Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Supramolecular Assemblies of Cucurbit[10]uril Based on Outer Surface Interactions

Yu-Qing Yao A , Qing Liu A , Ying Huang A , Qian-Jiang Zhu A , Yun-Qian Zhang A , Xin Xiao A , Zhu Tao A C and Gang Wei B C
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.

B CSIRO Manufacturing PO Box 218, Lindfield, NSW 2070, Australia.

C Corresponding authors. Email: gzutao@263.net; gang.wei@csiro.au

Australian Journal of Chemistry 70(5) 637-641 https://doi.org/10.1071/CH16552
Submitted: 30 September 2016  Accepted: 23 November 2016   Published: 16 December 2016

Abstract

Using an established method, we isolated a large quantity of cucurbit[10]uril (Q[10]) and prepared Q[10]-based supramolecular assemblies via different approaches. For example, the structure-directing agent [CdCl4]2– was used or the Q[10] molecule itself acted as a self-structure-directing agent to form different Q[10]-based supramolecular assemblies through the outer surface interaction of Q[10]. Generally, the Q[10]-based supramolecular assemblies possess porous features that suggest that Q[n]-based compounds could be used to manufacture molecular sieves and sensors and applied in absorption and separation technologies.


References

[1]  H. Cong, X. L. Ni, X. Xiao, Y. Huang, Q. J. Zhu, S. F. Xue, Z. Tao, L. F. Lindoy, G. Wei, Org. Biomol. Chem. 2016, 14, 4335.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktVaktbk%3D&md5=79ad67b4b34f64a287e80d2982419ac9CAS |

[2]  W. L. Mock, Top. Curr. Chem. 1995, 175, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVCksbw%3D&md5=3a08dae558e8c830bcfb004f676ca06eCAS |

[3]  J. W. Lee, S. Samal, N. Selvapalam, H. J. Kim, K. Kim, Acc. Chem. Res. 2003, 36, 621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFCnt7s%3D&md5=03db234f43f50f2ce9d1050093f61843CAS |

[4]  K. Kim, Chem. Soc. Rev. 2002, 31, 96.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvFyjtrs%3D&md5=f55b5ebd8844a10a6b28b4d1f362576aCAS |

[5]  J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, Angew. Chem., Int. Ed. 2005, 44, 4844.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFCntbc%3D&md5=fdb4ae3a322522ab30c7c3170e940ed8CAS |

[6]  K. Kim, N. Selvapalam, Y. H. Ko, K. M. Park, D. Kim, J. Kim, Chem. Soc. Rev. 2007, 36, 267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKltbw%3D&md5=7896b23fa181b52361afa02722955aedCAS |

[7]  L. Isaacs, Chem. Commun. 2009, 2009, 619.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  R. N. Dsouza, U. Pischel, W. M. Nau, Chem. Rev. 2011, 111, 7941.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ymsr%2FI&md5=0223a1fbfbe07d930e81c46d31958fcdCAS |

[9]  B. C. Pemberton, R. Raghunathan, S. Volla, J. Sivaguru, Chem. – Eur. J. 2012, 18, 12178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12js7%2FK&md5=51461a9a7df9452e60a5ecef0c32fce1CAS |

[10]  E. Masson, X. X. Ling, R. Joseph, L. Kyeremeh-Mensah, X. Y. Lu, RSC Adv. 2012, 2, 1213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKks74%3D&md5=37eacd24d3cdde5f5a8434e363fc2e1fCAS |

[11]  Y. L. Liu, H. Yang, Z. Q. Wang, X. Zhang, Chem. – Asian J. 2013, 8, 1626.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvFahur8%3D&md5=dff361d09dbe8192f9aeb57670fc54c3CAS |

[12]  V. Sindelar, S. Silvi, S. E. Parker, D. Sobransingh, A. E. Kaifer, Adv. Funct. Mater. 2007, 17, 694.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVKkt7s%3D&md5=4f0f54d25feae097641ff58e3f9565b6CAS |

[13]  W. Wang, A. E. Kaifer, Adv. Polym. Sci. 2009, 222, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  S. Gadde, E. K. Batchelor, A. E. Kaifer, Aust. J. Chem. 2010, 63, 184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVagtrw%3D&md5=de1f501eb9ff4ce2966ae1fe9ae593dfCAS |

