is now used in 
many pathophysiological fields because of its ability to 
interact with cells from the immune and cardiovascular 
systems and its significant role in the regulation of glucose 
and metabolic disorders (Navarro-Alarcón et al. 2014; 

Cho et al. 2021; Wang et al. 2022b). Because of its ability 
to cross physiological barriers, such as the blood–testis 
barrier (Venditti et al. 2021), exogenous melatonin can reach 
the testis in a certain concentration (Álvarez-Fernández et al. 
2023). Thus, melatonin is now considered an excellent 
candidate in the field of preventing and/or treating male 
reproductive dysfunctions caused by oxidative stress (Rocha 
et al. 2015). Although melatonin has low toxicity, there are 
few reports about their specific effects on normal reproduc-
tion functions compared with other treatments of systemic 
diseases. Here, key molecules associated with spermato-
genesis, sperm maturation and sperm functions were analysed 
to add to the understanding of the molecular basis and 
mechanisms of melatonin in male reproduction. 

In this paper, the effects of melatonin on male reproduction 
in normal mice were evaluated from three aspects of spermato-
genesis, sperm maturation and sperm function. Testis and 
epididymis maintained the normal morphology in the 
melatonin-treated mice, indicating that melatonin may have 
no obvious side effects on the male reproductive system. 
This was reflected in the cauda epididymal sperm analysis 
that was not changed significantly by melatonin treatment, 
including sperm motility, capacitation and acrosome. The 
spermatogenesis processes were evaluated at the molecular 

451

www.publish.csiro.au/rd


Y. Liu et al. Reproduction, Fertility and Development

Fig. 4. Detection of antioxidant capacity in mice testis from control and melatonin-treatment groups. Con,
control; MLT, melatonin. Data were presented as the mean ± s.d. of the five mice in each group (control and
melatonin treated). P-value less than 0.05 was considered significance.

level. PCNA, an indicator of germ cell proliferation, was 
mainly located in spermatogonia and spermatocytes. Up-
regulated PCNA expression in spermatogonia and spermato-
cytes was found in melatonin-treated mice, but with no 
significant difference. SYCP3 reflects the meiosis process, 
and ZO-1 reflects the integrity of the blood–testis barrier 
(Liu et al. 2021). Neither SYCP3 nor ZO-1 was affected by 
melatonin treatment, indicating that melatonin has no 
adverse influence on spermatogenesis. CYP11A1 is a key 
enzyme for steroidogenesis in Leydig cells (Liu et al. 2021), 
whose expression was not changed by melatonin treatment 
which was consistent with the determination of testosterone 
levels. However, some in vitro experiments have shown that 
melatonin can affect testosterone production in Leydig cells 
in a dose-dependent manner, the lack of in vivo effect of 
melatonin in the present study may be somewhat attributed 
to inappropriate dosage used (Deng et al. 2018; Li et al. 
2020; Yang et al. 2021). Overall, melatonin treatment had 
no adverse effect on testis function, as there was no excess 
ROS production in physiological status, which was measured 
in testis and epididymis. 

The epididymis is an organ for sperm maturation, and 
spermatozoa produced in the testis acquire the ability of 

motility and fertilisation during its transit in the epididymal 
tubule, including the interaction with the sperm maturation 
microenvironment in a region-dependent manner (James 
et al. 2020). The epididymis is also an organ that is mainly 
under androgen regulation (Robaire and Hamzeh 2002). 
No androgen alteration was found in melatonin treatment, 
suggesting that melatonin may not have a significant effect 
on epididymis development. However, the epididymal initial 
segment (IS) is an active segment of epididymis, whose cellular 
changes could not be reversed by circulating testosterone 
(Krutskikh et al. 2011). The IS, the most proximal part of 
the epididymis, plays a critical role in sperm maturation. If 
the IS was not fully developed, sperm showed defective 
maturation with flagellar angulation/hairpin and reduced 
motility, which may lead to male infertility (Jun et al. 2014). 
The IS can absorb approximately 90% of the fluid that leaves 
the rete testis (James et al. 2020). Fluid absorption resulted 
in the increase of sperm concentration, an important factor for 
male fertility. PCNA was an indicator of cell proliferation, 
and its high expression was important for the function of 
the initial segment. As a male fertility marker, HSPA2 plays 
a key role in the germ cell differentiation, participates in the 
reconstruction of special sperm domains, and plays an 
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Fig. 5. The effects of melatonin treatment on testicular expressions of PCNA, SYCP3, CYP11A1
and ZO-1. (a) Expression of PCNA; (b) Quantification of PCNA; (c)Western blot analysis of PCNA,
SYCP3, CYP11A1 and ZO-1 in triple replication; (d) quantification ofWestern blot results. Data are
presented as the mean ± s.d. of the five mice in each group (control and melatonin treated). P-value
less than 0.05 was considered significance. Scale bars = 50 μm.

