Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of N-carbamylglutamate and l-arginine on gonadotrophin-releasing hormone (GnRH) gene expression and secretion in GT1-7 cells

Y. Liu A , J. H. Bai A , X. L. Xu A , Z. L. Chen A , L. J. Spicer B and T. Feng A C
+ Author Affiliations
- Author Affiliations

A Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.

B Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.

C Corresponding author. Email: fengtao@iasbaafs.net.cn

Reproduction, Fertility and Development 30(5) 759-765 https://doi.org/10.1071/RD17265
Submitted: 10 July 2017  Accepted: 4 October 2017   Published: 10 November 2017

Abstract

Recent studies have shown that N-carbamylglutamate (NCG) and arginine (ARG) supplementation improves reproductive performance in livestock. The objectives of the present study were to evaluate the effects of NCG and ARG on GT1-7 cell gonadotrophin-releasing hormone (GnRH) secretion, gene expression and cell proliferation. GT1-7 cells were treated in vitro with different concentrations of NCG (0–1.0 mM) or ARG (0–4.0 mM) in serum-free medium for 12 or 24 h. For GnRH secretion and cell proliferation, GT1-7 cells were more sensitive to NCG than ARG. NCG treatment after 12 h increased cell numbers and inhibited GnRH secretion in a dose-dependent manner (P < 0.05), although there was no significant effect of NCG on these parameters after 24 h culture. ARG treatment decreased GnRH secretion after 24 h (P < 0.05), whereas it had no effect after 12 h. GT1-7 cells express GnRH, Kiss-1 metastasis-suppressor (Kiss1), G-protein coupled receptor 54 (GPR54), neuronal nitric oxide synthase (nNOS) and estrogen receptor α (ERα) genes. High concentrations of NCG (1.0 mM) and ARG (4.0 mM) inhibited (P < 0.05) GnRH and nNOS mRNA abundance in GT1-7 cells. ARG treatment decreased Kiss1 and increased ERα mRNA abundance. Thus, high concentrations of NCG (1.0 mM) and ARG (4.0 mM) may act both directly and indirectly to regulate GnRH neuron function by downregulating genes related to GnRH synthesis and secretion to slow GnRH production while stimulating GT1-7 cell proliferation.

Additional keywords: cell culture, hormone secretion, hypothalamus.


References

Aad, P. Y., Voge, J. L., Santiago, C. A., Malayer, J. R., and Spicer, L. J. (2006). Real-time RT-PCR quantification of pregnancy-associated plasma protein-A mRNA abundance in bovine granulosa and theca cells: effects of hormones in vitro. Domest. Anim. Endocrinol. 31, 357–372.
Real-time RT-PCR quantification of pregnancy-associated plasma protein-A mRNA abundance in bovine granulosa and theca cells: effects of hormones in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVyit7vI&md5=503741f0900bb60625f6adfd7716f3caCAS |

Babiker, A., and Al Shaikh, A. (2016). The role of kisspeptin signalling in control of reproduction in genetically similar species. Sudan. J. Paediatr. 16, 9–16.

Bellefontaine, N., Hanchate, N. K., Parkash, J., Campagne, C., de Seranno, S., Clasadonte, J., d’Anglemont de Tassigny, X., and Prevot, V. (2011). Nitric oxide as key mediator of neuron-to-neuron and endothelia-to-glia communication involved in the neuroendocrine control of reproduction. Neuroendocrinology 93, 74–89.
Nitric oxide as key mediator of neuron-to-neuron and endothelia-to-glia communication involved in the neuroendocrine control of reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFCns70%3D&md5=600202154dbb35bd264cd71130e3593bCAS |

Bonavera, J. J., Kalra, P. S., and Kalra, S. P. (1996). l-Arginine/nitric oxide amplifies the magnitude and duration of the luteinizing hormone surge induced by estrogen: involvement of neuropeptide Y. Endocrinology 137, 1956–1962.
l-Arginine/nitric oxide amplifies the magnitude and duration of the luteinizing hormone surge induced by estrogen: involvement of neuropeptide Y.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFCqsLw%3D&md5=d207f73bb036c852c04a47d10c2eef8dCAS |

