Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

N,N-Dialkyl-N′-Chlorosulfonyl Chloroformamidines in Heterocyclic Synthesis. Part XV.* Some Unexpected Reactions with Anilines

Dylan Innes A , Michael V. Perkins A , Andris J. Liepa B and Craig L. Francis B C
+ Author Affiliations
- Author Affiliations

A College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia.

B Biomedical Synthetic Chemistry Group, CSIRO, Clayton, Vic. 3168, Australia.

C Corresponding author. Email: craig.francis@csiro.au

Australian Journal of Chemistry 71(8) 610-623 https://doi.org/10.1071/CH18252
Submitted: 28 May 2018  Accepted: 8 August 2018   Published: 12 September 2018

Abstract

N,N-Dimethyl-N′-chlorosulfonyl chloroformamidine 1a underwent reactions with various anilines. In addition to the benzo[e][1,2,4]thiadiazine dioxides 8, from 1,3-NCC bis-nucleophilic substitution and bis-anilino adducts 9, some unexpected products were formed, particularly when sterically hindered or electron-poor anilines were used. In these cases, products such as the [1,3,2,4,6]dithiatriazine 1,1,3,3-tetraoxides 17 and, on occasion, N,N,5-trimethyl-4-(arylimino)-4,5-dihydro-[1,3,5]triazin-2-amines 14 were produced in significant yields. Reaction of dichloride 1a with 3-bromoaniline afforded the unusual eight-membered-ring product 2,6-bis(3-bromophenyl)-3,7-bis(dimethylamino)-2H,6H-[1,5,2,4,6,8]dithiatetrazocine 1,1,5,5-tetraoxide 28, in addition to the dithiatriazine tetraoxide 17k. These uncommon heterocyclic structures are of interest for bioactive molecule discovery screening programs.


References

[1]  C. L. Francis, ARKIVOC 2016, 212.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  R. E. Norman, M. V. Perkins, A. J. Liepa, C. L. Francis, Aust. J. Chem. 2015, 68, 1455.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  D. Innes, M. V. Perkins, A. J. Liepa, C. L. Francis, Aust. J. Chem. 2018, 71, 58.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  L. N. Markovskii, Y. G. Shermolovich, V. I. Shevchenko, J. Org. Chem. USSR (Engl. Transl.) 1974, 10, 492.

[5]  Y. Xu, Q. Xie, W. Li, H. Sun, Y. Wang, L. Shao, Tetrahedron 2015, 71, 4853.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  H. W. Stewart, R. J. Turner, J. J. Denton, S. Kushner, L. M. Brancone, W. L. McEwen, R. I. Hewitt, Y. Subbarow, J. Org. Chem. 1948, 13, 134.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  I. Churcher, T. Harrison, S. Kerrad, P. J. Oakley, D. E. Shaw, M. R. Teall, S. Williams, U.S. Patent 7 101 895 2006.

[8]  A. A. Shalimov, T. I. Chudakova, Y. G. Vlasenko, A. D. Sinitsa, P. P. Onys’ko, Chem. Heterocycl. Compd. 2016, 52, 267.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  W. Rauf, J. M. Brown, Angew. Chem. Int. Ed. 2008, 47, 4228.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  C. E. Houlden, M. Hutchby, C. D. Bailey, J. G. Ford, S. N. G. Tyler, M. R. Gagné, G. C. Lloyd-Jones, K. I. Booker-Milburn, Angew. Chem. Int. Ed. 2009, 48, 1830.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  A. Lender, N. P. C. Walker, E. Schaumann, Tetrahedron Lett. 2015, 56, 4800.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  M. Haake, Angew. Chem. Int. Ed. Engl. 1971, 10, 264.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  M. Becke, U.S. Patent 3 313 811 1967.

[14]  C.-H. Lee, H. Kohn, J. Org. Chem. 1990, 55, 6098.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  J. Dusemund, T. Schurreit, Arch. Pharm. 1987, 320, 534.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  C.-H. Lee, H. Kohn, Heterocycles 1988, 27, 2581.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  K. Marat, Spinworks 4.2.0 2015 (University of Manitoba: Winnipeg, MB).

[18]  D. S. Stephenson, G. Binsch, J. Magn. Reson. 1978, 30, 625.

[19]  K. D. Zimmer, R. Shoemaker, R. R. Ruminski, Inorg. Chim. Acta 2006, 359, 1478.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  R. Shoemaker, Determining the Energy of Activation Parameters from Dynamic NMR Experiments 2009. Available at https://www.colorado.edu/lab/nmr/sites/default/files/attached-files/dnmr_calculations_0.pdf (accessed 4 April 2018).

[21]  CrysAlisPro v1.171.35.15 2011 (Rigaku Oxford Diffraction: Yarnton, UK).

[22]  Apex2 v. 2014.7–1 2014 (Bruker AXS: Madison, WI).

[23]  G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |