Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Electrophoretic Deposition of SnFe2O4–Graphene Hybrid Films as Anodes for Lithium Ion Batteries

Tao Xu A , Qinghan Meng B C , Meng Yang A , Wanyuan Zhi A and Bing Cao A C
+ Author Affiliations
- Author Affiliations

A College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

B The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.

C Corresponding authors. Email: qhmeng@mail.buct.edu.cn; bcao@mail.buct.edu.cn

Australian Journal of Chemistry 70(10) 1073-1081 https://doi.org/10.1071/CH17060
Submitted: 28 January 2017  Accepted: 28 April 2017   Published: 6 June 2017

Abstract

Binder-free SnFe2O4–submillimetre (hundreds of micrometres)-sized reduced graphene oxide (SnFe2O4–srGO) hybrid films were synthesized through electrophoretic deposition and subsequent carbonization treatment. Scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy results revealed that SnFe2O4–srGO hybrid films exhibit both horizontal and vertical channels. SnFe2O4–srGO hybrid films were used as binder-free anodes for lithium ion half-cells and revealed a high capacity of ~1018.5 mA h g−1 at 0.1 A g−1 after 200 cycles. During rate performance tests, a high capacity of 464.1 mA h g−1 (~61.2 % retention) was maintained at a current density of 4 A g−1, indicating an excellent structural stability of SnFe2O4–srGO hybrid films at high current densities.


References

[1]  M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. Subba Rao, B. V. R. Chowdari, Adv. Funct. Mater. 2007, 17, 2792.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ygurjN&md5=c77d6de471b8f0786d2ae212fddefed7CAS |

[2]  H. Xu, M. Zeng, J. Li, X. Tong, RSC Adv. 2015, 5, 91493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslSqsLvM&md5=f90219205cf8ebe4c0d68a2c5c862453CAS |

[3]  Y. Wang, F. Yan, S. W. Liu, A. Y. S. Tan, H. Song, X. W. Sun, H. Y. Yang, J. Mater. Chem. A 2013, 1, 5212.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1eku7g%3D&md5=3dc899562aeb2859960da2bf13dfddcfCAS |

[4]  Y. Liu, P. Liu, D. Wu, Y. Huang, Y. Tang, Y. Su, F. Zhang, X. Feng, Chem. – Eur. J. 2015, 21, 5617.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvVeksLc%3D&md5=64e01f2535ae59693aed3615a992ef77CAS |

[5]  M. S. Wu, C. J. Lin, C. L. Ho, Electrochim. Acta 2012, 81, 44.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWlsbbO&md5=826f8d6d4371ad596ec2dfe679efe732CAS |

[6]  J. Zhou, L. Ma, H. Song, B. Wu, X. Chen, Electrochem. Commun. 2011, 13, 1357.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFart7nO&md5=ecf53b5fdf971a92909737a09f81c512CAS |

[7]  C. Z. Yuan, H. B. Wu, Y. Xie, X. W. Lou, Angew. Chem. Int. Ed. 2014, 53, 1488.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXis1Cmsg%3D%3D&md5=4deb9cb3b9d580738f262eccf04ad3c7CAS |

[8]  Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Adv. Energy Mater. 2016, 6, 1502175.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  C. T. Cherian, J. Sundaramurthy, M. V. Reddy, P. Suresh Kumar, K. Mani, D. Pliszka, C. H. Sow, S. Ramakrishna, B. V. R. Chowdari, ACS Appl. Mater. Interfaces 2013, 5, 9957.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyls7%2FP&md5=9954ba6d90cf6c68cb401fc22c72f059CAS |

[10]  L. P. Teo, M. H. Buraidah, N. A. Alias, M. Z. Kufian, S. R. Majid, A. K. Arof, Mater. Res. Innov. 2011, 15, s127.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  Y. Yao, Z. Yang, D. Zhang, W. Peng, H. Sun, S. Wang, Ind. Eng. Chem. Res. 2012, 51, 6044.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1Smsbc%3D&md5=02519bbf3d86958784eb830226b85c84CAS |

[12]  S. Yuvaraj, S. Amaresh, Y. S. Lee, R. K. Selvan, RSC Adv. 2014, 4, 6407.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmt1Oisw%3D%3D&md5=64770552260a5d4cdbdb30a9f2cd48c0CAS |

[13]  Z. Li, Y. Zhou, C. Bao, G. Xue, J. Zhang, J. Liu, T. Yu, Z. Zou, Nanoscale 2012, 4, 3490.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntVOksbc%3D&md5=79c5e69ac2df25d94d0084164542d24cCAS |