Butler, J. A., Sjoberg, M., and Coen, C. W. (1999). Evidence for oestrogen receptor alpha-immunoreactivity in gonadotrophin-releasing hormone-expressing neurones. J. Neuroendocrinol. 11, 331–335.
Evidence for oestrogen receptor alpha-immunoreactivity in gonadotrophin-releasing hormone-expressing neurones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFSru7o%3D&md5=b71808f8203bc6bacfba00b7d1477ee2CAS |

Chason, R. J., Kang, J. H., Gerkowicz, S. A., Dufau, M. L., Catt, K. J., and Segars, J. H. (2015). GnRH agonist reduces estrogen receptor dimerization in GT1-7 cells: evidence for cross-talk between membrane-initiated estrogen and GnRH signaling. Mol. Cell. Endocrinol. 404, 67–74.
GnRH agonist reduces estrogen receptor dimerization in GT1-7 cells: evidence for cross-talk between membrane-initiated estrogen and GnRH signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFantLs%3D&md5=cc8470ab80b8c37d08639fcc05478aa1CAS |

Chen, Z. L., Wu, X. M., Zheng, C., Xu, X. L., Bai, J. H., Liu, Y., and Feng, T. (2017). Study on the effect of 17β-estradiol on GnRH secretion and GnRH-related gene expression using GT1-7 cells in vitro. J. Biol. , .

Contestabile, A., and Ciani, E. (2004). Role of nitric oxide in the regulation of neuronal proliferation, survival and differentiation. Neurochem. Int. 45, 903–914.
Role of nitric oxide in the regulation of neuronal proliferation, survival and differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslOiu7s%3D&md5=4cb0d7102fe568980402da215ae103b1CAS |

Dhillo, W. S., Chaudhri, O. B., Patterson, M., Thompson, E. L., Murphy, K. G., Badman, M. K., McGowan, B. M., Amber, V., Patel, S., Ghatei, M. A., and Bloom, S. R. (2005). Kisspeptin-54 stimulates the hypothalamic–pituitary gonadal axis in human males. J. Clin. Endocrinol. Metab. 90, 6609–6615.
Kisspeptin-54 stimulates the hypothalamic–pituitary gonadal axis in human males.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlaltLrN&md5=6773236a25f4b5d2195e2c56f5815761CAS |

Dubeibe, D. F., Caldas-Bussiere, M. C., Maciel, V. L., Sampaio, W. V., Quirino, C. R., Gonçalves, P. B., De Cesaro, M. P., Faes, M. R., and Paes de Carvalho, C. S. (2017). l-Arginine affects the IVM of cattle cumulus–oocyte complexes. Theriogenology 88, 134–144.
l-Arginine affects the IVM of cattle cumulus–oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1Wnt7fP&md5=9456cb733b933acbafa90d1f1fe8a952CAS |

Gao, K., Jiang, Z., Lin, Y., Zheng, C., Zhou, G., Chen, F., Yang, L., and Wu, G. (2012). Dietary l-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids 42, 2207–2214.
Dietary l-arginine supplementation enhances placental growth and reproductive performance in sows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFGlu7Y%3D&md5=134811038ed0734a5a63bc4b3d71e127CAS |

Greene, J. M., Feugang, J. M., Pfeiffer, K. E., Stokes, J. V., Bowers, S. D., and Ryan, P. L. (2013). l-Arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells. Reprod. Biol. Endocrinol. 11, 15.
l-Arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFClt70%3D&md5=8eb8bf400ea00a247724c28b627125e5CAS |

Gregg, A. R. (2003). Mouse models and the role of nitric oxide in reproduction. Curr. Pharm. Des. 9, 391–398.
Mouse models and the role of nitric oxide in reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksl2nsw%3D%3D&md5=ca542f02d039a49e6c1bbf5125c0beb7CAS |

Han, S. K., Gottsch, M. L., Lee, K. J., Popa, S. M., Smith, J. T., Jakawich, S. K., Clifton, D. K., Steiner, R. A., and Herbison, A. E. (2005). Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J. Neurosci. 25, 11349–11356.
Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlaksrrO&md5=35fc4d3999a543f8693219a5ac9f858fCAS |

Hanchate, N. K., Parkash, J., Bellefontaine, N., Mazur, D., Colledge, W. H., d’Anglemont de Tassigny, X., and Prevot, V. (2012). Kisspeptin-GPR54 signaling in mouse NO-synthesizing neurons participates in the hypothalamic control of ovulation. J. Neurosci. 32, 932–945.
Kisspeptin-GPR54 signaling in mouse NO-synthesizing neurons participates in the hypothalamic control of ovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOgsb4%3D&md5=ffc59109e8d8d2cb1ba93834756eb030CAS |

