Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Application of Hole-Transporting Materials as the Interlayer in Graphene Oxide/Single-Wall Carbon Nanotube Silicon Heterojunction Solar Cells*

LePing Yu A , Tom Grace A , Hong Duc Pham B , Munkhbayar Batmunkh A , Mahnaz Dadkhah A , Cameron Shearer A , Prashant Sonar B and Joe Shapter A C
+ Author Affiliations
- Author Affiliations

A Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA 5042, Australia.

B School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Qld 4001, Australia.

C Corresponding author. Email: joe.shapter@flinders.edu.au

Australian Journal of Chemistry 70(11) 1202-1211 https://doi.org/10.1071/CH17380
Submitted: 6 July 2017  Accepted: 9 August 2017   Published: 31 August 2017

Abstract

Solid-state hole-transporting materials, including the traditional poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and recently developed 4,4′-(naphthalene-2,6-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (NAP) and (E)-4′,4‴-(ethene-1,2-diyl)bis(N,N-bis(4-methoxyphenyl)-[1″,1‴-biphenyl]-4-amine) (BPV), have been applied as a hole-transporting interlayer (HTL) for graphene oxide/single-walled carbon nanotube–silicon (GOCNT/Si) heterojunction solar cells, forming a GOCNT/HTL/Si architecture. The influence of the thickness of the HTL has been studied. A new AuCl3 doping process based on bath immersion has been developed and proved to improve the efficiency. With the AuCl3-doped GOCNT electrodes, the efficiency of GOCNT/PEDOT:PSS/Si, GOCNT/NAP/Si, and GOCNT/BPV/Si devices was improved to 12.05 ± 0.21, 10.57 ± 0.37, and 10.68 ± 0.27 % respectively. This study reveals that the addition of an HTL is able to dramatically minimise recombination at the heterojunction interface.


References

[1]  V. L. Davis, S. Quaranta, C. Cavallo, A. Latini, F. Gaspari, Sol. Energy Mater. Sol. Cells 2017, 167, 162.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXmt1eru7Y%3D&md5=27bda863ad3715db802ce76469fe21acCAS |

[2]  S. N. Habisreutinger, R. J. Nicholas, H. J. Snaith, Adv. Energy Mater. 2017, 7, 1601839.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  F. R. Li, Y. Xu, W. Chen, S. H. Xie, J. Y. Li, J. Mater. Chem. A 2017, 5, 10374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXmsFaqtb0%3D&md5=13f0c55465f9dfba0c9ab3590b3621d8CAS |

[4]  T. A. Shastry, M. C. Hersam, Adv. Energy Mater. 2017, 7, 1601205.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  K. Aitola, K. Domanski, J. P. Correa-Baena, K. Sveinbjornsson, M. Saliba, A. Abate, M. Gratzel, E. Kauppinen, E. M. J. Johansson, W. Tress, A. Hagfeldt, G. Boschloo, Adv. Mater. 2017, 29, 1606398.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  I. Celik, B. E. Mason, A. B. Phillips, M. J. Heben, D. Apul, Environ. Sci. Technol. 2017, 51, 4722.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjtl2rtL8%3D&md5=9ed2e90112f1969130fe3d57154ec739CAS |

[7]  R. Garg, S. Elmas, T. Nann, M. R. Andersson, Adv. Energy Mater. 2017, 7, 1601393.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  J. Ma, W. Shen, F. Yu, J. Power Sources 2017, 351, 58.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXkvFalsL8%3D&md5=6664c58b8afb118fa365d82d75e001b0CAS |

[9]  W. Wei, B. Y. Hu, F. M. Jin, Z. Z. Jing, Y. X. Li, A. A. G. Blanco, D. J. Stacchiola, Y. H. Hu, J. Mater. Chem. A 2017, 5, 7749.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXlsV2murg%3D&md5=031fba8f58dfb6eea5763600a2c326b7CAS |

[10]  K. Patel, P. K. Tyagi, Carbon 2017, 116, 744.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjsVyhsbs%3D&md5=bdd12e0ad4544b26fb869c153bdd25a4CAS |

