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Abstract. Soil respiration is a major process for organic carbon losses from arid ecosystems. A field experiment was
conducted in 2010 and 2012 on the responses to continuous grazing, rotational grazing and no grazing on desert steppe
vegetation in northern China. The growing season in 2010 was relatively dry and in 2012 was relatively wet. The results
showed that mean soil respiration was the highest with no grazing in both growing seasons. Compared with no grazing, the
soil respiration was decreased by 23.0% under continuous grazing and 14.1% under seasonal rotational grazing. Soil
respiration increased linearlywith increasing soilwater gravimetric content, abovegroundnet primary productivity (ANPP),
belowground net primary productivity (BNPP) and soil carbon and nitrogen contents across the 2 years, whereas a negative
correlationwas detectedbetween soil respiration and soil temperature.A significant decrease in soil respirationwas observed
under both continuous grazing and in seasonal rotational grazing in the dry growing season, but no significant difference
was detected in the wet growing season. In the wet year, only a non-significant difference in soil respiration was observed
between different grazing types. Patterns of seasonal precipitation strongly affected the temporal changes of soil respiration
as well as its response to different grazing types. The findings highlight the importance of differences in abiotic (soil
temperature, soil water gravimetric content and soil carbon and nitrogen contents) and biotic (ANPP, BNPP and litter mass)
factors in mediating the responses of soil respiration to the different grazing regimes.
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Introduction

Soil respiration is the primary pathway for carbon dioxide (CO2)
flux to the atmosphere because it accounts for up to 25% of the
global emissions (Schimel 1995). As the dominant component
of ecosystem respiration (Hibbard et al. 2005), the current
knowledge of which drivers are important for soil respiration is
still poor in comparison with plant leaf photosynthesis and
respiration. Soil temperature (Rustad et al. 2001), soil water
content (Liu et al. 2002), plant growth (Raich and Tufekcioglu
2000), and soil carbon (C) and nitrogen (N) contents (Xu and
Wan 2008) all affect soil respiration. TheCO2 emissions from the
soil surface reflect the metabolic activity of roots as well as free-
living organisms in the soil (Högberg et al. 2001; Wan and Luo
2003). Temperature has been widely recognised as an important
factor for regulating soil respiration in most models. Net primary
productivity, litter mass and its decomposition also affect the
supply of C substrate for plant roots and soil microorganisms,
which result in changes in the soil respiration in terrestrial

ecosystems (Carreiro et al. 2000). Many models of soil
respiration have been developed to attempt to understand the
factors influencing soil respiration (Knapp et al. 1998; Fang and
Moncrieff 2001), such as soil temperature, soil water content,
plant growth (both above- and belowground), litter mass
(Davidson et al. 2000) and soil C andN contents (Liu et al. 2007),
but a strict theoretical basis is still lacking.

As amajor use of grassland, grazingmay alter the composition
of plant species (Cao et al. 2004) and the composition of C
and nutrient pools (Wilsey et al. 2002), as well as the physical
and chemical properties of soils (Lal 2001). Long-term livestock
grazing is one of the major causes for soil and vegetation
degradation on grasslands (Keya 1998), especially in the desert
steppe region inChina (Li et al. 2008).Grazing potentially affects
soil respiration by indirectly altering soil physico-chemical
properties (Carreiro et al. 2000;Hook andBurke 2000).Given the
spatial variation of soil respiration and its controlling biotic and
abiotic factors, the effects of environmental changes (temperature
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and water availability) on soil respiration could well be affected
by different levels of utilisation of the grassland by grazing
livestock.

The desert steppe is a vulnerable ecosystem lying between
grasslands to the east and desert to the west. All ecosystem
processes are influenced by the erratic precipitation, which
mostly occurs from May to September. The inter- and intra-
annual variation in precipitation has important consequences
for soil respiration (Rey et al. 2005; Jarvis et al. 2007). Compared
with other ecosystems, future climate changes are predicted
to result in large changes in arid ecosystems (Subke et al. 2006;
Bond-Lamberty and Thomson 2010). Therefore, it is vitally
important to understand the drivers regulating soil respiration in
desert steppe ecosystems. To address this knowledge gap, a
field experiment was conducted in 2010 and 2012 to examine the
potential effects of different grazing management (continuous
grazing, seasonal rotational grazing and no grazing) regimes on
soil respiration in an arid desert steppe in northern China. In this
water-limited ecosystem,we hypothesise that soil respirationwill
vary with different types of grazing management and that this
variation is regulated by grazing-induced changes in abiotic (soil
temperature and soilwater content) andbiotic (plant aboveground
and belowground production) factors. Furthermore, the effects of
grazing on soil respiration interact with the precipitation, which
has a large inter-annual variation in this region.

Materials and methods
Study site

The experiment was conducted in Xisu Banner (4281604500N,
11284704400E, 1184m a.s.l.), in the desert steppe region in Inner
Mongolia, China. The climate of this site is classified as
continental. Long-term (1952–2011) mean annual precipitation
is ~213mm, with 90% of the precipitation occurring from May
to October; and the long-term mean annual temperature is
4.98C. The frost-free period is ~200 days. The sandy loam soil
at the study site is classified as Kastanozem according to the
Food and Agriculture Organisation soil classification system.
The dominant species in this desert steppe were Stipa breviflora
Griseb., Cleistogenes songorica (Roshev.) Ohwi, Allium
polyrrizum L. and Artemisia frigida Willd.

Experiment design

Nine paddocks (100m� 1200m)were fenced off for this grazing
experiment in 1999. A randomised complete block design was
used comprising three different types of grazing and there
were three blocks. The grazing regimes were continuous grazing
(CG), seasonal rotational grazing (RG) and no grazing (E),
with stocking rates of 1.25, 1.25 and 0 sheep ha–1 month–1,
respectively. The grasslands were grazed for 6 months (June–
November) in every year.

The measurements were conducted in 2010 and 2012,
respectively a dry and a wet year compared with the long-term
average rainfall. The CG treatment was grazed for 6 months
during the period from June to November each year including
2011 in which no data were collected. The seasonal rotational
grazing schedulewas from15 to 29 June, 11 to 25August and 7 to
21 November in every year.

Measurements

Abovegroundnet primaryproduction (ANPP)wasdetermined, in
August of 2010 and 2012, by harvesting 10 1-m2 quadrats inside
each no grazing plot (sampling locations were spaced ~100m
apart), whereas 10 1-m2 quadrats were harvested in 10 portable
cages (1.5m� 1.5m) that were established in both continuous
grazing and the seasonal rotational grazing plots before grazing
began in the spring. A total of 90 quadrats were in the nine plots.
All abovegroundplantmaterialwas cut at ground level (including
living aboveground biomass, standing litter, and ground litter)
in each quadrat. We separated plant aboveground tissues
(living and dead aboveground biomass) from dead biomass of
the previous year; and separated current-year biomass species
by species. Harvested biomass was oven-dried at 658C for 48 h
and then weighed. The ANPP was calculated as the sum of
aboveground biomass for all plant species.

Belowground net primary production (BNPP) was measured
in each plot by using a root growth method (Steingrobe et al.
2000). Ten 30-cm depth soil samples were collected using a soil
auger (7 cm in diameter), at the same sites where ANPP was
estimated in each experimental plot in early August in 2010 and
2012, making 90 samples in all. All root material greater than
2mm was separated from each soil sample using sieves. A root
bag (meshes 0.2mm, 7 cm in diameter, and length 30 cm) was
then put into each hole and the soil returned to its original hole
inside the root bags. In late October, we collected the root growth
samples by taking out the root bag from each hole, separated the
new root material from the soil by sieving and weighed it after
being oven-dried at 658C for 48 h.

Soil was also sampled in August 2010 and 2012 from the
locations along six transect lines within each plot. Six soil cores
(3.5 cm diameter) were randomly collected manually, 0–10 cm
with a soil core sampler at each sampling site within each plot.
Plant material and other debris on the soil surface were removed
before the sampling. Soil samples were air-dried and sieved to
pass through a 2-mm grid. The 2-mm air-dried soil samples were
further ground to pass through a 0.15-mm sieve. Soil organic C
was determined using the method of Amundson et al. (1988)
and N contents was measured by using Kjeldahl digestion
(Liu et al. 2007).

At the beginning of the experiment (May 2010), a PVC collar
(11 cm in diameter and 5 cm in height) was inserted 2–3 cm into
the soil to measure soil respiration in each plot, according to the
methodusedbyXuandWan (2008) andXia et al. (2009). The soil
respiration was measured using a LI-Cor 8100 IRGA (LI-Cor,
Lincoln, NE, USA), and the measurements were done twice
a month, from late May to early October in both 2010 and 2012.
The PVC collar was inserted into the soil 48 h before each
measurement to allow any disturbance caused by the installation
to subside. Living plants inside the soil collar were removed at the
soil surface to avoid inclusion of plant leaf respiration. All soil
respiration measurements were carried out between 09:00 hours
and 11:00 hours (local time) andwere performed 2 or 3 days after
a rainfall event to avoid any pulse effect of precipitation. At the
same time that soil respirationwasmeasured, soil temperature and
soil water content were also determined. Soil temperature was
measured at 10 cmfromeachPVCcollar by a thermocouple probe
connected to the LI-Cor 8100, and soil gravimetric water content
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was determined by sampling soil at 0–10 cm using a soil core
3.5 cm in diameter. The weight loss from drying the soil samples
at 1058C for 24 h was used to calculate soil moisture content.

Data analysis
The monthly mean values were calculated from all measurements
in the same month, whereas seasonal mean values of soil
temperature, soil water content and soil respirationwere calculated
from the monthly means. Repeated-measures ANOVAwere used
to examine the effects of year and different types of grazing
management on soil temperature, soil gravimetric water, soil-C
content, soil-N content, ANPP, BNPP, litter mass and soil
respiration. If the inter-annual variability was significant (year
impact P< 0.05), one-way ANOVA was used to examine the
effects of the different types of grazing management on soil-C
content, soil-N content, ANPP, BNPP and litter mass. Regression,
with correction and stepwise multiple linear analyses, was used to
examine the relationships of soil respiration with soil temperature,
soil water content, ANPP, BNPP, litter biomass and soil-C and
soil-N contents. All statistical analyses were done using SAS 8.1
software (SAS Institute 2000).

Results

Soil microclimate

Air temperature showed a one-peak pattern in May–October in
both 2010 and 2012 (Fig. 1). Compared with the long-term
(1952–2011) mean growing season temperature (16.28C), 2010
(17.78C) was higher and 2012 (16.58C) was very similar. The
precipitation in the growing season in 2010 (166.3mm) was
somewhat lower than the long-term (1952–2011) mean
(191.5mm), whereas that in 2012 (290.2mm) was 52% higher
(Fig. 1).

Soil temperature at a depth of 10 cmwas higher in 2010 than in
2012 (P < 0.001, repeated ANOVA, Table 1). Soil temperature
at a depth of 10 cm was highest under continuous grazing, and
lowest under no grazing (P< 0.001). The higher precipitation in

2012 than 2010 led to a significantly higher soil water content in
2012 than 2010 (P< 0.001). The soil water content was the
highest in the no grazing treatment for both years (P< 0.001,
Table 1).

The effect of grazing treatments on soil-C content
and soil-N content

Grazing treatment had significant effects on soil-C content
averaged over both years (P< 0.001, Table 2). Comparedwith the
no grazing treatment, continuous grazing significantly decreased
soil C by 7.9% (P < 0.001, Table 2), whereas rotational grazing
significantly increased soil C by 1.3% averaged over both years
(P< 0.001, Table 2). Soil-C content was significantly higher by
13.9% in 2012 (wet) than 2010 (dry) (P < 0.05, Table 2), and was
the highest under the no grazing treatment in 2010 (P < 0.05,
Fig. 2). Soil-C content was also significantly affected (P< 0.001)
by the grazing treatment in 2012 being the highest under
rotational grazing and lowest under continuous grazing (Fig. 2).

0

20

40

60

80

100

120

140

160

180

May June July Aug Sep Oct May June July Aug Sep Oct

2010 2012

P
re

ci
pi

ta
tio

n 
(m

m
)

0

5

10

15

20

25

30

A
ir 

te
m

pe
ra

tu
re

 (
°C

)

Precipitation

Air temperature

Fig. 1. Monthly precipitation (bars) and monthly mean air temperature (lines) in 2010 and 2012 measured by a
micro weather station (GroWeather software version 1.2, Davis Instruments Corporation, San Francisco, CA, USA)
at the experimental site.

Table 1. Response of soil temperature (at 10 cm) in the plant-growing
season (T), soil gravimetric water content (0–10 cm) (SW) and soil
respiration (Rs) tograzingregimesduring twohydrologically contrasting

growing seasons in a desert steppe in Inner Mongolia
Within the columns, values followed by different letters are significantly

different (P< 0.05)

　 　 T SW Rs
(8C) (%) (mmolm–2 s–1)

Grazing regimes Continuous grazing 17.1a 7.16b 1.04c
Rotational grazing 16.2b 7.30b 1.16b
No grazing 15.0c 7.76a 1.35a

Year 2010 17.5a 6.51b 0.87b
　 2012 14.7b 8.30a 1.49a

Level of significance
Treatment <0.001 <0.001 <0.001
Year <0.001 <0.001 <0.001

　 Treatment�Year <0.001 0.01 <0.001
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Similarly, grazing treatment (P < 0.001), year (P < 0.001) and
their interaction (P < 0.01) all had significant effects on soil-N
content (Table 2). Soil-N content (0–10 cm) was highest under
rotational grazing, and lowest under continuous grazing
(P < 0.001, Table 2). The soil-N content was 12.0% higher in the
wet year (2012) than the dry year (2010) (P < 0.001, Table 2).
When analysed separately by year, the soil-N content at the time
of peak plant biomass in 2010 had the following trend: no grazing
(1.12 g kg–1) > rotational grazing (1.09 g kg–1) > continuous
grazing (1.03 gkg–1) (P< 0.05, Fig. 2). The soil-Ncontentwas the
highest under rotational grazing (1.31 g kg–1) in 2012.

The effect of grazing treatments on plant production

The grazing treatments had significant effects on ANPP
averaged over both years (P< 0.001, Table 2). TheANPPwith no
grazing was significantly higher (19.0%) than under continuous
grazing (P < 0.001, Table 2), whereas there was no significant
differencebetween the rotational grazingandnograzingaveraged
over both years (Table 2). When analysed separately by year, the

ANPP was the highest with no grazing in 2010 (P< 0.05,
Fig. 3), but highest under rotational grazing in 2012 (P < 0.05,
Fig. 3).

The BNPP was also significantly affected by the grazing
treatments averaged over both years (P < 0.001, Table 2) with the
lowest value under continuous grazing, and no significant
difference between rotational grazing and continuous grazing
(Table 2). When analysed separately by year, the BNPP was the
highest under nograzing in2010,whereas itwas the highest under
rotational grazing in 2012 (P < 0.05, Fig. 3). Different grazing
treatments, the year and their interaction significantly affected
litter mass (P < 0.001, Table 2) with the lowest litter mass found
under continuous grazing averaged over both years (P < 0.001,
Table 2). Compared with the dry year (2010), the litter mass was
significantly higher in the wet year (P < 0.001, Table 2). When
analysed separately by year, litter accumulation at the time of
peak plant biomass of dry matter was not significantly different
(P < 0.05) between the no grazing and rotationally grazed plots in
2010 (Fig. 3). In 2012, the litter accumulation was the highest in
the rotationally grazed plots.

Table 2. Response of soil C (0–10 cm) content in the plant-growing season, soil-N (0–10 cm) content, ANPP (aboveground net primary
productivity), BNPP (belowground net primary productivity) and litter mass to grazing regime during two hydrologically contrasting

growing seasons in a desert steppe in Inner Mongolia
Within the columns, values followed by different letters are significantly different (P< 0.05)

　 　 C content N content ANPP BNPP Litter mass
　 　 (g kg–1) (g kg–1) (g m–2) (g m–2) (g m–2)

Grazing regime Continuous grazing 10.1c 1.08c 95.8b 604b 2.68c
Rotational grazing 11.1a 1.20a 128.6a 795a 12.73a
No grazing 11.0b 1.15b 130.8a 757a 11.30b