[15]  S. Gadde, A. E. Kaifer, Curr. Org. Chem. 2011, 15, 27.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslaitr8%3D&md5=f6fb23a3daf54dfcaeb728843457d09bCAS |

[16]  V. Mandadapu, A. I. Day, A. Ghanem, Chirality 2014, 26, 712.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVers7%2FI&md5=838f12b3b4da1ad30a12400e25a2c7c7CAS |

[17]  V. Montes-García, J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, Chem. – Eur. J. 2014, 20, 10874.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  L. Isaacs, Acc. Chem. Res. 2014, 47, 2052.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntlKgurs%3D&md5=0516c288f85f6831d9a32fea600bca53CAS |

[19]  K. I. Assaf, W. M. Nau, Chem. Soc. Rev. 2015, 44, 394.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslGisrbN&md5=ab46a6d5fddda1b8e00ef11da057653aCAS |

[20]  M. N. Sokolov, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull. 2003, 52, 1041.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVarsrk%3D&md5=0906560ef1962eb32685f34af81cc8c7CAS |

[21]  O. A. Gerasko, M. N. Sokolov, V. P. Fedin, Pure Appl. Chem. 2004, 76, 1633.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosVyrtbg%3D&md5=c2e155734c067c0cf0dd1a2731ec23b6CAS |

[22]  V. P. Fedin, Russ. J. Coord. Chem. 2004, 30, 151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1agtbs%3D&md5=bfb595de342cc5b9263a78f8b2ee71baCAS |

[23]  J. Lü, J. X. Lin, M. N. Cao, R. Cao, Coord. Chem. Rev. 2013, 257, 1334.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  X. L. Ni, X. Xiao, H. Cong, L. L. Liang, K. Chen, X. J. Cheng, N. N. Ji, Q. J. Zhu, S. F. Xue, Z. Tao, Chem. Soc. Rev. 2013, 42, 9480.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVShsb7M&md5=7d01726e05ca23bdc7f31cc0f7b70e31CAS |

[25]  X. L. Ni, S. F. Xue, Z. Tao, Q. J. Zhu, L. F. Lindoy, G. Wei, Coord. Chem. Rev. 2015, 287, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXovFWjtg%3D%3D&md5=c5072362fd093bd9de0a7bfbce61f88cCAS |

[26]  X. L. Ni, X. Xiao, H. Cong, Q. J. Zhu, S. F. Xue, Z. Tao, Acc. Chem. Res. 2014, 47, 1386.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFaqs7w%3D&md5=50e211adbff80d1059d674cd8fb61b87CAS |

[27]  I. Hwang, W. S. Jeon, H. J. Kim, D. Kim, H. Kim, N. Selvapalam, N. Fujita, S. Shinkai, K. Kim, Angew. Chem., Int. Ed. 2007, 46, 210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlGiuw%3D%3D&md5=b9ff290145fe2a8e1d33f0c30e7cb7e9CAS |

[28]  S. Lim, H. Kim, N. Selvapalam, K. J. Kim, S. J. Cho, G. Seo, K. Kim, Angew. Chem., Int. Ed. 2008, 47, 3352.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlWqsrY%3D&md5=6dbb69e99a47018b4e5ef860e649e210CAS |

[29]  H. Kim, Y. Kim, M. Yoon, S. Lim, S. M. Park, G. Seo, K. Kim, J. Am. Chem. Soc. 2010, 132, 12200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCns7nO&md5=dfdb3310b1d5ca95be445a51f8aba8c5CAS |

[30]  M. Yoon, K. Suh, H. Kim, Y. Kim, N. Selvapalam, K. Kim, Angew. Chem., Int. Ed. 2011, 50, 7870.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFygs7s%3D&md5=7b2409aab7076b6636ba7e3803180fa3CAS |

[31]  X. J. Cheng, L. L. Liang, K. Chen, N. N. Ji, X. Xiao, J. X. Zhang, Y. Q. Zhang, S. F. Xue, Q. J. Zhu, X. L. Ni, Z. Tao, Angew. Chem., Int. Ed. 2013, 52, 7252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVeqsbk%3D&md5=b3e1139d6d15ae63b738cba204d479f0CAS |

