Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Land-use change on Mount Gede, Indonesia, reduced native earthworm populations and diversity

Andy Darmawan A B D , Tri Atmowidi A , Wasmen Manalu C and Bambang Suryobroto A
+ Author Affiliations
- Author Affiliations

A Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor 16680, Indonesia.

B Department of Biology, Institut Teknologi Sumatera, South Lampung 35365, Indonesia.

C Department of Anatomy, Physiology and Pharmacology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor 16680, Indonesia.

D Corresponding author. Email: and.darm@gmail.com

Australian Journal of Zoology 65(4) 217-225 https://doi.org/10.1071/ZO17028
Submitted: 15 May 2017  Accepted: 17 November 2017   Published: 15 December 2017

Abstract

The conversion of natural forest to agroforestry plantations and annual cropping systems alters the soil habitat and food resources for biota, including earthworms. Native earthworm species may disappear whereas exotic species with greater tolerance of disturbance and less niche specialisation may thrive. The objective of the study was to compare the earthworm diversity in managed forest and agroforestry systems, which were cultivated for mixed plantation and annual crop production on Mount Gede, Indonesia. All the habitats in the study area were impacted by humans. The forest habitat was a managed forest, with a permanent tree cover, whereas mixed plantation had a partial shrub cover. Meanwhile, homogenous plantation was cultivated with annual crops. Among 3787 individuals collected during July–October 2012, five Oriental earthworm species were identified in the soil communities of Mount Gede: Drawida nepalensis, Notoscolex javanica, Pheretima pura-group, Polypheretima moelleri, and Polypheretima sempolensis. Also, 18 species were found that are reported to be non-Oriental in origin. Anthropogenic disturbance of forests on Mount Gede, due to conversion into plantations, alters the earthworm environment by increasing soil water content, temperature and total phosphorous content, while decreasing organic carbon. N. javanica was the only native species to survive this deforestation, while the exotic Ocnerodrilus occidentalis and Pontoscolex corethrurus thrived, becoming the eudominant species. From the forest area to the mixed and homogenous plantations, the predicted decreasing diversity is evidenced by the lowering trend of Shannon’s diversity index. In conclusion, the land-use change into mixed plantations and annual croplands has reduced earthworm diversity in this region of Mount Gede, Indonesia.

Additional keywords: eurytopic, homogenous plantation, mixed plantation, Shannon’s diversity index, stenotopic.


References

Achard, F., Eva, H. D., Stibig, H.-J., Mayaux, P., Gallego, J., Richards, T., and Malingreau, J.-P. (2002). Determination of deforestation rates of the world’s humid tropical forest. Science 297, 999–1002.
Determination of deforestation rates of the world’s humid tropical forest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1Cksbs%3D&md5=826d697c4c1aea1bc842e12b5da133e6CAS |

Blakemore, R. J. (2010). ‘Cosmopolitan Earthworms – an Eco-Taxonomic Guide to the Peregrine Species of the World.’ 4th edn. (VermEcology.)

BPS-Statistic Indonesia (2015). ‘Statistical Yearbook of Indonesia.’ (BPS-Statistic Indonesia.)

Chaudhuri, P. S., and Nath, S. (2011). Community structure of earthworms under rubber plantations and mixed forests in Tripura, India. Journal of Environmental Biology 32, 537–541.
| 1:STN:280:DC%2BC383hvFOqtQ%3D%3D&md5=cae8797a40557b8e5a2e5dc7fbae9cd5CAS |

Chuang, S. C., and Chen, J. H. (2008). Role of diurnal rhythm of oxygen consumption in emergence from soil at night after heavy rain by earthworms. Invertebrate Biology 127, 80–86.
Role of diurnal rhythm of oxygen consumption in emergence from soil at night after heavy rain by earthworms.Crossref | GoogleScholarGoogle Scholar |

Chuang, S. C., Lai, W. S., and Chen, J. H. (2006). Influence of ultraviolet radiation on selected physiological responses of earthworms. The Journal of Experimental Biology 209, 4304–4312.
Influence of ultraviolet radiation on selected physiological responses of earthworms.Crossref | GoogleScholarGoogle Scholar |

Didden, W. A. M. (2001). Earthworm communities in grasslands and horticultural soils. Biology and Fertility of Soils 33, 111–117.
Earthworm communities in grasslands and horticultural soils.Crossref | GoogleScholarGoogle Scholar |

Easton, E. G. (1979). A revision of the ‘acaecate’ earthworms of the Pheretima group (Megascolecidae: Oligochaeta): Archipheretima, Metapheretima, Planapheretima, Pleionogaster, and Polypheretima. Bulletin of the British Museum (Natural History) - Zoology 35, 1–126.

Edwards, C. A. (2004). ‘Earthworm Ecology.’ 2nd edn. (CRC Press: Boca Raton, FL.)

Engelmann, H. D. (1973). ‘Untersuchungen zur Erfassung predozoogener Komponenten im Definierten.’ (Forschungsergebnisse Staatliche Museum Naturkunde: Gorlitz.)

Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, C., Ramankutty, N., and Snyder, P. K. (2005). Global consequences of land use. Science 309, 570–574.
Global consequences of land use.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFChtrs%3D&md5=7f1bd6b275339a8a31bee0dccb4e4622CAS |

Food and Agricultural Organization (2010). Global Forest Resources Assessment 2010 Country Report. Indonesia Forest Resource Assessment (FRA) 2010/095. UNFAO, Rome.

Fragoso, C., and Lavelle, P. (1992). Earthworm communities of tropical rain forests. Soil Biology & Biochemistry 24, 1397–1408.
Earthworm communities of tropical rain forests.Crossref | GoogleScholarGoogle Scholar |

Fragoso, C., and Lozano, N. (1992). Resource allocation strategies imposed by caudal amputation and soil moisture in the tropical earthworm Pontoscolex corethrurus. Soil Biology & Biochemistry 24, 1237–1240.
Resource allocation strategies imposed by caudal amputation and soil moisture in the tropical earthworm Pontoscolex corethrurus.Crossref | GoogleScholarGoogle Scholar |

Fragoso, C., Lavelle, P., Blanchart, E., Senapati, B., Jimenez, J., de los Angeles Martinez, M., Decaens, T., and Tondoh, J. (1999). Earthworm communities of tropical agroecosystems: origin, structure and influences of management practices. In ‘Earthworm Management in Tropical Agroecosystems’. (Eds P. Lavelle, L. Brussaard and P. Hendrix.) pp. 27–55. (CABI Publishing: New York.)

Ganihar, S. R. (1996). Earthworm distribution with special reference to physicochemical parameters. Proceedings of the Indian National Science Academy B62, 11–18.

Gonzalez, G., Huang, C. Y., Zou, X., and Rodriguez, C. (2006). Earthworm invasions in the tropics. Biological Invasions 8, 1247–1256.
Earthworm invasions in the tropics.Crossref | GoogleScholarGoogle Scholar |

Gonzalez, G., Garcia, E., Cruz, V., Borges, S., Zalamea, M., and Rivera, M. M. (2007). Earthworm communities along an elevation gradient in northeastern Puerto Rico. European Journal of Soil Biology 43, S24–S32.
Earthworm communities along an elevation gradient in northeastern Puerto Rico.Crossref | GoogleScholarGoogle Scholar |

Grant, W. C. (1955). Studies on moisture relationships in earthworms. Ecology 36, 400–407.
Studies on moisture relationships in earthworms.Crossref | GoogleScholarGoogle Scholar |

Hendrix, P. F., and Bohlen, P. J. (2002). Exotic earthworm invasions in North America: ecological and policy implications. Bioscience 52, 801–811.
Exotic earthworm invasions in North America: ecological and policy implications.Crossref | GoogleScholarGoogle Scholar |

Hendrix, P. F., Baker, G. H., Callaham, M. A., Damoff, G. A., Fragoso, C., Gonzalez, G., James, S. W., Lachnicht, S. L., Winsome, T., and Zou, X. (2006). Invasion of exotic earthworms into ecosystems inhabited by native earthworms. Biological Invasions 8, 1287–1300.
Invasion of exotic earthworms into ecosystems inhabited by native earthworms.Crossref | GoogleScholarGoogle Scholar |

Iodarche, M., and Borza, I. (2010). Relation between chemical indices of soil and earthworm abundance under chemical fertilization. Plant, Soil and Environment 56, 401–407.

Ismail, S. A., and Murthy, V. A. (1985). Distribution of earthworms in Madras. Proceedings: Animal Sciences 94, 557–566.
Distribution of earthworms in Madras.Crossref | GoogleScholarGoogle Scholar |

Ivask, M., Kuu, A., Truu, M., and Truu, J. (2006). The effect of soil type and soil moisture on earthworm communities. Agraarteadus 17, 3–11.

Karmegam, N., and Daniel, T. (2007). Effect of physico-chemical parameters on earthworm abundance: a quantitative approach. Journal of Applied Sciences Research 3, 1369–1376.
| 1:CAS:528:DC%2BD1cXpt1Ggs78%3D&md5=f7f41b0b0c8516761bb9b998480ae66cCAS |

Lambin, E. F., and Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America 108, 3465–3472.
Global land use change, economic globalization, and the looming land scarcity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFGlu70%3D&md5=5a1adc6eca6244b46ab5b4460101aad2CAS |

Li, J.-X., Zhang, W.-X., Liao, C.-H., Yang, Y.-P., and Fu, S.-L. (2009). Response of earthworms to organic matter at different stages of decomposition. Pedosphere 19, 382–388.
Response of earthworms to organic matter at different stages of decomposition.Crossref | GoogleScholarGoogle Scholar |

Magurran, A. E. (1998). ‘Ecological Diversity and Its Measurement.’ (Princeton University Press: New Jersey.)

Marichal, R., Martinez, A. F., Praxedes, C., Ruiz, D., Carvajal, A. F., Oszwald, J., del Pilar Hurtado, M, Brown, G. G., Grimaldi, M, Desjardins, T, Sarrazin, M, Decaens, T, Velasquez, E, and Lavelle, P (2010). Invasion of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta) in landscapes of the Amazonian deforestation arc. Applied Soil Ecology 46, 443–449.
Invasion of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta) in landscapes of the Amazonian deforestation arc.Crossref | GoogleScholarGoogle Scholar |

Muhardi, M., Sutisna, M., Basir, M., and Lahjie, A. M. (2012). The changes of nutrient availability and carbon stock due to natural forest conversion to plantation land use in the surrounding areas of the National Lore Lindu Park. Agroland 19, 27–35.

Oksanen, J., Blanchet, G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H. (2013). vegan: community ecology package. R package version 2.0-10. Available at: http://cran.r-project.org, http://vegan.r-forge.r-project.org/.

Plisko, J. D. (2010). Megadrile earthworm taxa introduced to South African soils (Oligochaeta: Acanthodrilidae, Eudrilidae, Glossoscolecidae, Lumbricidae, Megascolecidae, Ocnerodrilidae). African Invertebrates 51, 289–312.
Megadrile earthworm taxa introduced to South African soils (Oligochaeta: Acanthodrilidae, Eudrilidae, Glossoscolecidae, Lumbricidae, Megascolecidae, Ocnerodrilidae).Crossref | GoogleScholarGoogle Scholar |

Purba, C. P. P., Nanggara, S. G., Ratriyono, M., Apriani, I., Rosalina, L., Sari, N. A., and Meridian, A. H. (2013). Potret Keadaan Hutan Indonesia 2009–2013. Forest Watch Indonesia.

R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/.

Rudel, T. K., Coomes, O. T., Moran, M., Achard, F., Angelsen, A., Xu, J., and Lambin, E. (2005). Forest transitions: towards a global understanding of land use change. Global Environmental Change 15, 23–31.
Forest transitions: towards a global understanding of land use change.Crossref | GoogleScholarGoogle Scholar |

Sarkar, D., and Haldar, A. (2005). ‘Physical and Chemical Methods in Soil Analysis.’ (New Age International (P) Ltd: New Delhi.)

