Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Functionalized Ionic Liquids Sputter Decorated with Pd Nanoparticles

Muhammad I. Qadir A , Alan Kauling A D , Günter Ebeling A , Michael Fartmann B , Thomas Grehl C and Jairton Dupont orcid.org/0000-0003-3237-0770 A E
+ Author Affiliations
- Author Affiliations

A Institute of Chemistry-Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre RS 91501-970, Brazil.

B tascon GmbH, Mendelstr. 17, 48149 Münster, Germany.

C IONTOF GmbH, Heisenbergstraße 15, 48149 Münster, Germany.

D Current address: National University of Singapore – Centre for Advanced 2D Materials, 6 Science Drive 2, Singapore 117546, Republic of Singapore.

E Corresponding author. Email: Jairton.dupont@ufrgs.br

Australian Journal of Chemistry 72(2) 49-54 https://doi.org/10.1071/CH18183
Submitted: 24 April 2018  Accepted: 25 June 2018   Published: 27 July 2018

Abstract

The fabrication of surface clean palladium nanoparticles of 3–4 nm was accomplished in imidazolium-based functionalized ionic liquids (ILs) having methoxy, cyano, and thio groups by magnetron sputtering deposition. The size of the NPs was strongly dependent on the surface composition and/or organisation of the ILs. The NP growth apparently occurred preferentially in the bulk of the fluids, whereas nucleation apparently occurred preferentially at the IL surface. Smaller NPs were detected close to the methoxy containing IL surface and were covered by at least one layer of IL ion pairs, as revealed by high-sensitivity low-energy ion scattering (HS-LEIS) measurements.


References

[1]  H. Wender, P. Migowski, A. F. Feil, S. R. Teixeira, J. Dupont, Coord. Chem. Rev. 2013, 257, 2468.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  T. Torimoto, K. Okazaki, T. Kiyama, K. Hirahara, N. Tanaka, S. Kuwabata, Appl. Phys. Lett. 2006, 89, 243117.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  T. Tsuda, T. Kurihara, Y. Hoshino, T. Kiyama, K. Okazaki, T. Torimoto, S. Kuwabata, Electrochemistry 2009, 77, 693.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) H. Wender, P. Migowski, A. F. Feil, L. F. de Oliveira, M. H. G. Prechtl, R. Leal, G. Machado, S. R. Teixeira, J. Dupont, Phys. Chem. Chem. Phys. 2011, 13, 13552.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Y. Hatakeyama, M. Okamoto, T. Torimoto, S. Kuwabata, K. Nishikawa, J. Phys. Chem. C 2009, 113, 3917.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  T. Suzuki, K. Okazaki, T. Kiyama, S. Kuwabata, T. Torimoto, Electrochemistry 2009, 77, 636.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  L. Foppa, L. Luza, A. Gual, D. E. Weibel, D. Eberhardt, S. R. Teixeira, J. Dupont, Dalton Trans. 2015, 44, 2827.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  Y. Oda, K. Hirano, K. Yoshii, S. Kuwabata, T. Torimoto, M. Miura, Chem. Lett. 2010, 39, 1069.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  A. Kauling, G. Ebeling, J. Morais, A. Padua, T. Grehl, H. H. Brongersma, J. Dupont, Langmuir 2013, 29, 14301.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) A. Kanchana, S. Devarajan, S. R. Ayyappan, Nano-Micro Lett. 2010, 2, 169.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. Liang, A. Hu, J. Persic, Y. N. Zhou, Nano-Micro Lett. 2013, 5, 202.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) L. Luza, C. P. Rambor, A. Gual, F. Bernardi, J. B. Domingos, T. Grehl, P. Brüner, J. Dupont, ACS Catal. 2016, 6, 6478.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. Luza, A. Gual, C. P. Rambor, D. Eberhardt, S. R. Teixeira, F. Bernardi, D. L. Baptista, J. Dupont, Phys. Chem. Chem. Phys. 2014, 16, 18088.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) H. R. J. ter Veen, T. Kim, I. E. Wachs, H. H. Brongersma, Catal. Today 2009, 140, 197.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) C. V. Cushman, P. Bruner, J. Zakel, G. H. Major, B. M. Lunt, N. J. Smith, T. Grehl, M. R. Linford, Anal. Methods 2016, 8, 3419.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Huang, Y. Song, D. Ma, Y. Zheng, M. Chen, H. Wan, Chin. J. Catal. 2017, 38, 1229.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  R. Venkatesan, M. H. G. Prechtl, J. D. Scholten, R. P. Pezzi, G. Machado, J. Dupont, J. Mater. Chem. 2011, 21, 3030.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  A. P. Umpierre, G. Machado, G. H. Fecher, J. Morais, J. Dupont, Adv. Synth. Catal. 2005, 347, 1404.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  R. Litrán, B. Sampedro, T. C. Rojas, M. Multigner, J. C. Sánchez-López, P. Crespo, C. López-Cartes, M. A. García, A. Hernando, A. Fernández, Phys. Rev. B 2006, 73, 054404.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  I. Cano, M. A. Huertos, A. M. Chapman, G. Buntkowsky, T. Gutmann, P. B. Groszewicz, P. W. N. M. van Leeuwen, J. Am. Chem. Soc. 2015, 137, 7718.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  X. Huang, S. Tang, H. Zhang, Z. Zhou, N. Zheng, J. Am. Chem. Soc. 2009, 131, 13916.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  (a) M. Bernechea, E. de Jesus, C. Lopez-Mardomingo, P. Terreros, Inorg. Chem. 2009, 48, 4491.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) K. I. Okazaki, T. Kiyama, K. Hirahara, N. Tanaka, S. Kuwabata, T. Torimoto, Chem. Commun. 2008, 691.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  R. V. Stuart, G. K. Wehner, J. Appl. Phys. 1964, 35, 1819.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) A. S. Pensado, A. A. H. Pádua, Angew. Chem. Int. Ed. 2011, 50, 8683.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H. K. Stassen, R. Ludwig, A. Wulf, J. Dupont, Chem. – Eur. J. 2015, 21, 8324.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  M. I. Qadir, A. Kauling, L. Calabria, T. Grehl, J. Dupont, Nano-Struct. Nano-Objects 2018, 14, 92.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) S.-J. Yu, Y.-J. Zhang, J.-X. Chen, H.-L. Ge, Surf. Rev. Lett. 2006, 13, 779.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Y.-J. Zhang, S.-J. Yu, Int. J. Mod. Phys. B 2009, 23, 3147.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S.-J. Yu, Y.-J. Zhang, Surf. Rev. Lett. 2008, 15, 525.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  A. V. Ruban, H. L. Skriver, J. K. Nørskov, Phys. Rev. B 1999, 59, 15990.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  (a) D. Zhao, Z. Fei, R. Scopelliti, P. J. Dyson, Inorg. Chem. 2004, 43, 2197.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. C. Branco, J. N. Rosa, J. J. Moura Ramos, C. A. M. Afonso, Chem. – Eur. J. 2002, 8, 3671.
         | Crossref | GoogleScholarGoogle Scholar |