[14]  F. Han, W. C. Li, C. Lei, B. He, K. Oshida, A. H. Lu, Small 2014, 10, 2637.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktVWnt7s%3D&md5=db167f09949559ad101ffcdf3badc46aCAS |

[15]  G. Huang, S. Xu, Z. Xu, H. Sun, L. Li, ACS Appl. Mater. Interfaces 2014, 6, 21325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVWnsrbN&md5=ce84900545bb3b4f3595bc68cc38bcd0CAS |

[16]  Q. Xie, F. Li, H. Guo, L. Wang, Y. Chen, G. Yue, D. L. Peng, ACS Appl. Mater. Interfaces 2013, 5, 5508.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVaqt7g%3D&md5=410c9adee4ff8424f29e512bc56a879cCAS |

[17]  Q. Zhang, H. Chen, J. Wang, D. Xu, X. Li, Y. Yang, K. Zhang, ChemSusChem 2014, 7, 2325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnvF2ksLY%3D&md5=d05f43abce8f01a857c4bf760f25eb57CAS |

[18]  H. S. Jadhav, R. S. Kalubarme, C. N. Park, J. Kim, C. J. Park, Nanoscale 2014, 6, 10071.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOjt7fM&md5=9e1580488ff4eeb7f12a0e48a7b2db82CAS |

[19]  G. Gao, H. B. Wu, B. Dong, S. Ding, X. W. Lou, Adv. Sci. 2015, 2, 1400014.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  F. Martinez-Julian, A. Guerrero, M. Haro, J. Bisquert, D. Bresser, E. Paillard, S. Passerini, G. Garcia-Belmonte, J. Phys. Chem. C 2014, 118, 6069.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjvV2rtL0%3D&md5=5919a2f859773eb0507f5199f8aacb89CAS |

[21]  Y. Wang, D. Su, A. Ung, J. h. Ahn, G. Wang, Nanotechnology 2012, 23, 055402/1.
         | 1:CAS:528:DC%2BC38XitlWjtbk%3D&md5=1ffcd07d64b7cdfd9242f46a32d7aaf4CAS |

[22]  P. R. Kumar, P. Kollu, C. Santhosh, K. E. V. Rao, D. K. Kim, A. N. Grace, New J. Chem. 2014, 38, 3654.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFCrsrbM&md5=291a187ed38008e7005ce9893b5b5780CAS |

[23]  L. Lin, Q. Pan, J. Mater. Chem. A 2015, 3, 1724.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2kt7zM&md5=2f17adb800cf9b324f97599214f6f903CAS |

[24]  X. F. Chen, L. Qie, L. L. Zhang, W. X. Zhang, Y. H. Huang, J. Mater. Chem. A 2013, 559, 5.
         | 1:CAS:528:DC%2BC3sXktlSju70%3D&md5=78d0fdce05d127047def8875fc45c927CAS |

[25]  G. Zhang, L. Yu, H. B. Wu, H. E. Hoster, X. W. Lou, Adv. Mater. 2012, 24, 4609.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFWqt7c%3D&md5=e9571eebb7239cddba54dde9ea4560dbCAS |

[26]  W. Kang, Y. Tang, W. Li, X. Yang, H. Xue, Q. Yang, C. S. Lee, Nanoscale 2015, 7, 225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslGju7fK&md5=3851b192d42e90d30c31ecbc4d3ce475CAS |

[27]  L. Zhang, S. Zhu, H. Cao, L. Hou, C. Yuan, Chem. – Eur. J. 2015, 21, 10771.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpvFWntrw%3D&md5=920e1d3a6a9c7385787500ef8c988aefCAS |

[28]  Y. Zhang, Y. Zhang, C. Guo, B. Tang, X. Wang, Z. Bai, Electrochim. Acta 2015, 182, 1140.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1OgtrvE&md5=cfb72fdc08c7afd26c15db418d378085CAS |

[29]  M. J. Barmi, M. Minakshi Sundaram, ChemPlusChem 2016, 81, 964.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFynsbrK&md5=c62d40f2c0c033c514f1337c89114baaCAS |

[30]  C. T. Cherian, M. V. Reddy, S. C. Haur, B. V. R. Chowdari, ACS Appl. Mater. Interfaces 2013, 5, 918.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVyn&md5=bc7c5f9366e718013bd71c04c374573bCAS |

[31]  B. Wang, S. Li, B. Li, J. Liu, M. Yu, New J. Chem. 2015, 39, 1725.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2rsr7J&md5=2c396aede56f2ff017ff2cc942f83552CAS |