Year 2010 10.1b 1.08b 38.5b 304b 5.89b
　 2012 11.5a 1.21a 198.3a 1134a 11.91a

Level of significance
Treatment <0.001 <0.001 <0.001 <0.001 <0.001
Year <0.001 <0.001 <0.01 <0.001 <0.001

　 Treatment�Year <0.001 <0.01 <0.001 <0.001 <0.001
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Fig. 2. Effects of continuous grazing (CG), rotational grazing (RG) and no grazing (E) on soil-C and soil-N contents in
the top 10 cm of soil in 2010 and 2012. Letters above bars show significant differences among grazing regimes.
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The effect of grazing treatments on soil respiration

Soil respiration was found to be higher in 2012 than in 2010
(P < 0.001, Table 1) averaged over all grazing treatments.
Compared with no grazing, rotational grazing significantly
decreased soil respiration and continuous grazing further
decreased it, averaged over the 2 years (P < 0.001). The seasonal
pattern of soil respiration followed the seasonal pattern of
precipitation,with amarkeddecrease under all grazing treatments
in the dry July of 2010 compared with the wet July of 2012
(Figs 1 and 4e, f). When analysed separately by year, soil
respiration was the greatest in the no grazing treatment in 2010
(Fig. 4e), whereas the highest value was found under rotational
grazing in 2012 and a marginally significant difference was
detected between grazing types (P< 0.1, Fig. 4f).

The effect of biotic and abiotic factors on soil respiration

Soil respiration decreased linearly with soil temperature across
the 2 years (Fig. 5a). Soil respiration increased linearly with
increasing soil water content, ANPP,BNPP and soil-C and soil-N
contents across the 2 years, with a steeper slope of regression in
BNPP than in the other biotic and abiotic factors (Fig. 5b–f).
Stepwisemultiple regression analyses showed thatANPP (partial
R2 = 0.89, P< 0.001), soil-C content (partial R2 = 0.02, P = 0.05)
and litter mass (partialR2 = 0.02,P= 0.04) together accounted for
93.0% of the variation in soil respiration over the 2 years. The
BNPP alone explained 69.5% of the seasonal variation in soil
respiration by stepwise multiple regression analyses.

Across the nine plots, seasonal mean soil respiration was
positively and linearly correlated with soil-C content (P < 0.001,
Fig. 6c), soil-N content (P = 0.009, Fig. 6d), ANPP (P< 0.001,
Fig. 6e) and BNPP (P < 0.001, Fig. 6f) in 2010). The BNPP alone
explained 99.2% of the seasonal variation in soil respiration by
stepwise multiple regression analyses in 2010. In 2012, seasonal
mean soil respiration had a positive linear dependence upon
soil-C content (P = 0.03, Fig. 6c), soil-N content (P= 0.01,
Fig. 6d) and BNPP (P= 0.02, Fig. 6e). Soil-N content alone
explained 64.1% (P = 0.009) of the spatial variation in soil
respiration in 2012.

Discussion

Soil respiration in the desert steppe

Soil respiration is generally lower in the desert steppe than in
other ecosystems (Maestre and Cortina 2003; Carbone et al.
2008). The timing of precipitation was crucial to determining
the seasonal soil respiration in the studied desert steppe (Fig. 4),
and this result is consistent with those widely observed in other
arid ecosystems (Shen et al. 2008; Rey et al. 2011). Thomas et al.
(2011) found addingwater to the soil crust (2mm) and to the crust
and sub-soil (50mm) led to increases in soil respiration as a result
of increased microbial activity in the Kalahari Desert of southern
Africa. Our results found that a large precipitation event
(166.6mm in July 2012) confirmed that such events stimulate
large discrete pulses of soil respiration, as shown in a previous
study (Scholes et al. 2009).