Fig. 6. PCNA and HSPA2 expression in mouse caput epididymis. IS, initial segment; P-caput, proximal caput.
The average positive intensity of each tubule at the initial segment were analysed by t-test. Data were presented as
the mean ± s.d. of the five mice in each group (control and melatonin treated). P-value less than 0.05 was
considered significance. Scale bars = 100 μm.
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Table 1. Fertility and fecundity of normal control and melatonin
treated mice.

Group Male fertility Litter numbers

Control 10/10 8.46 ± 1.85

Melatonin treated 10/10 8.60 ± 1.72

Each male mouse from the indicated group was caged with two normal female
mice, respectively; Male fertility was indicated as the number of pregnant female
mice/the number of female mice with vaginal plugs; no significance was observed
in the two groups.

important role in sperm and egg recognition (Jannatifar et al. 
2021). As one important component of epididymal milieu, 
HSPA2 was identified in caput epididymosomes, which may 
participate in post-testicular sperm maturation (Nixon et al. 
2019). Oxidative stress can affect the HSPA2 expression in 
germ cells and spermatozoa (Bromfield et al. 2017). PCNA 
and HSPA2 showed high expressions in IS in melatonin-
treated mice, suggesting that melatonin could enhance the 
IS development. An in vitro sperm function experiment was 
conducted to study whether melatonin treatment had an 

Fig. 7. The effects of melatonin treatment on male fertility ability by IVF analysis. Embryo development rate = the two-
cell embryos/the number of pronucleus formation oocyte; blastocyte rate = the blastocyst/the number of the two cell
embryos; sperm binding ability was displayed as the average number of sperm binding with one oocyte. Data were
presented as the mean ± s.d. of the five mice in each group (control and melatonin treated). P-value less than 0.05
was considered significance.
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Fig. 8. Bioinformatics analysis differentially expressed sperm proteins in melatonin-treated mice. Functional classification of up-regulated
(a) and down-regulated (b) sperm proteins in melatonin-treated mice (n = 5); Over-representative analysis of biology processes of
up-regulated (c) and down-regulated (d) sperm proteins in melatonin-treated mice (n = 5).

effect on sperm function. IVF results showed that melatonin 
treatment had no significant effects on the development of 
the two-cell stage and blastocyst, but the sperm-egg binding 
ability was significantly enhanced. This phenomenon was 
consistent with high expression of HSPA2 and suggested 
melatonin treatment may enhance the expression of some 
sperm functional proteins, and thus enhance the sperm-egg 
binding ability. 

In order to further understand the effect of melatonin on 
sperm function, we conducted a quantitative proteomic 
analysis on the sperm of melatonin-treated mice. Bioinformatics 
analysis indicated that the up-regulated proteins in melatonin-
treated mice were mainly related to cell adhesion function, 
which could explain the increased sperm-egg binding ability 
of melatonin-treated mice. Adhesion molecules on sperm play 
vital roles for sperm–oocyte interactions. Melatonin signifi-
cantly enhanced the expressions of collagen family molecules 
COL1A1, COL1A2, COL5A2, COL6A5, COL12A1, COL14A1 
on sperm, which may promote the sperm binding ability to 
oocyte (Zhou et al. 2004; He et al. 2005). 

Melatonin can play an important role in testis and sperm 
function either by interacting with its receptors or as a free 
radical scavenger (Zhao et al. 2019). It can protect testis 

against oxidative damages, chemotherapy drug and environmental 
toxicants, and also improve sperm quality by affecting Leydig 
cells and Sertoli cells (Heidarizadi et al. 2022). The function 
of melatonin against oxidative damage, inflammation and 
apoptosis may be related to the oxidative stress status faced 
by cells and tissues. This paper studied the effects of melatonin 
on spermatogenesis, sperm maturation and sperm function in 
normal mice. The results suggest that melatonin does not 
have significant effects on testis and epididymis function, but 
can be helpful for improving the sperm–egg binding function 
and promoting sperm function, which may be attributed 
to post-translational modification of sperm that was com-
pleted in the epididymis. As for humans, many studies have 
used therapeutic melatonin to mediate circadian function. 
Although previous studies have reported exogenous mela-
tonin did not disturb the circadian rhythm or just induced 
circadian rhythm synchronisation, and only disruption of 
circadian clock  can be directly involved in multiple patholo-
gical processes, including male reproduction (Hemadi et al. 
2012; Laste et al. 2013), we will further perform circadian 
regulation research in the future by adjusting admini-
stration time and doses of melatonin to investigate the 
effects on male reproduction. 

455

www.publish.csiro.au/rd


Y. Liu et al. Reproduction, Fertility and Development

Supplementary material

Supplementary material is available online. 
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