[32]  Z. Xing, Z. Ju, J. Yang, H. Xu, Y. Qian, Nano Res. 2012, 5, 477.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGht7fO&md5=e0835193fe44c4db8ee460a3e4729dc3CAS |

[33]  F. Zou, X. Hu, Z. Li, L. Qie, C. Hu, R. Zeng, Y. Jiang, Y. Huang, Adv. Mater. 2014, 26, 6622.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKrsrrF&md5=597539e9cfeb574c146f58ab16763a0bCAS |

[34]  J. Zhang, J. Liang, Y. Zhu, D. Wei, L. Fan, Y. Qian, J. Mater. Chem. A 2014, 2, 2728.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFantro%3D&md5=d7cb8164e20d199476ca91561d58d4abCAS |

[35]  D. Cai, D. Wang, H. Huang, X. Duan, B. Liu, L. Wang, Y. Liu, Q. Li, T. Wang, J. Mater. Chem. A 2015, 3, 11430.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsleku74%3D&md5=ea06cf1018c39cc80e461c5706103af0CAS |

[36]  G. Gao, H. B. Wu, X. W. Lou, Adv. Energy Mater. 2014, 4, 1400422.

[37]  Y. Wang, Z. J. Han, S. F. Yu, R. R. Song, H. H. Song, K. Ostrikov, H. Y. Yang, Carbon 2013, 64, 230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ylu7zJ&md5=2a44f22ab4f0be404d30ef9b9f2a5c47CAS |

[38]  Y. Li, Q. Zhang, J. Zhu, X. L. Wei, P. K. Shen, J. Mater. Chem. A 2014, 2, 3163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFCqu7o%3D&md5=c7f4be0488c229bd7fa1a2ed5a0dc574CAS |

[39]  H. Yue, Z. Shi, Q. Wang, T. Du, Y. Ding, J. Zhang, N. Huo, S. Yang, RSC Adv. 2015, 5, 75653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVWlsrjO&md5=c1a4d31a2cb02cfd392937343260399eCAS |

[40]  Q. Li, L. Yin, Z. Li, X. Wang, Y. Qi, J. Ma, ACS Appl. Mater. Interfaces 2013, 5, 10975.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFelsrfL&md5=b962f5811bad3f82171a0ed46fd32554CAS |

[41]  X. Wu, B. Wang, S. Li, J. Liu, M. Yu, RSC Adv. 2015, 5, 33438.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsVOqsbk%3D&md5=be6e2127ee7a7c0135e241f9cb7787d6CAS |

[42]  A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Khtrg%3D&md5=37bbc47a43e763b2d0672406e950b0e5CAS |

[43]  A. Fasolino, J. H. Los, M. I. Katsnelson, Nat. Mater. 2007, 6, 858.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1CgtLfP&md5=dcfd01693a4c5f906b24ba3971f48cb8CAS |

[44]  G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First, J. A. Stroscio, Science 2007, 317, 219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFaqsbc%3D&md5=5b0790c3805b41e8575511c44883cac4CAS |

[45]  K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, Science 2007, 315, 1379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVKku7k%3D&md5=5071c18996b3ce18387b3f77e1ab2308CAS |

[46]  A. Chavez-Valdez, M. S. P. Shaffer, A. R. Boccaccini, J. Phys. Chem. B 2013, 117, 1502.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCrtbjF&md5=cde7c71f7a0ee783bcd2f2bc4ef9b4a2CAS |

[47]  T. Xu, Q. H. Meng, T. Z. Shen, B. Cao, RSC Adv. 2015, 5, 73737.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlOrur7F&md5=45d8f653811b7d983a17df29174c5373CAS |

[48]  J. Chen, B. Yao, C. Li, G. Q. Shi, Carbon 2013, 64, 225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GgtbjI&md5=98dc9defafe50a8adb3dbdace5dcf0c2CAS |

[49]  B. Wang, S. Li, J. Liu, M. Yu, B. Li, X. Wu, Electrochim. Acta 2014, 146, 679.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyhsLvK&md5=4d758b3d40e73a9a6023c6f5466eb890CAS |

[50]  F. Liu, T. Li, H. Zheng, Phys. Lett. A 2004, 323, 305.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVyisr4%3D&md5=8de6c7bd5950592ade982ae5fd73500dCAS |

[51]  H. Elmoussaoui, M. Hamedoun, O. Mounkachi, A. Benyoussef, R. Masrour, E. K. Hlil, J. Supercond. Novel Magn. 2012, 25, 1995.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVSnu7c%3D&md5=34835a8629b5f75066095f07490d36a7CAS |

