Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Short-term effect of FSH on gene expression in bovine granulosa cells in vitro

Anne-Laure Nivet A , Isabelle Dufort A , Isabelle Gilbert A and Marc-André Sirard A B
+ Author Affiliations
- Author Affiliations

A Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l’agriculture et de l’alimentation, Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada.

B Corresponding author. Email: marc-andre.sirard@fsaa.ulaval.ca

Reproduction, Fertility and Development 30(8) 1154-1160 https://doi.org/10.1071/RD17469
Submitted: 27 June 2017  Accepted: 25 January 2018   Published: 13 March 2018

Abstract

In reproduction, FSH is one of the most important hormones, especially in females, because it controls the number of follicles and the rate of follicular growth. Although several studies have examined the follicular response at the transcriptome level, it is difficult to obtain a clear and complete picture of the genes responding to an increase in FSH in an in vivo context because follicles undergo rapid morphological and physical changes during their growth. To help define the transcriptome downstream response to FSH, an in vitro model was used in the present study to observe the short-term (4 h) cellular response. Gene expression analysis highlighted a set of novel transcripts that had not been reported previously as being part of the FSH response. Moreover, the results of the present study indicate that the epithelial to mesenchymal transition pathway is inhibited by short-term FSH stimuli, maintaining follicles in a growth phase and preventing differentiation. Modulating gene expression in vitro has physiological limitations, but it can help assess the potential downstream response and begin the mapping of the granulosa cell transcriptome in relation to FSH. This information is a key feature to help discriminate between the effects of FSH and LH, or to elucidate the overlapping of insulin-like growth factor 1 and FSH in the granulosa mitogenic response.

Additional keywords: cow, follicle, in-vitro culture, ovary.


References

Cannito, S., Novo, E., di Bonzo, L. V., Busletta, C., Colombatto, S., and Parola, M. (2010). Epithelial–mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid. Redox Signal. 12, 1383–1430.
Epithelial–mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1Wgur8%3D&md5=7991916fedcc1920551ce7606afd6e25CAS |

Caporali, A., and Emanueli, C. (2009). Cardiovascular actions of neurotrophins. Physiol. Rev. 89, 279–308.
Cardiovascular actions of neurotrophins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Cqtrg%3D&md5=d9bfff2fbd52baa785512d480da02307CAS |

Chen, L. R., Chao, C. H., Chen, C. F., Lee, Y. P., Chen, Y. L., and Shiue, Y. L. (2007). Expression of 25 high egg production related transcripts that identified from hypothalamus and pituitary gland in red-feather Taiwan country chickens. Anim. Reprod. Sci. 100, 172–185.
Expression of 25 high egg production related transcripts that identified from hypothalamus and pituitary gland in red-feather Taiwan country chickens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvF2isLo%3D&md5=8700155063f3841c9ccf00f174f18253CAS |

Chun, S. Y., Eisenhauer, K. M., Minami, S., Billig, H., Perlas, E., and Hsueh, A. J. (1996). Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor. Endocrinology 137, 1447–1456.
Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVegtLk%3D&md5=e0753d8b84ab6e4da2a32f9c35c50ec5CAS |

Driancourt, M. A. (2001). Regulation of ovarian follicular dynamics in farm animals. Implications for manipulation of reproduction. Theriogenology 55, 1211–1239.
Regulation of ovarian follicular dynamics in farm animals. Implications for manipulation of reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFSisr8%3D&md5=d341ec6bd522c7e4dd02e7bfe2c22ce3CAS |

Drozdov, I., Svejda, B., Gustafsson, B. I., Mane, S., Pfragner, R., Kidd, M., and Modlin, I. M. (2011). Gene network inference and biochemical assessment delineates GPCR pathways and CREB targets in small intestinal neuroendocrine neoplasia. PLoS One 6, e22457.
Gene network inference and biochemical assessment delineates GPCR pathways and CREB targets in small intestinal neuroendocrine neoplasia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCktbbF&md5=476b6423fa1a3b63e136ab5f37722c8eCAS |

Evans, A. C., Adams, G. P., and Rawlings, N. C. (1994). Endocrine and ovarian follicular changes leading up to the first ovulation in prepubertal heifers. J. Reprod. Fertil. 100, 187–194.
Endocrine and ovarian follicular changes leading up to the first ovulation in prepubertal heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXis1Wks7s%3D&md5=d659ecee71f6c7b553ef98b6b2317677CAS |

Glebova, N. O., and Ginty, D. D. (2005). Growth and survival signals controlling sympathetic nervous system development. Annu. Rev. Neurosci. 28, 191–222.
Growth and survival signals controlling sympathetic nervous system development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosVegtLo%3D&md5=f3d21893659d4d5734bd8c97adfa5cf8CAS |