[11]  S. Tadepalli, H. Hamper, S. H. Park, S. Cao, R. R. Naik, S. Singamaneni, ACS Biomater. Sci. Eng. 2016, 2, 1084.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XptlOgs78%3D&md5=0d40fe66e8a3540fbfa364bc7016ef78CAS |

[12]  N. D. Tissera, R. N. Wijesena, J. R. Perera, K. M. N. de Silva, G. A. J. Amaratunge, Appl. Surf. Sci. 2015, 324, 455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvV2ms7zE&md5=2c9758bc2416e5de7fb29e95aacbae24CAS |

[13]  M. H. Wahid, X. J. Chen, C. T. Gibson, C. L. Raston, Chem. Commun. 2015, 11709.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVCls7jM&md5=f3a965d9a5375e24f110118d781369d5CAS |

[14]  L. Yu, D. Tune, C. Shearer, J. Shapter, ChemSusChem 2015, 8, 2940.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotVClt7c%3D&md5=bd25376578d408b58e4c02c36883b87dCAS |

[15]  G. Z. Sun, X. Zhang, R. Z. Lin, J. Yang, H. Zhang, P. Chen, Angew. Chem. Int. Ed. 2015, 54, 4651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvF2nurs%3D&md5=1089de7a61a3248b99604f273e51dddcCAS |

[16]  S. Kumar, W. Ahlawat, R. Kumar, N. Dilbaghi, Biosens. Bioelectron. 2015, 70, 498.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsVOjsbw%3D&md5=c2cd589f0f73b12c95979bc5dc9ee497CAS |

[17]  L. P. Yu, D. Tune, C. Shearer, T. Grace, J. Shapter, IEEE J. Photovolt. 2016, 6, 688.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  L. P. Yu, D. D. Tune, C. J. Shearer, J. G. Shapter, Sol. Energy 2015, 118, 592.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVeqsrfI&md5=aa82bd8198a7497c3ec30a04ef68a169CAS |

[19]  D. D. Tune, B. S. Flavel, R. Krupke, J. G. Shapter, Adv. Energy Mater. 2012, 2, 1043.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFags73E&md5=6216c57a9d3c593386255d5b1d6b17b9CAS |

[20]  F. De Nicola, M. Salvato, C. Cirillo, M. Crivellari, M. Boscardin, M. Passacantando, M. Nardone, F. De Matteis, N. Motta, M. De Crescenzi, P. Castrucci, Carbon 2017, 114, 402.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFKrtb7M&md5=69a9195aa155f3349f93f66fbe53ee0bCAS |

[21]  Y. Jia, P. X. Li, X. C. Gui, J. Q. Wei, K. L. Wang, H. W. Zhu, D. H. Wu, L. H. Zhang, A. Y. Cao, Y. Xu, Appl. Phys. Lett. 2011, 98, 133115.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  D. D. Tune, B. S. Flavel, J. S. Quinton, A. V. Ellis, J. G. Shapter, ChemSusChem 2013, 6, 320.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFGitg%3D%3D&md5=abfcbe1c8b0fe8fd0fc7468a736c5a51CAS |

[23]  L. Yu, D. D. Tune, C. J. Shearer, J. G. Shapter, ChemNanoMat 2015, 1, 115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVOmu7nE&md5=346181fa26d66ba2e65246fddc8caec4CAS |

[24]  L. Yu, M. Batmunkh, T. Grace, M. Dadkhah, C. Shearer, J. Shapter, J. Mater. Chem. A 2017, 5, 8624.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXmtVGiu7Y%3D&md5=51c4c275eb556b7b82f0187b3980cef3CAS |

[25]  Z. Yuan, Z. Wu, S. Bai, Z. Xia, W. Xu, T. Song, H. Wu, L. Xu, J. Si, Y. Jin, B. Sun, Adv. Energy Mater. 2015, 5, 1500038.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  A. Abrusci, S. D. Stranks, P. Docampo, H.-L. Yip, A. K. Y. Jen, H. J. Snaith, Nano Lett. 2013, 13, 3124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFGlu7o%3D&md5=e6d9f405e1985ef1b939b386b948158aCAS |

[27]  H.-W. Chen, T.-Y. Huang, T.-H. Chang, Y. Sanehira, C.-W. Kung, C.-W. Chu, M. Ikegami, T. Miyasaka, K.-C. Ho, Sci. Rep. 2016, 6, 34319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1emsbvE&md5=152d1a259450ba4ad4a25a446406a1c1CAS |

[28]  H. D. Pham, H. Hu, K. Feron, S. Manzhos, H. Wang, Y. M. Lam, P. Sonar, Solar RRL 2017, 1, 1700105.

[29]  H. D. Pham, Z. Wu, L. K. Ono, S. Manzhos, K. Feron, N. Motta, Y. Qi, P. Sonar, Adv. Electronic Mater. 2017, 3, 1700139.

[30]  Y. C. Li, S. R. Jia, Z. Y. Liu, X. Q. Liu, Y. Wang, Y. Cao, X. Q. Hu, C. L. Peng, Z. Li, J. Mater. Chem. A 2017, 5, 7862.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXlsV2mtLY%3D&md5=8dc58fc3aaba138dbe5b7b75fd8db0edCAS |

[31]  J. B. Zhang, N. Vlachopoulos, M. Jouini, M. B. Johansson, X. L. Zhang, M. K. Nazeeruddin, G. Boschloo, E. M. J. Johansson, A. Hagfeldt, Nano Energy 2016, 19, 455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1elsLbF&md5=87223b1efea7fe37fd27377c79168e70CAS |

[32]  C. P. Lee, C. A. Lin, T. C. Wei, M. L. Tsai, Y. Meng, C. T. Li, K. C. Ho, C. I. Wu, S. P. Lau, J. H. He, Nano Energy 2015, 18, 109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslSjsLbN&md5=9240c03776803b871a2f8b2e7d860cacCAS |

[33]  Y. F. Lin, C. T. Li, K. C. Ho, J. Mater. Chem. A 2016, 4, 384.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslCks7vP&md5=9a41361fb743baa6410b38ccfea6c824CAS |

[34]  D. Huang, T. Goh, J. Kong, Y. F. Zheng, S. L. Zhao, Z. Xu, A. D. Taylor, Nanoscale 2017, 9, 4236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjt1agtb0%3D&md5=3dab3246e36a66482a728dd66c768153CAS |

[35]  D. Y. Liu, Y. Li, J. Y. Yuan, Q. M. Hong, G. Z. Shi, D. X. Yuan, J. Wei, C. C. Huang, J. X. Tang, M. K. Fung, J. Mater. Chem. A 2017, 5, 5701.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhslarsb8%3D&md5=1b81ac02b1691820e985b1b74af4fe36CAS |

[36]  C. T. Zuo, L. M. Ding, Adv. Energy Mater. 2017, 7, 1601193.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  E. J. Lee, J. P. Han, S. E. Jung, M. H. Choi, D. K. Moon, ACS Appl. Mater. Interfaces 2016, 8, 31791.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslWjsbjP&md5=4ff2a03c0d7ac05ced7612a738388030CAS |

[38]  X. Fan, B. G. Xu, S. H. Liu, C. H. Cui, J. Z. Wang, F. Yan, ACS Appl. Mater. Interfaces 2016, 8, 14029.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnvFKhs7g%3D&md5=2cd4543a257d60020b2480430abb0774CAS |

[39]  Z. M. Yu, Y. J. Xia, D. H. Du, J. Y. Ouyang, ACS Appl. Mater. Interfaces 2016, 8, 11629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xms1Gqs7o%3D&md5=1444e8ddf1257048fd1da0186897aaf0CAS |

[40]  B. Li, X. T. Zhang, P. Chen, X. H. Li, L. L. Wang, C. Zhang, W. T. Zheng, Y. C. Liu, RSC Adv. 2014, 4, 2404.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2lt7jP&md5=03f0f6853d750766be401a4096eb17f3CAS |

[41]  D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat. Nanotechnol. 2008, 3, 101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1ajtLs%3D&md5=1f0d5a20ec04016be1c508f4db233e67CAS |