[32]  Q. Li, S. C. Qiu, J. Zhang, K. Chen, Y. Huang, X. Xiao, Y. Zhang, F. Li, Y. Q. Zhang, S. F. Xue, Q. J. Zhu, Z. Tao, L. F. Lindoy, G. Wei, Org. Lett. 2016, 18, 4020.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlSht7jM&md5=ff091e243533ac0cd786b87b55359f25CAS |

[33]  A. I. Day, R. J. Blanch, A. P. Arnold, S. Lorenzo, G. R. Lewis, I. Dance, Angew. Chem., Int. Ed. 2002, 41, 275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVyisbY%3D&md5=917029105052fb665b4e60eabdbbeb19CAS |

[34]  M. J. Pisani, Y. Zhao, L. Wallace, C. E. Woodward, F. R. Keene, A. I. Day, J. G. Collins, Dalton Trans. 2010, 39, 2078.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslCjtbs%3D&md5=48e110e541a1d53d19ed02e729b8c2f4CAS |

[35]  S. Liu, P. Y. Zavalij, L. Isaacs, J. Am. Chem. Soc. 2005, 127, 16798.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2htrbE&md5=6001e8988b378704c99dff2699f3b924CAS |

[36]  S. Liu, X. Yang, W. Gong, Chinese Patent CN 104557951 2015.

[37]  S. Liu, P. Y. Zavalij, Y. F. Lam, L. Isaacs, J. Am. Chem. Soc. 2007, 129, 11232.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVejs7s%3D&md5=a3cc9cb69110ab13431b126f540a22d3CAS |

[38]  J. X. Liu, R. L. Lin, L. S. Long, R. B. Huang, L. S. Zheng, Inorg. Chem. Commun. 2008, 11, 1085.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKrtrzP&md5=ed05f4a1c2d0bbcdf6da83db1a9f974cCAS |

[39]  S. Liu, A. D. Shukla, S. Gadde, B. D. Wagner, A. E. Kaifer, L. Isaacs, Angew. Chem., Int. Ed. 2008, 47, 2657.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFaqtbk%3D&md5=f575d903875d480cf7990434c1c9f404CAS |

[40]  F. Li, M. Feterl, J. M. Warner, A. I. Day, F. R. Keene, J. G. Collins, Dalton Trans. 2013, 42, 8868.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1emt7Y%3D&md5=4b99d8fb680bd23a588d9d3c592feb71CAS |

[41]  L. R. Alrawashdeh, A. I. Day, L. Wallace, Dalton Trans. 2013, 42, 16478.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGgsLzN&md5=77e846731d1a3f8e6ea4cabd4bad38a3CAS |

[42]  L. R. Alrawashdeh, M. P. Cronin, C. E. Woodward, A. I. Day, L. Wallace, Inorg. Chem. 2016, 55, 6759.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpvFGis74%3D&md5=be25f4f54d55a09ef7ae32c1eade9d29CAS |

[43]  A. I. Day, A. P. Arnold, R. J. Blanch, PCT Int. Appl. WO2000–2000AU412 20000505, 112 (Priority: AU 99–232 19990507) 2000 (Unisearch Limited: Australia).

[44]  J. Kim, I. S. Jung, S. Y. Kim, E. J. Lee, K. Kang, S. Sakamoto, K. Yamaguchi, K. Kim, J. Am. Chem. Soc. 2000, 122, 540.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Gjtw%3D%3D&md5=02172d95c7a429aa2a1463c231a49bceCAS |

[45]  G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=1965db3178cb384357dbea613ab9f64bCAS |

[46]  G. M. Sheldrick, SHELXL-97 Program for the Solution and Refinement of Crystal structures 1997 (University of Göttingen, Germany).

[47]  D. Bardelang, K. A. Udachin, D. M. Leek, J. A. Ripmeester, CrystEngComm 2007, 9, 973.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtleqtbzK&md5=b4b586fccebb0ca35875005beb2e0774CAS |

[48]  A. L. Spek, PLATON, A Multipurpose Crystallographic Tool 2008 (Utrecht University: Utrecht, The Netherlands).