Gumienny, T., and Padgett, R. W. (2002). The other side of TGF-beta superfamily signal regulation: thinking outside the cell. Trends Endocrinol. Metab. 13, 295–299.
The other side of TGF-beta superfamily signal regulation: thinking outside the cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVWntro%3D&md5=8bde314154d97ed04735eb19c50bd466CAS |

Gutiérrez, C. G., Campbell, B. K., and Webb, R. (1997). Development of a long-term bovine granulosa cell culture system: induction and maintenance of estradiol production, response to follicle-stimulating hormone, and morphological characteristics. Biol. Reprod. 56, 608–616.
Development of a long-term bovine granulosa cell culture system: induction and maintenance of estradiol production, response to follicle-stimulating hormone, and morphological characteristics.Crossref | GoogleScholarGoogle Scholar |

Haugen, M. J., and Johnson, A. L. (2010). Bone morphogenetic protein 2 inhibits FSH responsiveness in hen granulosa cells. Reproduction 140, 551–558.
Bone morphogenetic protein 2 inhibits FSH responsiveness in hen granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCqurrJ&md5=1d43078064b6e7b860ba912a77295d2bCAS |

Jiang, J. Y., Cheung, C. K., Wang, Y., and Tsang, B. K. (2003). Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia. Front. Biosci. 8, d222–d237.
| 1:CAS:528:DC%2BD3sXhsVejs74%3D&md5=367bd2026ff5f24af83fc7a92b8dd41fCAS |

Kim, D., Ocon-Grove, O., and Johnson, A. L. (2013). Bone morphogenetic protein 4 supports the initial differentiation of hen (Gallus gallus) granulosa cells. Biol. Reprod. 88, 161.
Bone morphogenetic protein 4 supports the initial differentiation of hen (Gallus gallus) granulosa cells.Crossref | GoogleScholarGoogle Scholar |

Knight, P. G., and Glister, C. (2006). TGF-beta superfamily members and ovarian follicle development. Reproduction 132, 191–206.
TGF-beta superfamily members and ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjsr0%3D&md5=63bfef5e4f2bb10bed404886ec013fc9CAS |

Langhout, D. J., Spicer, L. J., and Geisert, R. D. (1991). Development of a culture system for bovine granulosa cells: effects of growth hormone, estradiol, and gonadotropins on cell proliferation, steroidogenesis, and protein synthesis. J. Anim. Sci. 69, 3321–3334.
Development of a culture system for bovine granulosa cells: effects of growth hormone, estradiol, and gonadotropins on cell proliferation, steroidogenesis, and protein synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlslGju7Y%3D&md5=c2414abff2debe187009ff280604a616CAS |

Luck, M. R., Rodgers, R. J., and Findlay, J. K. (1990). Secretion and gene expression of inhibin, oxytocin and steroid hormones during the in vitro differentiation of bovine granulosa cells. Reprod. Fertil. Dev. 2, 11–25.
Secretion and gene expression of inhibin, oxytocin and steroid hormones during the in vitro differentiation of bovine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xlt1Crt74%3D&md5=18be5cac7fa7cf59067e72756ed222f9CAS |

Luhmann, U. F., Meunier, D., Shi, W., Luttges, A., Pfarrer, C., Fundele, R., and Berger, W. (2005). Fetal loss in homozygous mutant Norrie disease mice: a new role of Norrin in reproduction. Genesis 42, 253–262.
Fetal loss in homozygous mutant Norrie disease mice: a new role of Norrin in reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVers7%2FJ&md5=6b4de410113113891f3d032f71ff6197CAS |

Mendelson, C. R., and Kamat, A. (2007). Mechanisms in the regulation of aromatase in developing ovary and placenta. J. Steroid Biochem. Mol. Biol. 106, 62–70.
Mechanisms in the regulation of aromatase in developing ovary and placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWitbbM&md5=9a245a6014600f3bf3e7bd6c9295158fCAS |

Miller, W. L. (1988). Molecular biology of steroid hormone synthesis. Endocr. Rev. 9, 295–318.
Molecular biology of steroid hormone synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvVemtbw%3D&md5=fd9aa8c0670aa20914d1073ac2551cc5CAS |

Mora, J. M., Fenwick, M. A., Castle, L., Baithun, M., Ryder, T. A., Mobberley, M., Carzaniga, R., Franks, S., and Hardy, K. (2012). Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles. Biol. Reprod. 86, 153.
Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles.Crossref | GoogleScholarGoogle Scholar |