[52]  H. S. Zhang, K. Komvopoulos, Rev. Sci. Instrum. 2008, 79, 073905.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  J. Barbosa, B. Almeida, J. A. Mendes, A. G. Rolo, J. P. Araújo, Phys. Status Solidi A 2007, 204, 1731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntl2msr8%3D&md5=939a64fd1036b2190c4ef36dcc372613CAS |

[54]  R. Ramkumar, M. Minakshi Sundaram, New J. Chem. 2016, 40, 2863.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xps1OgsQ%3D%3D&md5=2b6aec0939c4354845db1d5a4beef60cCAS |

[55]  D. Zhao, Y. Xiao, X. Wang, Q. Gao, M. Cao, Nano Energy 2014, 7, 124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyntLvI&md5=1e5e9ed2df4ef0c88c01a5a206c41034CAS |

[56]  H. Lv, L. Ma, P. Zeng, D. Ke, T. Peng, J. Mater. Chem. 2010, 20, 3665.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Gjt78%3D&md5=b86fabc296cf4a6a6299ff7b4749d243CAS |

[57]  D. Wang, Y. Li, Q. Wang, T. Wang, J. Solid State Electrochem. 2012, 16, 2095.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsVWhtbo%3D&md5=eb9cc938d78333cf014f11498ed6aa39CAS |

[58]  M. Fondell, M. Gorgoi, M. Boman, A. Lindblad, J. Electron Spectrosc. Relat. Phenom. 2014, 195, 195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Klur7E&md5=d3b3f34011351947b41e68fb438f57a0CAS |

[59]  X. T. Chen, K. X. Wang, Y. B. Zhai, H. J. Zhang, X. Y. Wu, X. Wei, J. S. Chen, Dalton Trans. 2014, 43, 3137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFalur0%3D&md5=2c1543dfcd6e88be829ea5fbd73f703bCAS |

[60]  S. Zhang, L. Zhu, H. Song, X. Chen, J. Zhou, Nano Energy 2014, 10, 172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1KgsbfL&md5=fba28f05ec5e0a1ef4e957bcd215f73fCAS |

[61]  K. Zhang, P. Han, L. Gu, L. Zhang, Z. Liu, Q. Kong, C. Zhang, S. Dong, Z. Zhang, J. Yao, H. Xu, G. Cui, L. Chen, ACS Appl. Mater. Interfaces 2012, 4, 658.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt1Gn&md5=863e309bf33686bcfd7222dab6c222bfCAS |

[62]  D. Liu, J. Shen, N. Liu, H. Yang, A. Du, Electrochim. Acta 2013, 89, 571.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCmsbY%3D&md5=145835a08a6a517154ea508af944b752CAS |

[63]  S. Liu, J. Xie, C. Fang, G. Cao, T. Zhu, X. Zhao, J. Mater. Chem. 2012, 22, 19738.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Ojs7jP&md5=cfc34b951647dd4a65e03452f5b3aeb7CAS |

[64]  T. K. Hong, D. W. Lee, H. J. Choi, H. S. Shin, B. S. Kim, ACS Nano 2010, 4, 3861.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVyjsbk%3D&md5=6d1f65161188ddd0c4c96f5e8013fefeCAS |

[65]  M. Minakshi Sundaram, A. Biswal, D. Mitchell, R. Jones, C. Fernandez, Phys. Chem. Chem. Phys. 2016, 18, 4711.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xps1Oktg%3D%3D&md5=a6d371b07b1ac22198cab7e76098c17bCAS |

[66]  J. Deng, L. Chen, Y. Sun, M. Ma, L. Fu, Carbon 2015, 92, 177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtlKku7s%3D&md5=7822272ca1f41c41a6815f6aaa1ccc70CAS |

[67]  S. Li, B. Wang, J. Liu, M. Yu, Electrochim. Acta 2014, 129, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslejsrk%3D&md5=2be775ae395389e509bc3195861db6d7CAS |

[68]  Z. Lei, F. Shi, L. Lu, ACS Appl. Mater. Interfaces 2012, 4, 1058.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVGhsw%3D%3D&md5=37ae74d86edc8764af1f9350faed98ebCAS |

[69]  S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, J. Power Sources 2014, 257, 421.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOkurk%3D&md5=40c8c3f0d38521c84c5b84d8d9d56573CAS |

[70]  M. Zhang, X. Yang, X. Kan, X. Wang, L. Ma, M. Jia, Electrochim. Acta 2013, 112, 727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSkt7vM&md5=b0d706115f0d2a8a4b25ced4d9855440CAS |