[42]  R. S. Dey, S. Hajra, R. K. Sahu, C. R. Raj, M. K. Panigrahi, Chem. Commun. 2012, 787.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  A. K. Das, M. Srivastav, R. K. Layek, M. E. Uddin, D. Jung, N. H. Kim, J. H. Lee, J. Mater. Chem. A 2014, 2, 1332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVShs7vM&md5=88a229ea0672d097e63e87a3de8d256fCAS |

[44]  S. B. Ye, J. C. Feng, RSC Adv. 2016, 6, 39681.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmsF2itLo%3D&md5=d70e26e9c19400bfd435b1ec4cd3581cCAS |

[45]  D. D. Tune, J. G. Shapter, Nanomaterials 2013, 3, 655.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 2005, 409, 47.

[47]  S. D. M. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus, R. Saito, K. Kneipp, Phys. Rev. B 2001, 63, 155414.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  A. M. Rao, P. C. Eklund, S. Bandow, A. Thess, R. E. Smalley, Nature 1997, 388, 257.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslShurk%3D&md5=3966adfadd2b461cfc43e714148dc003CAS |

[49]  R. Voggu, C. S. Rout, A. D. Franklin, T. S. Fisher, C. N. R. Rao, J. Phys. Chem. C 2008, 112, 13053.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1ygtbY%3D&md5=b87a2e751550bdac6b292f496e39fcedCAS |

[50]  L. Yu, C. Shearer, J. Shapter, Chem. Rev. 2016, 116, 13413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1SksrnM&md5=5e83fcd721d414df2f3a51fd87d92491CAS |

[51]  S. M. Kim, K. K. Kim, Y. W. Jo, M. H. Park, S. J. Chae, D. L. Duong, C. W. Yang, J. Kong, Y. H. Lee, ACS Nano 2011, 5, 1236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Crtg%3D%3D&md5=29949fe86d7ac0e1dce41bb7fbb09cebCAS |

[52]  F. Wang, D. Kozawa, Y. Miyauchi, K. Hiraoka, S. Mouri, Y. Ohno, K. Matsuda, ACS Photonics 2014, 1, 360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksF2ksbw%3D&md5=a7275da321ac7dc154608bd15554e88bCAS |

[53]  H. He, X. Yu, Y. Wu, X. Mu, H. Zhu, S. Yuan, D. Yang, Nano Energy 2015, 16, 91.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFeisb%2FI&md5=2475ad7602f092bae774d74124d9e59eCAS |

[54]  I. Puchades, C. C. Lawlor, C. M. Schauerman, A. R. Bucossi, J. E. Rossi, N. D. Cox, B. J. Landi, J. Mater. Chem. C 2015, 3, 10256.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVymtLbP&md5=d272ca007d436fad289ca5fa83920106CAS |

[55]  X. K. Li, Y. Jung, K. Sakimoto, T. H. Goh, M. A. Reed, A. D. Taylor, Energy Environ. Sci. 2013, 6, 879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivVGktrs%3D&md5=e7a0c245e5d8f78892bc7f1f52d9dbf9CAS |

[56]  D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano 2010, 4, 4806.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFOqtrc%3D&md5=f19ffbb4b6c650abbd9fd4ef5c0aefa5CAS |

[57]  L. Yu, T. Grace, M. D. Jazi, C. Shearer, J. Shapter, Solar RRL 2017, 1, 1600026.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  J. N. Tey, X. Ho, J. Wei, Nanoscale Res. Lett. 2012, 7, 548.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  B. Ruzicka, L. Degiorgi, R. Gaal, L. Thien-Nga, R. Bacsa, J. P. Salvetat, L. Forro, Phys. Rev. B 2000, 61, R2468.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1Shtw%3D%3D&md5=c1f9acd21cfef67cecb548464891b527CAS |

[60]  S. De, J. N. Coleman, ACS Nano 2010, 4, 2713.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFeqtbY%3D&md5=f062043ae4c45bd1b2faed1c7bbc1afbCAS |

[61]  L. Hu, D. S. Hecht, G. Grüner, Nano Lett. 2004, 4, 2513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslCqsLw%3D&md5=ac1a45bec2b2a10a5aba21e7de3fc3f1CAS |