Nakamura, E., Otsuka, F., Inagaki, K., Miyoshi, T., Matsumoto, Y., Ogura, K., Tsukamoto, N., Takeda, M., and Makino, H. (2012). Mutual regulation of growth hormone and bone morphogenetic protein system in steroidogenesis by rat granulosa cells. Endocrinology 153, 469–480.
Mutual regulation of growth hormone and bone morphogenetic protein system in steroidogenesis by rat granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFWrsA%3D%3D&md5=36c3dae9431595163f5ffedf85b4c0a6CAS |

Natesampillai, S., Kerkvliet, J., Leung, P. C., and Veldhuis, J. D. (2008). Regulation of Kruppel-like factor 4, 9, and 13 genes and the steroidogenic genes LDLR, StAR, and CYP11A in ovarian granulosa cells. Am. J. Physiol. Endocrinol. Metab. 294, E385–E391.
Regulation of Kruppel-like factor 4, 9, and 13 genes and the steroidogenic genes LDLR, StAR, and CYP11A in ovarian granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yktbY%3D&md5=cab2906270136fce28777499681d5782CAS |

Nivet, A. L., Leveille, M. C., Leader, A., and Sirard, M. A. (2016). Transcriptional characteristics of different sized follicles in relation to embryo transferability: potential role of hepatocyte growth factor signalling. Mol. Hum. Reprod. 22, 475–484.
Transcriptional characteristics of different sized follicles in relation to embryo transferability: potential role of hepatocyte growth factor signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC1cXjt1eqtL4%3D&md5=127fde0877ffc0f8b7edde3a1c06c44cCAS |

Richards, J. S. (1994). Hormonal control of gene expression in the ovary. Endocr. Rev. 15, 725–751.
Hormonal control of gene expression in the ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjs12lsbw%3D&md5=0004389b844de3f1135f5359c139f1c2CAS |

Richards, J. S., Russell, D. L., Ochsner, S., and Espey, L. L. (2002). Ovulation: new dimensions and new regulators of the inflammatory-like response. Annu. Rev. Physiol. 64, 69–92.
Ovulation: new dimensions and new regulators of the inflammatory-like response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFGms7Y%3D&md5=7dbb27ebc4ad73c9c5c9adadb6d3a964CAS |

Robert, C., Nieminen, J., Dufort, I., Gagne, D., Grant, J. R., Cagnone, G., Plourde, D., Nivet, A. L., Fournier, E., Paquet, E., Blazejczyk, M., Rigault, P., Juge, N., and Sirard, M. A. (2011). Combining resources to obtain a comprehensive survey of the bovine embryo transcriptome through deep sequencing and microarrays. Mol. Reprod. Dev. 78, 651–664.
Combining resources to obtain a comprehensive survey of the bovine embryo transcriptome through deep sequencing and microarrays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGns7vK&md5=7dbc6ac4a854135d1cab31c8bd4f74baCAS |

Sahmi, M., Nicola, E. S., Silva, J. M., and Price, C. A. (2004). Expression of 17beta- and 3beta-hydroxysteroid dehydrogenases and steroidogenic acute regulatory protein in non-luteinizing bovine granulosa cells in vitro. Mol. Cell. Endocrinol. 223, 43–54.
Expression of 17beta- and 3beta-hydroxysteroid dehydrogenases and steroidogenic acute regulatory protein in non-luteinizing bovine granulosa cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFyrtLk%3D&md5=c64be899c9b2a27c5f235f0effc67a8bCAS |

Salas, C., Julio-Pieper, M., Valladares, M., Pommer, R., Vega, M., Mastronardi, C., Kerr, B., Ojeda, S. R., Lara, H. E., and Romero, C. (2006). Nerve growth factor-dependent activation of trkA receptors in the human ovary results in synthesis of follicle-stimulating hormone receptors and estrogen secretion. J. Clin. Endocrinol. Metab. 91, 2396–2403.
Nerve growth factor-dependent activation of trkA receptors in the human ovary results in synthesis of follicle-stimulating hormone receptors and estrogen secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVCgt7k%3D&md5=e5b0f9be543caf843b7efc5f44879da8CAS |

Shyu, W. C., Lin, S. Z., Chiang, M. F., Chen, D. C., Su, C. Y., Wang, H. J., Liu, R. S., Tsai, C. H., and Li, H. (2008). Secretoneurin promotes neuroprotection and neuronal plasticity via the Jak2/Stat3 pathway in murine models of stroke. J. Clin. Invest. 118, 133–148.
Secretoneurin promotes neuroprotection and neuronal plasticity via the Jak2/Stat3 pathway in murine models of stroke.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFOlsw%3D%3D&md5=146fdaff173a2b57522f57aa1bfafabbCAS |

