Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Abnormal extracellular matrix remodelling in the cervix of pregnant relaxin-deficient mice is not associated with reduced matrix metalloproteinase expression or activity

Sarah A. Marshall A , Jonathan T. McGuane A , Yu May Soh A , Helen M. Gehring A , Emma Simpson A and Laura J. Parry A B
+ Author Affiliations
- Author Affiliations

A School of BioSciences, The University of Melbourne, Parkville, Vic. 3010, Australia.

B Corresponding author. Email: ljparry@unimelb.edu.au

Reproduction, Fertility and Development 30(9) 1214-1224 https://doi.org/10.1071/RD17544
Submitted: 28 June 2017  Accepted: 20 February 2018   Published: 14 March 2018

Abstract

Relaxin regulates cervical extracellular matrix (ECM) remodelling during pregnancy by modifying collagen and other ECM molecules by unknown mechanisms. We hypothesised that abnormal collagen remodelling in the cervix of pregnant relaxin-deficient (Rln1−/−) mice is due to excessive collagen (Col1a1 and Col3a1) and decreased matrix metalloproteinases (Mmp2, Mmp9, Mmp13 and Mmp7) and oestrogen receptors (Esr1 and Esr2). Quantitative polymerase chain reaction, gelatinase zymography, MMP activity assays and histological staining evaluated changes in ECM in pregnant wildtype (Rln1+/+) and Rln1−/− mice. Cervical Col1a1, Col3a1 and total collagen increased in Rln1−/− mice and were higher at term compared with Rln1+/+ mice. This was not correlated with a decrease in gelatinase (Mmp2, Mmp9) expression or activity, Mmp7 or Mmp13 expression, which were all significantly higher in Rln1−/− mice. In late pregnancy, circulating MMP2 and MMP9 were unchanged. Esr1 expression was highest in Rln1+/+ and Rln1−/− mice in late pregnancy, coinciding with a decrease in Esr2 in Rln1+/+ but not Rln1−/− mice. The relaxin receptor (Rxfp1) decreased slightly in late-pregnant Rln1+/+ mice, but was significantly higher in Rln1−/− mice. In summary, relaxin deficiency results in increased cervical collagen in late pregnancy, which is not explained by a reduction in Mmp expression or activity or decreased Rxfp1. However, an imbalance between Esr1 and Esr2 may be involved.

Additional keywords: collagen, oestrogen receptor, pregnancy, rhRLX, RXFP1.


References

Breeveld-Dwarkasing, V. N., te Koppele, J. M., Bank, R. A., van der Weijden, G. C., Taverne, M. A., and van Dissel-Emiliani, F. M. (2003). Changes in water content, collagen degradation, collagen content, and concentration in repeated biopsies of the cervix of pregnant cows. Biol. Reprod. 69, 1608–1614.
Changes in water content, collagen degradation, collagen content, and concentration in repeated biopsies of the cervix of pregnant cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosV2rsr8%3D&md5=28904bbd19500d9adea99434edf30a60CAS |

Di, G. H., Lu, J. S., Song, C. G., Li, H. C., Shen, Z. Z., and Shao, Z. M. (2005). Over expression of aromatase protein is highly related to MMPs levels in human breast carcinomas. J. Exp. Clin. Cancer Res. 24, 601–607.
| 1:CAS:528:DC%2BD28XhsFaqsbY%3D&md5=90625db291d353c9d313a48e6111125dCAS |

Downing, S. J., and Sherwood, O. D. (1986). The physiological role of relaxin in the pregnant rat. IV. The influence of relaxin on cervical collagen and glycosaminoglycans. Endocrinology 118, 471–479.
The physiological role of relaxin in the pregnant rat. IV. The influence of relaxin on cervical collagen and glycosaminoglycans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhtVaksrw%3D&md5=6495d99ae5b7df637c54fe32ad47b7e9CAS |

Du, X.-J., Samuel, C. S., Gao, X.-M., Zhao, L., Parry, L. J., and Tregear, G. W. (2003). Increased myocardial collagen and ventricular diastolic dysfunction in relaxin deficient mice: a gender-specific phenotype. Cardiovasc. Res. 57, 395–404.
Increased myocardial collagen and ventricular diastolic dysfunction in relaxin deficient mice: a gender-specific phenotype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFCgug%3D%3D&md5=c0c431fe878471859c167abb9125755aCAS |

Feng, S., Bogatcheva, N. V., Kamat, A. A., Truong, A., and Agoulnik, A. I. (2006). Endocrine effects of relaxin overexpression in mice. Endocrinology 147, 407–414.
Endocrine effects of relaxin overexpression in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFGg&md5=866c786d5f295b1bcc23da317aea0747CAS |

Frieden, E. H., and Adams, W. C. (1985). Stimulation of rat uterine collagen synthesis by relaxin. Proc. Soc. Exp. Biol. Med. 180, 39–43.
Stimulation of rat uterine collagen synthesis by relaxin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlslagtLg%3D&md5=144cbc7703f639f0fb51135d1dec42e3CAS |

Goldsmith, L. T., Weiss, G., Palejwala, S., Plant, T. M., Wojtczuk, A., Lambert, W. C., Ammur, N., Heller, D., Skurnick, J. H., Edwards, D., and Cole, D. M. (2004). Relaxin regulation of endometrial structure and function in the rhesus monkey. Proc. Natl. Acad. Sci. USA 101, 4685–4689.
Relaxin regulation of endometrial structure and function in the rhesus monkey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFKisbo%3D&md5=e1ecf5e7cb9b5bcaecbefa7f0271e2feCAS |

Hall, J. M., and McDonnell, D. P. (1999). The estrogen receptor beta-isoform (ERbeta) of the human estrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology 140, 5566–5578.
The estrogen receptor beta-isoform (ERbeta) of the human estrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns12htro%3D&md5=6d8e4de73bdb59e24c6d204207a3bc2eCAS |

Henneman, S., Bildt, M. M., Degroot, J., Kuijpers-Jagtman, A. M., and Von den Hoff, J. W. (2008). Relaxin stimulates MMP-2 and alpha-smooth muscle actin expression by human periodontal ligament cells. Arch. Oral Biol. 53, 161–167.
Relaxin stimulates MMP-2 and alpha-smooth muscle actin expression by human periodontal ligament cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOrtbjF&md5=9be309cedb63774e56baf406049d243fCAS |

Holt, R., Timmons, B. C., Akgul, Y., Akins, M. L., and Mahendroo, M. (2011). The molecular mechanisms of cervical ripening differ between term and preterm birth. Endocrinology 152, 1036–1046.
The molecular mechanisms of cervical ripening differ between term and preterm birth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVGrsbs%3D&md5=5074921ee72a459835006fe00a6044aeCAS |

Jinga, D. C., Blidaru, A., Condrea, I., Ardeleanu, C., Dragomir, C., Szegli, G., Stefanescu, M., and Matache, C. (2006). MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors in breast cancer: correlations with prognostic factors. J. Cell. Mol. Med. 10, 499–510.
MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors in breast cancer: correlations with prognostic factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvFCltbc%3D&md5=8cf0cf5811c151a0debb213b2bff8639CAS |

Kaftanovskaya, E. M., Huang, Z., Lopez, C., Conrad, K., and Agoulnik, A. I. (2015). Conditional deletion of the relaxin receptor gene in cells of smooth muscle lineage affects lower reproductive tract in pregnant mice. Biol. Reprod. 92, 91.
Conditional deletion of the relaxin receptor gene in cells of smooth muscle lineage affects lower reproductive tract in pregnant mice.Crossref | GoogleScholarGoogle Scholar |

Kamat, A. A., Feng, S., Bogatcheva, N. V., Truong, A., Bishop, C. E., and Agoulnik, A. I. (2004). Genetic targeting of relaxin and insulin-like factor 3 receptors in mice. Endocrinology 145, 4712–4720.
Genetic targeting of relaxin and insulin-like factor 3 receptors in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOqtbc%3D&md5=9691f02113f99be7a8cbe4b92bbd6109CAS |

Kang, Y. M., Lee, H. M., Moon, S. H., Kang, H., and Choi, Y. R. (2017). Relaxin modulates the expression of MMPs and TIMPs in fibroblasts of patients with carpal tunnel syndrome. Yonsei Med. J. 58, 415–422.
Relaxin modulates the expression of MMPs and TIMPs in fibroblasts of patients with carpal tunnel syndrome.Crossref | GoogleScholarGoogle Scholar |

Kapila, S., Wang, W., and Uston, K. (2009). Matrix metalloproteinase induction by relaxin causes cartilage matrix degradation in target synovial joints: receptor profiles correlate with matrix turnover. Ann. N. Y. Acad. Sci. 1160, 322–328.
Matrix metalloproteinase induction by relaxin causes cartilage matrix degradation in target synovial joints: receptor profiles correlate with matrix turnover.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1Ggt7w%3D&md5=76923a434c05b11d765cea0054ba07d4CAS |

Krajnc-Franken, M. A. M., van Disseldorp, A. J. M., Koenders, J. E., Mosselman, S., van Duin, M., and Gossen, J. A. (2004). Impaired nipple development and parturition in LGR7 knockout mice. Mol. Cell. Biol. 24, 687–696.
Impaired nipple development and parturition in LGR7 knockout mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVyltw%3D%3D&md5=b867f3ee1a20dd2dd57ef3681d1a1793CAS |

Lee, A. B., Hwang, J. J., Haab, L. M., Fields, P. A., and Sherwood, O. D. (1992). Monoclonal antibodies specific for rat relaxin. VI. Passive immunization with monoclonal antibodies throughout the second half of pregnancy disrupts histological changes associated with cervical softening at parturition in rats. Endocrinology 130, 2386–2391.
| 1:CAS:528:DyaK38XitVyjsLo%3D&md5=731ee057064db5b43829d61404bc917aCAS |

Lenhart, J. A., Ryan, P. L., Ohleth, K. M., Palmer, S. S., and Bagnell, C. A. (2001). Relaxin increases secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 during uterine and cervical growth and remodeling in the pig. Endocrinology 142, 3941–3949.
Relaxin increases secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 during uterine and cervical growth and remodeling in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFSgs7c%3D&md5=78dcec6c86744388cea69eca9e31f3a2CAS |

Lenhart, J. A., Ryan, P. L., Ohleth, K. M., Palmer, S. S., and Bagnell, C. A. (2002). Relaxin increases secretion of tissue inhibitor of matrix metalloproteinase-1 and -2 during uterine and cervical growth and remodeling in the pig. Endocrinology 143, 91–98.
Relaxin increases secretion of tissue inhibitor of matrix metalloproteinase-1 and -2 during uterine and cervical growth and remodeling in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVOrsQ%3D%3D&md5=f3e94b8fd830079430094ad84092cf49CAS |

Li, W., Savinov, A. Y., Rozanov, D. V., Golubkov, V. S., Hedayat, H., Postnova, T. I., Golubkova, N. V., Linli, Y., Krajewski, S., and Strongin, A. Y. (2004). Matrix metalloproteinase-26 is associated with estrogen-dependent malignancies and targets alpha1-antitrypsin serpin. Cancer Res. 64, 8657–8665.
Matrix metalloproteinase-26 is associated with estrogen-dependent malignancies and targets alpha1-antitrypsin serpin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCjs7rM&md5=b3329859572bfe41bb447bbe58c594ccCAS |

Mahendroo, M. S., Porter, A., Russell, D. W., and Word, R. A. (1999). The parturition defect in steroid 5alpha-reductase type 1 knockout mice is due to impaired cervical ripening. Mol. Endocrinol. 13, 981–992.
| 1:CAS:528:DyaK1MXjs1yns7s%3D&md5=c09bf6df3358b6221c0f6d12d223ad07CAS |

Marshall, S. A., Leo, C. H., Senadheera, S. N., Girling, J. E., Tare, M., and Parry, L. J. (2016a). Relaxin deficiency attenuates pregnancy-induced adaptation of the mesenteric artery to angiotensin II in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol, 310, R847–R857.
Relaxin deficiency attenuates pregnancy-induced adaptation of the mesenteric artery to angiotensin II in mice.Crossref | GoogleScholarGoogle Scholar |

Marshall, S. A., Ng, L., Unemori, E. N., Girling, J. E., and Parry, L. J. (2016b). Relaxin deficiency results in increased expression of angiogenesis- and remodelling-related genes in the uterus of early pregnant mice but does not affect endometrial angiogenesis prior to implantation. Reprod. Biol. Endocrinol. 14, 11.
Relaxin deficiency results in increased expression of angiogenesis- and remodelling-related genes in the uterus of early pregnant mice but does not affect endometrial angiogenesis prior to implantation.Crossref | GoogleScholarGoogle Scholar |

Maseelall, P., Gardner, J., Wojtczuk, A., Weiss, G., and Goldsmith, L. T. (2009). Relaxin receptor LGR7 (RXFP1) is regulated by estrogen. Ann. N. Y. Acad. Sci. 1160, 91–92.
Relaxin receptor LGR7 (RXFP1) is regulated by estrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1Ggsrc%3D&md5=547c58445e5f28f434dd69cc179abc59CAS |

Masterson, R., Hewitson, T. D., Kelynack, K., Martic, M., Parry, L., Bathgate, R., Darby, I., and Becker, G. (2004). Relaxin down-regulates renal fibroblast function and promotes matrix remodelling in vitro. Nephrol. Dial. Transplant. 19, 544–552.
Relaxin down-regulates renal fibroblast function and promotes matrix remodelling in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrtLY%3D&md5=692e10e3ae282684e66c2b44ec915508CAS |

Mu, X., Urso, M. L., Murray, K., Fu, F., and Li, Y. (2010). Relaxin regulates MMP expression and promotes satellite cell mobilization during muscle healing in both young and aged mice. Am. J. Pathol. 177, 2399–2410.
Relaxin regulates MMP expression and promotes satellite cell mobilization during muscle healing in both young and aged mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFWgsr%2FM&md5=b0c2917d92d49edadf90a5b24edbe58dCAS |

Mushayandebvu, T. I., and Rajabi, M. R. (1995). Relaxin stimulates interstitial collagenase activity in cultured uterine cervical cells from nonpregnant and pregnant but not immature guinea pigs; estradiol-17 beta restores relaxin’s effect in immature cervical cells. Biol. Reprod. 53, 1030–1037.
Relaxin stimulates interstitial collagenase activity in cultured uterine cervical cells from nonpregnant and pregnant but not immature guinea pigs; estradiol-17 beta restores relaxin’s effect in immature cervical cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXoslyntbk%3D&md5=e9a8c3757ce81a0791d4911ad445b8e0CAS |

Novak, J., Parry, L. J., Matthews, J. E., Kerchner, L. J., Indoniva, K., Hanley-Yanez, K., Doty, K. D., Debrah, D. O., Shroff, S. G., and Conrad, K. P. (2006). Evidence for local relaxin ligand–receptor expression and function in arteries. FASEB J. 20, 2352–2362.
Evidence for local relaxin ligand–receptor expression and function in arteries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFylsrbK&md5=57b379644e8fcd301a2130a0e0a3cb02CAS |

O’Byrne, E. M., and Steinetz, B. G. (1976). Radioimmunoassay (RIA) of relaxin in sera of various species using an antiserum to porcine relaxin. Proc. Soc. Exp. Biol. Med. 152, 272–276.
Radioimmunoassay (RIA) of relaxin in sera of various species using an antiserum to porcine relaxin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XktlWiur8%3D&md5=6bad1b6e8c98332e1b93cb1207145b95CAS |

O’Day-Bowman, M. B., Winn, R. J., Dziuk, P. J., Lindley, E. R., and Sherwood, O. D. (1991). Hormonal control of the cervix in pregnant gilts. III. Relaxin’s influence on cervical biochemical properties in ovariectomized hormone-treated pregnant gilts. Endocrinology 129, 1967–1976.
Hormonal control of the cervix in pregnant gilts. III. Relaxin’s influence on cervical biochemical properties in ovariectomized hormone-treated pregnant gilts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt1eqt7s%3D&md5=dc1e50df637c53425403f2be6b884542CAS |

Palejwala, S., Stein, D. E., Weiss, G., Monia, B. P., Tortoriello, D., and Goldsmith, L. T. (2001). Relaxin positively regulates matrix metalloproteinase expression in human lower uterine segment fibroblasts using a tyrosine kinase signaling pathway. Endocrinology 142, 3405–3413.
Relaxin positively regulates matrix metalloproteinase expression in human lower uterine segment fibroblasts using a tyrosine kinase signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1Sqsb8%3D&md5=151d907ac3bfb05e31130319c529c379CAS |

Palejwala, S., Tseng, L., Wojtczuk, A., Weiss, G., and Goldsmith, L. T. (2002). Relaxin gene and protein expression and its regulation of procollagenase and vascular endothelial growth factor in human endometrial cells. Biol. Reprod. 66, 1743–1748.
Relaxin gene and protein expression and its regulation of procollagenase and vascular endothelial growth factor in human endometrial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFegurc%3D&md5=b34ffb19b287fbec6376e352e962f32cCAS |

Parry, L. J., and Vodstrcil, L. A. (2007). Relaxin physiology in the female reproductive tract during pregnancy. Adv. Exp. Med. Biol. 612, 34–48.
Relaxin physiology in the female reproductive tract during pregnancy.Crossref | GoogleScholarGoogle Scholar |

Parry, L. J., McGuane, J. T., Gehring, H. M., Kostic, I. G. T., and Siebela, A. L. (2005). Mechanisms of relaxin action in the reproductive tract: studies in the relaxin-deficient (Rlx−/−) mouse. Ann. N. Y. Acad. Sci. 1041, 91–103.
Mechanisms of relaxin action in the reproductive tract: studies in the relaxin-deficient (Rlx−/−) mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWlsbfJ&md5=5351ae2b7f831f2dc4c25f53b405f5e9CAS |

Parry, L. J., Vodstrcil, L. A., Madden, A., Amir, S. H., Baldwin, K., Wlodek, M. E., and Nicholas, K. R. (2009). Normal mammary gland growth and lactation capacity in pregnant relaxin-deficient mice. Reprod. Fertil. Dev. 21, 549–560.
Normal mammary gland growth and lactation capacity in pregnant relaxin-deficient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksF2rurY%3D&md5=84ee757d3a18f7ca18dceee315c0732cCAS |

Pillai, S. B., Jones, J. M., and Koos, R. D. (2002). Treatment of rats with 17beta-estradiol or relaxin rapidly inhibits uterine estrogen receptor beta1 and beta2 messenger ribonucleic acid levels. Biol. Reprod. 67, 1919–1926.
Treatment of rats with 17beta-estradiol or relaxin rapidly inhibits uterine estrogen receptor beta1 and beta2 messenger ribonucleic acid levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptVeltr8%3D&md5=8e8a504c53157d65f47e07ba36abbf2dCAS |

Rimmer, D. M. (1973). The effect of pregnancy on the collagen of the uterine cervix of the mouse. J. Endocrinol. 57, 413–418.
The effect of pregnancy on the collagen of the uterine cervix of the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXkt12kt7Y%3D&md5=b032282f64daaa7d4d1f7523c07bfac0CAS |

Samuel, C. S., Unemori, E. N., Mookerjee, I., Bathgate, R. A. D., Layfield, S. L., Mak, J., Tregear, G. W., and Du, X.-J. (2004). Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology 145, 4125–4133.
Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1Citrs%3D&md5=04b4e9c326f43ac29c7d4246349ea83cCAS |

Sherwood, C. D. (1994) Relaxin. In ‘The Physiology of Reproduction’. 2nd edn. (Eds E. Knobil, J. D. Neill, G. S. Greenwald, C. L. Market and D. W. Pfaff.) pp. 861–1009. (Raven Press: New York.)

Siebel, A. L., Gehring, H. M., Reytomas, I. G. T., and Parry, L. J. (2003). Inhibition of oxytocin receptor and estrogen receptor-α expression, but not relaxin receptors (LGR7), in the myometrium of late pregnant relaxin gene knockout mice. Endocrinology 144, 4272–4275.
Inhibition of oxytocin receptor and estrogen receptor-α expression, but not relaxin receptors (LGR7), in the myometrium of late pregnant relaxin gene knockout mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Srt7c%3D&md5=9cf16ef8d3bdc4bf79e28f56c0bf2a76CAS |

Soh, Y. M., Tiwari, A., Mahendroo, M., Conrad, K. P., and Parry, L. J. (2012). Relaxin regulates hyaluronan synthesis and aquaporins in the cervix of late pregnant mice. Endocrinology 153, 6054–6064.
Relaxin regulates hyaluronan synthesis and aquaporins in the cervix of late pregnant mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVahtbnF&md5=86d6eac61f77771a2120aed32dd8fdb0CAS |

Sternlicht, M. D., and Werb, Z. (2001). How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17, 463–516.
How matrix metalloproteinases regulate cell behavior.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Omsbs%3D&md5=de25fb93314bbd036d1f5e4a637d98e4CAS |

Stygar, D., Wang, H., Vladic, Y. S., Ekman, G., Eriksson, H., and Sahlin, L. (2002). Increased level of matrix metalloproteinases 2 and 9 in the ripening process of the human cervix. Biol. Reprod. 67, 889–894.
Increased level of matrix metalloproteinases 2 and 9 in the ripening process of the human cervix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsV2jsbo%3D&md5=bacf61cf9287d82f8e4f76ce835d5377CAS |

Unemori, E. N., and Amento, E. P. (1990). Relaxin modulates synthesis and secretion of procollagenase and collagen by human dermal fibroblasts. J. Biol. Chem. 265, 10681–10685.
| 1:CAS:528:DyaK3cXksFaksL4%3D&md5=bd4f01d79bd9ed311a605e69a6a03cb2CAS |

Unemori, E. N., Bauer, E. A., and Amento, E. P. (1992). Relaxin alone and in conjunction with interferon-gamma decreases collagen synthesis by cultured human scleroderma fibroblasts. J. Invest. Dermatol. 99, 337–342.
Relaxin alone and in conjunction with interferon-gamma decreases collagen synthesis by cultured human scleroderma fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvVGisro%3D&md5=0ca5e088a19f070b36eaa0f83dd23d9fCAS |

Unemori, E. N., Pickford, L. B., Salles, A. L., Piercy, C. E., Grove, B. H., Erikson, M. E., and Amento, E. P. (1996). Relaxin induces an extracellular matrix-degrading phenotype in human lung fibroblasts in vitro and inhibits lung fibrosis in a murine model in vivo. J. Clin. Invest. 98, 2739–2745.
Relaxin induces an extracellular matrix-degrading phenotype in human lung fibroblasts in vitro and inhibits lung fibrosis in a murine model in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1aj&md5=86cf6959dc2d3eb5e48fb493f24845e9CAS |

van Engelen, E., Breeveld-Dwarkasing, V. N., Taverne, M. A., Everts, M. E., van der Weijden, G. C., and Rutten, V. P. (2008). MMP-2 expression precedes the final ripening process of the bovine cervix. Mol. Reprod. Dev. 75, 1669–1677.
MMP-2 expression precedes the final ripening process of the bovine cervix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1agurbF&md5=a39ad010e7c43aae54d1c80048a24f11CAS |

Yao, L., Agoulnik, A. I., Cooke, P. S., Meling, D. D., and Sherwood, O. D. (2008). Relaxin acts on stromal cells to promote epithelial and stromal proliferation and inhibit apoptosis in the mouse cervix and vagina. Endocrinology 149, 2072–2079.
Relaxin acts on stromal cells to promote epithelial and stromal proliferation and inhibit apoptosis in the mouse cervix and vagina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GmsLvO&md5=3413f055e2c16df82787a169206a602dCAS |

Yao, L., Cooke, P. S., Meling, D. D., Shanks, R. D., Jameson, J. L., and Sherwood, O. D. (2010). The effect of relaxin on cell proliferation in mouse cervix requires estrogen receptor {alpha} binding to estrogen response elements in stromal cells. Endocrinology 151, 2811–2818.
The effect of relaxin on cell proliferation in mouse cervix requires estrogen receptor {alpha} binding to estrogen response elements in stromal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVyqtLY%3D&md5=283a8a69f5238f1fd75330f1039b714aCAS |

Zhao, L., Roche, P. J., Gunnersen, J. M., Hammond, V. E., Tregear, G. W., Wintour, E. M., and Beck, F. (1999). Mice without a functional relaxin gene are unable to deliver milk to their pups. Endocrinology 140, 445–453.
Mice without a functional relaxin gene are unable to deliver milk to their pups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtFWrtg%3D%3D&md5=941943af5eb54cd5d7271c612dc63f5eCAS |

Zhao, L., Samuel, C. S., Tregear, G. W., Beck, F., and Wintour, E. M. (2000). Collagen studies in late pregnant relaxin null mice. Biol. Reprod. 63, 697–703.
Collagen studies in late pregnant relaxin null mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFCitbk%3D&md5=d43862f7dc4e749b125013a2b232b853CAS |