Effect of grazing regime on soil respiration

Compared with no grazing, soil respiration was lower under
continuous grazing (by 23.0%) and rotational grazing (by 14.1%)
in the studied desert steppe, which is consistent with the results
of other grassland studies (Davidson et al. 1998; Rey et al. 2002).
A relatively long-term experiment found that soil respiration was
low in a high grazing-intensity grassland ecosystem in East Asia
(Cao et al. 2001), but this result was opposite to that of Frank
(2002) who found that grazing induced a higher CO2 efflux in a
tallgrass prairie. However, in the arid and semiarid grasslands of
northern China, soil water content is the primary limiting factor
for plant growth (Chen and Wang 2000) and microbial activity
(Liu et al. 2007). In our study, a higher soil water content with
no grazing or under rotational grazing may lead to greater
plant production, belowground C allocation and soil-C content
(Tables 1 and 2; Figs 1 and 2, 3), providing more C substrate
for the activities and respiration of plant roots and soil
microorganisms (Saiz et al. 2006; Liu et al. 2007). The depletion
of productivity, plant litter input, water and wind erosion are
majormechanisms for soil-C loss under continuous grazing in the
long-term (Su et al. 2005; Steffens et al. 2008), whereas the high
contents of soil C andN (Fig. 2a andb) under rotational grazing as
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a result of the enhancing plant litter input and productivity
(Fig. 3a, b and c) may increase soil respiration in the desert steppe
ecosystem.

Our results are also consistent with those of Lin et al.
(2010) that grazing-induced vegetation fragmentation. In arid

environments, vegetation patches (especially the large ones)
provide favourable habitats for maintaining species richness,
improving seedling establishment and increasing community
productivity (Maestre and Cortina 2003). However, the break-up
of this vegetation patches into smaller ones under continuous
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grazing results in vegetation fragmentation. This process
negatively affects plant reproduction (Aguilar et al. 2006) and
increases the risk of plant species loss (Joshi et al. 2006). The
vegetation fragmentation and the decrease of BNPP under
continuous grazing and the positive relationship between these
factors and soil respiration (Fig. 5), suggest a decrease in soil
respiration under continuous grazing.

Roles of temporal variations of precipitation

The high rainfall during the plant growing season in 2012
(290.2mm, May–October) was responsible for the high soil
respiration, whereas the lower rainfall in 2010 (166.3mm) was
associated with low soil respiration. Several possible reasons
could explain the response pattern of soil respiration to
precipitation in this study. Soil water content is the primary
limiting factor for plant productivity (Chen andWang 2000) and
microbial activity (Liu et al. 2007) in the arid grasslands of
northern China. High soil water content in 2012 led to a greater
above- and belowground production, thus provided more C
substrate for the respiration of plant root and soil microbes as
previously reported (Liu et al. 2007). In addition, greater water
availability in 2012 compared with 2010 may also directly
stimulate auto- and heterotrophic-microbial activities, increasing
soil respiration (Xu and Wan 2008). Therefore, our study
highlights the importance of temporal pattern of precipitation
events and the associated dynamics of soil water content, on soil
respiration in the desert steppe (Sponseller 2007; Cable et al.
2008).

Increasing precipitation may lead to an increase in soil
respiration, thus at least partly off-setting the grazing-induced
reduction in soil respiration. High soil respiration was detected
under no grazing in the dry year (2010), but only a marginally
significant difference was detected among the different grazing
regimes in a wet year (2012). The increased soil respiration under
the different grazing regimes in a wet year are most likely
associated with the increased soil-C pools pulsed by increased
precipitation (Emmerich 2003; Inglima et al. 2009). In addition,
increasing precipitation also enhances C availability for soil
microorganisms, thus enhancing soil respiration (Gallo et al.
2009). Given the strong regulating effect of soil moisture on soil
respiration, future study is warranted to examine the effects of
water availability and other global-change factors on arid
grasslands alongwith the different types of grazingmanagement.

Conclusions

Both biotic and abiotic factors are important in regulating soil
respiration under different grazing regimes in the desert steppe
of northern China. Continuous grazing significantly decreases
ANPP, BNPP, litter mass and soil-C and soil-N contents, and
leads to low soil respiration in the desert steppe. Precipitation
plays a vital role in regulating the effect of grazing on soil
respiration. These findings have improved our understanding
of soil respiration under the interactive effects of different types
of grazing and precipitation in arid grassland ecosystems.
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