Silva, J. M., and Price, C. A. (2000). Effect of follicle-stimulating hormone on steroid secretion and messenger ribonucleic acids encoding cytochromes P450 aromatase and cholesterol side-chain cleavage in bovine granulosa cells in vitro. Biol. Reprod. 62, 186–191.
Effect of follicle-stimulating hormone on steroid secretion and messenger ribonucleic acids encoding cytochromes P450 aromatase and cholesterol side-chain cleavage in bovine granulosa cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslKkug%3D%3D&md5=445b5f4aa5c4dae8be05d95200563065CAS |

Silva, J. M., and Price, C. A. (2002). Insulin and IGF-I are necessary for FSH-induced cytochrome P450 aromatase but not cytochrome P450 side-chain cleavage gene expression in oestrogenic bovine granulosa cells in vitro. J. Endocrinol. 174, 499–507.
Insulin and IGF-I are necessary for FSH-induced cytochrome P450 aromatase but not cytochrome P450 side-chain cleavage gene expression in oestrogenic bovine granulosa cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnslGjurk%3D&md5=5c495d3f94d654a562d2c455e504c8c4CAS |

Sirard, M. A. (2016). Somatic environment and germinal differentiation in antral follicle: the effect of FSH withdrawal and basal LH on oocyte competence acquisition in cattle. Theriogenology 86, 54–61.
Somatic environment and germinal differentiation in antral follicle: the effect of FSH withdrawal and basal LH on oocyte competence acquisition in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmslKru7k%3D&md5=65288988dc13420d26c05d0c1d54d724CAS |

Sirotkin, A. V., Florkovicova, I., Makarevich, A. V., Schaeffer, H. J., Kotwica, J., Marnet, P. G., and Sanislo, P. (2003). Oxytocin mediates some effects of insulin-like growth factor-I on porcine ovarian follicles. J. Reprod. Dev. 49, 141–149.
| 1:CAS:528:DC%2BD3sXlt1Kgur0%3D&md5=64183d02c06b992a430dbed7bc3a78afCAS |

Sirotkin, A. V., Chrenek, P., Darlak, K., Valenzuela, F., and Kuklova, Z. (2008). Some endocrine traits of transgenic rabbits. II. Changes in hormone secretion and response of isolated ovarian tissue to FSH and ghrelin. Physiol. Res. 57, 745–751.
| 1:CAS:528:DC%2BD1cXhsV2ksb%2FP&md5=97eba7f64558e84b73eda2557c645b6eCAS |

Stocco, C. (2008). Aromatase expression in the ovary: hormonal and molecular regulation. Steroids 73, 473–487.
Aromatase expression in the ovary: hormonal and molecular regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlemu74%3D&md5=4833ee25dae0456a5a9572207f275c87CAS |

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, RESEARCH0034.1.
Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.Crossref | GoogleScholarGoogle Scholar |

Vasconcelos, G. L., Saraiva, M. V., Costa, J. J., Passos, M. J., Silva, A. W., Rossi, R. O., Portela, A. M., Duarte, A. B., Magalhaes-Padilha, D. M., Campelo, C. C., Figueiredo, J. R., van den Hurk, R., and Silva, J. R. (2013). Effects of growth differentiation factor-9 and FSH on in vitro development, viability and mRNA expression in bovine preantral follicles. Reprod. Fertil. Dev. 25, 1194–1203.
| 1:CAS:528:DC%2BC3sXhsF2ltL3L&md5=7fc08dd7aa338478ee9db0858deb01fbCAS |

Vernon, R. K., and Spicer, L. J. (1994). Effects of basic fibroblast growth factor and heparin on follicle-stimulating hormone-induced steroidogenesis by bovine granulosa cells. J. Anim. Sci. 72, 2696–2702.
Effects of basic fibroblast growth factor and heparin on follicle-stimulating hormone-induced steroidogenesis by bovine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsVKksL4%3D&md5=f830b5192fcccacbe9a3ee3c36d3b3f4CAS |

Wang, C., and Roy, S. K. (2009). Expression of bone morphogenetic protein receptor (BMPR) during perinatal ovary development and primordial follicle formation in the hamster: possible regulation by FSH. Endocrinology 150, 1886–1896.
| 1:CAS:528:DC%2BD1MXktVWlsLo%3D&md5=e8d87b9a31c3bde2d85a92a929761fb1CAS |

Zheng, X., Price, C. A., Tremblay, Y., Lussier, J. G., and Carriere, P. D. (2008). Role of transforming growth factor-beta1 in gene expression and activity of estradiol and progesterone-generating enzymes in FSH-stimulated bovine granulosa cells. Reproduction 136, 447–457.
| 1:CAS:528:DC%2BD1cXhtlSrtr%2FI&md5=a4da64ec83ddb1aa0bedeeef5446c067CAS |