Herbison, A. E., and Pape, J. R. (2001). New evidence for estrogen receptors in gonadotropin-releasing hormone neurons. Front. Neuroendocrinol. 22, 292–308.
New evidence for estrogen receptors in gonadotropin-releasing hormone neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1OktLo%3D&md5=84863fb95b2767fbee590968bcdbed9fCAS |

Hrabovszky, E., Steinhauser, A., Barabas, K., Shughrue, P. J., Petersen, S. L., Merchenthaler, I., and Liposits, Z. (2001). Estrogen receptor-beta immunoreactivity in luteinizing hormone-releasing hormone neurons of the rat brain. Endocrinology 142, 3261–3264.
Estrogen receptor-beta immunoreactivity in luteinizing hormone-releasing hormone neurons of the rat brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksleltb4%3D&md5=ef4a2ec67c37b5d9f5faa806db2f8bffCAS |

Irwig, M. S., Fraley, G. S., Smith, J. T., Acohido, B. V., Popa, S. M., Cunningham, M. J., Gottsch, M. L., Clifton, D. K., and Steiner, R. A. (2004). Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 80, 264–272.
Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVOnsg%3D%3D&md5=3fb585ceab17f15d05c4f41dea31de78CAS |

Jacobi, J. S., Martin, C., Nava, G., Jeziorski, M. C., Clapp, C., and Martínez de la Escalera, G. (2007). 17-Beta-estradiol directly regulates the expression of adrenergic receptors and kisspeptin/GPR54 system in GT1-7 GnRH neurons. Neuroendocrinology 86, 260–269.
17-Beta-estradiol directly regulates the expression of adrenergic receptors and kisspeptin/GPR54 system in GT1-7 GnRH neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlahsbrM&md5=def495c4d51d8b625afc81d0113bb26fCAS |

Kanasaki, H., Oride, A., Mijiddorj, T., Sukhbaatar, U., and Kyo, S. (2017). How is GnRH regulated in GnRH-producing neurons? Studies using GT1-7 cells as a GnRH-producing cell model. Gen. Comp. Endocrinol. 247, 138–142.
How is GnRH regulated in GnRH-producing neurons? Studies using GT1-7 cells as a GnRH-producing cell model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhvVentb4%3D&md5=5f6d586cc8d887c09002bdb8e68ff410CAS |

Keen, K. L., Wegner, F. H., Bloom, S. R., Ghatei, M. A., and Terasawa, E. (2008). An increase in kisspeptin-54 release occurs with the pubertal increase in luteinizing hormone-releasing hormone-1 release in the stalk-median eminence of female rhesus monkeys in vivo. Endocrinology 149, 4151–4157.
An increase in kisspeptin-54 release occurs with the pubertal increase in luteinizing hormone-releasing hormone-1 release in the stalk-median eminence of female rhesus monkeys in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlamtLs%3D&md5=ddd69a817020eacc5c9f1244e60ec89eCAS |

Kohsaka, A., Watanobe, H., Kakizaki, Y., and Suda, T. (1999). A comparative study of the effects of nitric oxide and carbon monoxide on the in vivo release of gonadotropin-releasing hormone and neuropeptide Y from rat hypothalamus during the estradiolinduced luteinizing hormone surge: estimation by push–pull perfusion. Neuroendocrinology 69, 245–253.
A comparative study of the effects of nitric oxide and carbon monoxide on the in vivo release of gonadotropin-releasing hormone and neuropeptide Y from rat hypothalamus during the estradiolinduced luteinizing hormone surge: estimation by push–pull perfusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislOkurg%3D&md5=9a631fa525909d05cdcf11f91884c76dCAS |

Lamanna, C., Assisi, L., Vittoria, A., Botte, V., and Di Fiore, M. M. (2007). d-Aspartic acid and nitric oxide as regulators of androgen production in boar testis. Theriogenology 67, 249–254.
d-Aspartic acid and nitric oxide as regulators of androgen production in boar testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlars73E&md5=acf8214516eaf769b3d61780d735419dCAS |