Sims, R. W., and Easton, E. G. (1972). A numerical revision of the earthworm genus Pheretima auct. (Megascolecidae: Oligochaeta) with the recognition of new genera and an appendix on the earthworms collected by the Royal Society North Borneo Expedition. Biological Journal of the Linnean Society 4, 169–268.
A numerical revision of the earthworm genus Pheretima auct. (Megascolecidae: Oligochaeta) with the recognition of new genera and an appendix on the earthworms collected by the Royal Society North Borneo Expedition.Crossref | GoogleScholarGoogle Scholar |

Smith, R. G., McSwiney, C. P., Grandy, A. S., Suwanwaree, P., Snider, R. M., and Robertson, G. P. (2008). Diversity and abundance of earthworms across an agricultural land-use intensity gradient. Soil & Tillage Research 100, 83–88.
Diversity and abundance of earthworms across an agricultural land-use intensity gradient.Crossref | GoogleScholarGoogle Scholar |

Somniyam, P., and Suwanwaree, P. (2009). The diversity and distribution of terrestrial earthworms in Sakaerat environmental research station and adjacent areas, Nakhon Ratchasima, Thailand. World Applied Sciences Journal 6, 221–226.

Stephenson, J. (1923). ‘Oligochaeta.’ (Taylor and Francis: London.)

Talavera, J. A. (1990). Considerations about Ocnerorilus occidentalis (Oligochaeta: Ocnerodrilidae) in the Canary Islands. Bonner Zoologische Beitrage 41, 81–87.

Talavera, J. A. (1996). Madeira earthworm fauna. Italian Journal of Zoology 63, 81–86.
Madeira earthworm fauna.Crossref | GoogleScholarGoogle Scholar |

Talavera, J. A. (2007). Pine forest earthworms from Canary Islands (Tenerife and Gran Canaria). Acta Zoologica Hungarica 53, 157–167.

Teng, S. K., Abd. Aziz, N. A., Anang, N., Mustafa, M., Ismail, A., and Yan, Y. W. (2013). Earthworm diversity and population density in the Kaki Bukit agroecosystem, Perlis, Peninsular Malaysia. Tropical Ecology 54, 291–299.

Tripathi, G., and Bhardwaj, P. (2004). Earthworm diversity and habitat preferences in arid regions of Rajasthan. Zoos’ Print Journal 19, 1515–1519.
Earthworm diversity and habitat preferences in arid regions of Rajasthan.Crossref | GoogleScholarGoogle Scholar |

Tsai, C.-F., Shen, H.-P., and Tsai, S.-C. (2000). Native and exotic species of terrestrial earthworms (Oligochaeta) in Taiwan with reference to northeast Asia. Zoological Studies 39, 285–294.

Wang, S., Fu, B. J., Gao, G. Y., Yao, X. L., and Zhou, J. (2012). Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China. Hydrology and Earth System Sciences 16, 2883–2892.
Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China.Crossref | GoogleScholarGoogle Scholar |

Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B., and Koh, L. P. (2013). Navjot’s nightmare revisited: logging, agriculture, and biodiversity in southeast Asia. Trends in Ecology & Evolution 28, 531–540.
Navjot’s nightmare revisited: logging, agriculture, and biodiversity in southeast Asia.Crossref | GoogleScholarGoogle Scholar |

Zar, J. H. (2010). ‘Biostatistical Analysis.’ 5th edn. (Prentice Hall Inc.: New Jersey.)

Zeithaml, J., Pizl, V., and Sklenicka, P. (2009). Earthworm assemblages in an ecotone between forest and arable field and their relations with soil properties. Pesquisa Agropecuária Brasileira 44, 922–926.
Earthworm assemblages in an ecotone between forest and arable field and their relations with soil properties.Crossref | GoogleScholarGoogle Scholar |

Zuur, A. F., Ieno, E. N., Walker, N. J., Savaliev, A. A., and Smith, G. M. (2009). ‘Mixed Effects Models and Extensions in Ecology with R.’ (Springer: New York.)