Li, D., Mitchell, D., Luo, J., Yi, Z., Cho, S. G., Guo, J., Li, X., Ning, G., Wu, X., and Liu, M. (2007). Estrogen regulates KiSS1 gene expression through estrogen receptor alpha and SP protein complexes. Endocrinology 148, 4821–4828.
Estrogen regulates KiSS1 gene expression through estrogen receptor alpha and SP protein complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWls7jF&md5=a49333635376315454813cfea5511011CAS |

Li, X., Bazer, F. W., Johnson, G. A., Burghardt, R. C., Frank, J. W., Dai, Z., Wang, J., Wu, Z., Shinzato, I., and Wu, G. (2014). Dietary supplementation with l-arginine between Days 14 and 25 of gestation enhances embryonic development and survival in gilts. Amino Acids 46, 375–384.
Dietary supplementation with l-arginine between Days 14 and 25 of gestation enhances embryonic development and survival in gilts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFeltLzL&md5=e8c653585960a7aaaf244bbfb74e563aCAS |

Liu, X. D., Wu, X., Yin, Y. L., Liu, Y. Q., Geng, M. M., Yang, H. S., Blachier, F., and Wu, G. Y. (2012). Effects of dietary l-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids 42, 2111–2119.
Effects of dietary l-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFGlu78%3D&md5=f9567de94c5a7894f47f0fec6115293eCAS |

López, F. J., Moretto, M., Merchenthaler, I., and Negro-Vilar, A. (1997). Nitric oxide is involved in the genesis of pulsatile LHRH secretion from immortalized LHRH neurons. J. Neuroendocrinol. 9, 647–654.
Nitric oxide is involved in the genesis of pulsatile LHRH secretion from immortalized LHRH neurons.Crossref | GoogleScholarGoogle Scholar |

Mateo, R. D., Wu, G., Bazer, F. W., Park, J. C., Shinzato, I., and Kim, S. W. (2007). Dietary l-arginine supplementation enhances the reproductive performance of gilts. J. Nutr. 137, 652–656.
| 1:CAS:528:DC%2BD2sXisVygs7c%3D&md5=4dddfebfc059f48a2974869e87528532CAS |

McCoy, A. M., Litterst, C., Collins, M. L., and Ugozzoli, L. A. (2010). Using an automated cell counter to simplify gene expression studies: siRNA knockdown of IL-4 dependent gene expression in Namalwa cells. J. Vis. Exp. 38, 1904.
Using an automated cell counter to simplify gene expression studies: siRNA knockdown of IL-4 dependent gene expression in Namalwa cells.Crossref | GoogleScholarGoogle Scholar |

Mellon, P. L., Windle, J. J., Goldsmith, P., Pedula, C., Roberts, J., and Weiner, R. I. (1990). Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5, 1–10.
Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsF2luw%3D%3D&md5=c49c11ae33edb894707ac0a10f227765CAS |

Mellon, P. L., Wetsel, W. C., Windle, J. J., Valenca, M. M., Goldsmith, P. C., Whyte, D. B., Eraly, S. A., Negro-Vilar, A., and Weiner, R. I. (1992). Immortalized hypothalamic gonadotropin-releasing hormone neurons. Ciba Found. Symp. 168, 104–117.
| 1:CAS:528:DyaK3sXks1ejtLc%3D&md5=443646e9701d37713f2dd437dbf5e462CAS |

Mitchell, L. M., Kennedy, C. R., and Hartshorne, G. M. (2004). Expression of nitric oxide synthase and effect of substrate manipulation of the nitric oxide pathway in mouse ovarian follicles. Hum. Reprod. 19, 30–40.
Expression of nitric oxide synthase and effect of substrate manipulation of the nitric oxide pathway in mouse ovarian follicles.Crossref | GoogleScholarGoogle Scholar |

Moretto, M., Lopez, F., and Negor-Vilar, A. (1993). Nitric oxide regulates luteinising hormone releasing hormone secretion. Endocrinology 133, 2399–2402.
Nitric oxide regulates luteinising hormone releasing hormone secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitlyrtw%3D%3D&md5=c38c91b92ece3937eaf37b4bfb32b06cCAS |

Navarro, C. E., Saeed, S. A., Murdock, C., Martinez-Fuentes, A. J., Arora, K. K., Krsmanovic, L. Z., and Catt, K. J. (2003). Regulation of cyclic adenosine 3′,5′-monophosphate signaling and pulsatile neurosecretion by Gi-coupled plasma membrane estrogen receptors in immortalized gonadotrophin-releasing hormone neurons. Mol. Endocrinol. 17, 1792–1804.
Regulation of cyclic adenosine 3′,5′-monophosphate signaling and pulsatile neurosecretion by Gi-coupled plasma membrane estrogen receptors in immortalized gonadotrophin-releasing hormone neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFylsrs%3D&md5=71c4eafc84ececcf17c4b7a606cfc385CAS |

Novaira, H. J., Sonko, M. L., and Radovick, S. (2016). Kisspeptin induces dynamic chromatin modifications to control GnRH gene expression. Mol. Neurobiol. 53, 3315–3325.
Kisspeptin induces dynamic chromatin modifications to control GnRH gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVaqsLjK&md5=2b8255e6c8d3869853e45d6592e64291CAS |

Otani, H., Otsuka, F., Takeda, M., Mukai, T., Terasaka, T., Miyoshi, T., Inagaki, K., Suzuki, J., Ogura, T., Lawson, M. A., and Makino, H. (2009). Regulation of GNRH production by estrogen and bone morphogenetic proteins in GT1-7 hypothalamic cells. J. Endocrinol. 203, 87–97.
Regulation of GNRH production by estrogen and bone morphogenetic proteins in GT1-7 hypothalamic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Kku7bL&md5=b15afa1d43c53814a62606617a0062d6CAS |

Ott, L., and Longnecker, T. (2008). Chapter 9 Multiple comparisons. In ‘An Introduction to Statistical Methods and Data Analysis’. (Ed. M. Taylor.) pp. 463–467. (Duxbury Press: North Scituate, MA.)

Pau, M. Y., and Milner, J. A. (1982). Dietary arginine and sexual maturation of the female rat. J. Nutr. 112, 1834–1842.
| 1:CAS:528:DyaL38XlvFOhtb4%3D&md5=3b955bed6dd6a1768350261cde533443CAS |

Piet, R., de Croft, S., Liu, X., and Herbison, A. E. (2015). Electrical properties of kisspeptin neurons and their regulation of GnRH neurons. Front. Neuroendocrinol. 36, 15–27.
Electrical properties of kisspeptin neurons and their regulation of GnRH neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVamsLjJ&md5=bee8525b6c2a8e13339478ddb25be5fdCAS |

Plant, T. M., Gay, V. L., Marshall, G. R., and Arslan, M. (1989). Puberty in monkeys is triggered by chemical stimulation of the hypothalamus. Proc. Natl Acad. Sci. USA 86, 2506–2510.
Puberty in monkeys is triggered by chemical stimulation of the hypothalamus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhvVKgtrk%3D&md5=b99d2282e2bec52746d5d43debb9197eCAS |

Rettori, V., Belova, N., Dees, W. L., Nyberg, C. L., Gimeno, M., and McCann, S. M. (1993). Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proc. Natl Acad. Sci. USA 90, 10130–10134.
Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXpsVE%3D&md5=d340854ece68e41d4277be15c709b205CAS |

Robertson, J. L., Clifton, D. K., de la Iglesia, H. O., Steiner, R. A., and Kauffman, A. S. (2009). Circadian regulation of Kiss1 neurons: implications for timing the preovulatory gonadotropin-releasing hormone/luteinizing hormone surge. Endocrinology 150, 3664–3671.
Circadian regulation of Kiss1 neurons: implications for timing the preovulatory gonadotropin-releasing hormone/luteinizing hormone surge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsV2rtbk%3D&md5=48012d40d49daf087529e3baf36e9c81CAS |

Roy, D., Angelini, N. L., and Belsham, D. D. (1999). Estrogen directly represses gonadotropin-releasing hormone (GnRH) gene expression in estrogen receptor-α (ERα)- and ERβ-expressing GT1-7 GnRH neurons. Endocrinology 140, 5045–5053.
Estrogen directly represses gonadotropin-releasing hormone (GnRH) gene expression in estrogen receptor-α (ERα)- and ERβ-expressing GT1-7 GnRH neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFemsbk%3D&md5=6372c64b62b092bdee321ce3cea671d0CAS |

Schütz, L. F., Schreiber, N. B., Gilliam, J. N., Cortinovis, C., Totty, M. L., Caloni, F., Evans, J. R., and Spicer, L. J. (2016). Changes in fibroblast growth factor 9 mRNA in granulosa and theca cells during ovarian follicular growth in dairy cattle. J. Dairy Sci. 99, 9143–9151.
Changes in fibroblast growth factor 9 mRNA in granulosa and theca cells during ovarian follicular growth in dairy cattle.Crossref | GoogleScholarGoogle Scholar |

Schwanzel-Fukuda, M., Jorgenson, K. L., Bergen, H. T., Weesner, G. D., and Pfaff, D. W. (1992). Biology of normal luteinizing hormone-releasing hormone neurons during and after their migration from olfactory placode. Endocr. Rev. 13, 623–634.
Biology of normal luteinizing hormone-releasing hormone neurons during and after their migration from olfactory placode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtl2qsbs%3D&md5=8ff734b6bcebd72985eb85cd801736e1CAS |

Skorupskaite, K., George, J. T., and Anderson, R. A. (2014). The kisspeptin–GnRH pathway in human reproductive health and disease. Hum. Reprod. Update 20, 485–500.
The kisspeptin–GnRH pathway in human reproductive health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKhs7zN&md5=91c5c44d99690f1ef71c6344e1940a80CAS |

Skorupskaite, K., George, J. T., Veldhuis, J. D., Millar, R. P., and Anderson, R. A. (2017). Neurokinin 3 receptor antagonism reveals roles for neurokinin B in the regulation of gonadotropin secretion and hot flashes in postmenopausal women. Neuroendocrinology , .
Neurokinin 3 receptor antagonism reveals roles for neurokinin B in the regulation of gonadotropin secretion and hot flashes in postmenopausal women.Crossref | GoogleScholarGoogle Scholar |

Smith, J. T., Popa, S. M., Clifton, D. K., Hoffman, G. E., and Steiner, R. A. (2006). Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J. Neurosci. 26, 6687–6694.
Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Wlt7k%3D&md5=c37111aae02386d4a61f5c14f50be2b2CAS |

Sukhbaatar, U., Kanasaki, H., Mijiddorj, T., Oride, A., and Miyazaki, K. (2013). Kisspeptin induces expression of gonadotropin-releasing hormone receptor in GnRH-producing GT1-7 cells overexpressing G protein-coupled receptor 54. Gen. Comp. Endocrinol. 194, 94–101.
Kisspeptin induces expression of gonadotropin-releasing hormone receptor in GnRH-producing GT1-7 cells overexpressing G protein-coupled receptor 54.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVWltbbP&md5=c7c40ec6ed01248f50001821ef3d6f64CAS |

Terasaka, T., Otsuka, F., Tsukamoto, N., Nakamura, E., Inagaki, K., Toma, K., Ogura-Ochi, K., Glidewell-Kenney, C., Lawson, M. A., and Makino, H. (2013). Mutual interaction of kisspeptin, estrogen and bone morphogenetic protein-4 activity in GnRH regulation by GT1-7 cells. Mol. Cell. Endocrinol. 381, 8–15.
Mutual interaction of kisspeptin, estrogen and bone morphogenetic protein-4 activity in GnRH regulation by GT1-7 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOgt77E&md5=8ef20145df313b0e7fa83273e3f3c453CAS |

Tonsfeldt, K. J., Goodall, C. P., Latham, K. L., and Chappell, P. E. (2011). Oestrogen induces rhythmic expression of the Kisspeptin-1 receptor GPR54 in hypothalamic gonadotrophin-releasing hormone-secreting GT1-7 cells. J. Neuroendocrinol. 23, 823–830.
Oestrogen induces rhythmic expression of the Kisspeptin-1 receptor GPR54 in hypothalamic gonadotrophin-releasing hormone-secreting GT1-7 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFaqsLvO&md5=5bdb20e78b957d61e6a68412da02713eCAS |

Topaloglu, A. K., Reimann, F., Guclu, M., Yalin, A. S., Kotan, L. D., Porter, K. M., Serin, A., Mungan, N. O., Cook, J. R., Ozbek, M. N., Imamoglu, S., Akalin, N. S., Yuksel, B., O’Rahilly, S., and Semple, R. K. (2009). TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for neurokinin B in the central control of reproduction. Nat. Genet. 41, 354–358.
TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for neurokinin B in the central control of reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlSi&md5=a560ebed32841c2dd81252e28266f700CAS |

Ullewar, M. P., and Umathe, S. N. (2016). Gonadotropin-releasing hormone agonist prevents l-arginine induced immune dysfunction independent of gonadal steroids: relates with a decline in elevated thymus and brain nitric oxide levels. Nitric Oxide 57, 40–47.
Gonadotropin-releasing hormone agonist prevents l-arginine induced immune dysfunction independent of gonadal steroids: relates with a decline in elevated thymus and brain nitric oxide levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnsFaisLc%3D&md5=1b0983a9ddf890356a1f7ab3fc591ba6CAS |

Voge, J. L., Aad, P. Y., Santiago, C. A., Goad, D. W., Malayer, J. R., Allen, D., and Spicer, L. J. (2004). Effect of insulin-like growth factors (IGF), FSH, and leptin on IGF-binding-protein mRNA expression in bovine granulosa and theca cells: quantitative detection by real-time PCR. Peptides 25, 2195–2203.
Effect of insulin-like growth factors (IGF), FSH, and leptin on IGF-binding-protein mRNA expression in bovine granulosa and theca cells: quantitative detection by real-time PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtValsr3F&md5=b522a796adb9c00bfbad6998d427a1beCAS |

Wetsel, W. C., Valenca, M. M., Merchenthaler, I., Liposits, Z., Lopez, F. J., Weiner, R. I., Mellon, P. L., and Negro-Vilar, A. (1992). Intrinsic pulsatile secretory activity of immortalized luteinizing hormone-releasing hormone-secreting neurons. Proc. Natl Acad. Sci. USA 89, 4149–4153.
Intrinsic pulsatile secretory activity of immortalized luteinizing hormone-releasing hormone-secreting neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisVyqtLs%3D&md5=cd2cdda7d296e67ebe2906cc4cbb7a2bCAS |

Wu, X., Yin, Y. L., Liu, Y. Q., Liu, X. D., Liu, Z. Q., Li, T. J., Huang, R. L., Ruan, Z., and Deng, Z. Y. (2012). Effect of dietary arginine and N-carbamoylglutamate supplementation on reproduction and gene expression of eNOS, VEGFA and PlGF1 in placenta in late pregnancy of sows. Anim. Reprod. Sci. 132, 187–192.
Effect of dietary arginine and N-carbamoylglutamate supplementation on reproduction and gene expression of eNOS, VEGFA and PlGF1 in placenta in late pregnancy of sows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFWltrw%3D&md5=24dc0dc54c7ede727e1f77dd9e7d59edCAS |

Wu, X. M., Han, X. M., Xu, X. L., Bai, J. H., Liu, Y., and Feng, T. (2017). The effects of 17β-estradiol on GnRH serection and GnRH-related gene expressions by GT1-7 cell line. Journal of Gansu Agriclutural University 52, 13–20.

Xu, W. F., Li, Y. S., Dai, P. Y., and Li, C. M. (2016). Potential protective effect of arginine against 4-nitrophenol-induced ovarian damage in rats. J. Toxicol. Sci. 41, 371–381.
Potential protective effect of arginine against 4-nitrophenol-induced ovarian damage in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFWltrjK&md5=6503fdf64ad6eaff9aa0fa3dbf939f8fCAS |

Yin, W., Sun, Z., Mendenhall, J. M., Walker, D. M., Riha, P. D., Bezner, K. S., and Gore, A. C. (2015). Expression of vesicular glutamate transporter 2 (vGluT2) on large dense-core vesicles within gnrh neuroterminals of aging female rats. PLoS One 10, e0129633.
Expression of vesicular glutamate transporter 2 (vGluT2) on large dense-core vesicles within gnrh neuroterminals of aging female rats.Crossref | GoogleScholarGoogle Scholar |

Zeng, X., Huang, Z., Mao, X., Wang, J., Wu, G., and Qiao, S. (2012). N-carbamylglutamate enhances pregnancy outcome in rats through activation of the PI3K/PKB/mTOR signaling pathway. PLoS One 7, e41192.
N-carbamylglutamate enhances pregnancy outcome in rats through activation of the PI3K/PKB/mTOR signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCgu7zM&md5=614eee4c3f942fe145f0522bd6a91a5aCAS |