PSII carbonic anhydrase activity and the bicarbonate effect.

AJ Stemler and Y-K Lu

Section of Plant Biology, University of California, Davis CA 95616, USA, ajstemler@ucdavis.edu, Fax: 530-752-5410

Keywords: bicarbonate, carbonic anhydrase, chloride, oxygen evolution, photosystem II

Introduction

Among the many chemical models for oxygen evolution, several incorporate the idea that bicarbonate anions (HCO$_3^-$), rather than water molecules directly, are the immediate source of both electrons and oxygen (Metzner and Fischer, 1969; Kreutz, 1974; Stemler, 1980; Zeinalov, 1982). While water remains the ultimate source of oxygen, CO$_2$, in the form of bicarbonate, plays a necessary "catalytic" role. Although the several models differ in detail, they can all be summarized as follows:

\[
\begin{align*}
4 \text{hv} & \\
2 \text{HCO}_3^- + 2 \text{H}^+ & \to \text{O}_2 + 2\text{CO}_2 + 4 \text{H}^+ + 4 \text{e}^- \\
\uparrow & \\
& \downarrow + 2\text{H}_2\text{O}
\end{align*}
\]

In this scheme, bicarbonate is proposed to bind to the manganese cluster and be dehydrated to CO$_2$ in the course of oxygen evolution. The CO$_2$ is then rehydrated and the reaction proceeds in a cyclic manner. However, a potential problem with this model is that the spontaneous hydration rate of CO$_2$ to form HCO$_3^-$ is slow, and very little of this anion is stable at the low pH environment of the oxygen-evolving mechanism. For the scheme to work, a specific prediction was made (Stemler, 1985) that the PSII complex must itself be able to quickly hydrate CO$_2$ to form the substrate HCO$_3^-$. That is, PSII must behave like carbonic anhydrase, the enzyme that normally catalyzes this reaction.

The discovery of PSII carbonic anhydrase:

The presence of CA activity in PSII has been verified in a number of labs (Stemler 1986; Karlsson et al 1995; Moskvin et al 1998, Dai et al 2001). Early evidence obtained by the first author is presented in Figure 1. From the results of mass spectrometry, it can be seen that maize PSII-enriched membranes catalyze a rapid rise in the mass 48 signal due to conversion of injected H18CO$_3^-$ to C18O$_2$, followed by a rapid isotopic exchange between added HC18O$_3^-$ and H$_2^{16}$O, clear indication of CA activity.
Some characteristics of PSIICA

While the CA associated with PSII is only partially characterized, some unique features are now in evidence. For example, maize thylakoid CA shows definite redox dependence (Figure 2). The Em of the PSII component that modulates the activity is about +480mV at pH 7.0. This is the same component that modulates bicarbonate and formate binding to PSII (Figure 2). We have proposed that the component is "D480", an auxiliary electron donor to PSII discovered by Bearden and Malkin (1973).

Flashing light also modulates the CA activity in maize thylakoids (Figure 3). After incubating the membranes in the dark, the first flash of a series increases CA activity, while a second flash decreases it again. Oscillations, however, are not pronounced and damping occurs rapidly. While it is clear that the CA activity is somehow linked to PSII turnover, a detailed model awaits further study.

The CA activity associated with PSII-enriched membranes that were washed in 1 M CaCl₂ to remove extrinsic proteins is shown in Figure 4. Both oxygen evolution and CA activity are highly dependent on added Cl⁻, with rates increasing up to and beyond
0.4 M. This is very unusual behavior for a CA, all others described in the literature are inhibited by high concentrations of monovalent anions such as chloride, formate, acetate, etc.

Two sources of PSII CA activity

In *Chlamydomonas reinhardtii*, a CA located in the thylakoid lumen can be removed from PSII-enriched membranes by washing with 0.2 M KCl (Karlsson et al 1995). We applied various wash treatments to maize mesophyll PSII membranes in an attempt to likewise remove some of the CA activity. We found that even 1 M KCl was almost completely ineffective at removing CA activity (Figure 5). At the same 1 M concentration, NaCl was only slightly more effective. Total removal of the CA activity required 1 M CaCl$_2$. The activity was recoverable in the wash solutions, in particular, the CaCl$_2$ wash. It is important to note that under these assay conditions, pH 5.5, 10 mM NaCl, and measuring dehydration, the CaCl$_2$-washed PSII membranes showed no CA
activity. However, under different assay conditions, pH 7.2, 0.4 M NaCl, added Ca$^{2+}$, and measuring hydration, abundant CA activity is observed in these same CaCl$_2$-washed PSII membranes (Figure 4). We interpret this to mean that there are two distinct sources of CA activity associated with PSII. One, an extrinsic source, that we denote CA$_{ext}$, is removable by CaCl$_2$ wash. The other, an intrinsic source, remains after CaCl$_2$ wash and is denoted CA$_{int}$.

Extrinsic PSII CA

CA$_{ext}$ found in the crude CaCl$_2$ wash solution can be characterized in vitro after desalting or dilution of the CaCl$_2$. CA activity as a function of pH is shown in Figure 6. The ability of CA$_{ext}$ to dehydrate HCO$_3^-$ is apparent only at or below pH 6.0. It is important to emphasize that dehydration is measured here. Despite our best efforts, the enzyme has not yet demonstrated hydration activity in vitro.

We have attempted to assess the molecular weight of the CA$_{ext}$ with SDS-PAGE...
and antibodies against the *C. reinhardtii* enzyme and against the extrinsic 33 kDa PSII protein (OEC 33). Figure 7 shows that the CA\textsubscript{ext} and the OEC33 protein appear to co-migrate when subjected to electrophoresis. There are several ways of interpreting these results. One possibility is that the CA\textsubscript{ext} has a molecular weight of 33 kDa and is normally hidden in the OEC33 band. Another hypothesis is that the CA antibody cross-reacts with the OEC33. In this case, either there may be so little CA present that it is not detected in a separate band, or that the OEC33 \textit{is} CA\textsubscript{ext}, an interesting possibility. Our ongoing studies are testing these alternatives.

Intrinsic PSII CA

The PSII-enriched membranes that remain after CaCl\textsubscript{2} wash likewise show CA activity (Figure 4). However, it is a distinctly different kind of activity (hydration vs. dehydration in the CA\textsubscript{ext}) and requires a different set of experimental conditions. In Figure 8 is shown the hydration activity of washed PSII membranes as a function of pH.

![Figure 8. Intrinsic PSIICA activity as a function of pH. The reaction mixture contained 0.4 M NaCl and 0.01 M CaCl\textsubscript{2}.](image)

The CA\textsubscript{int} demonstrates hydration activity that is practically pH independent. This means that the intrinsic PSIICA can manufacture bicarbonate even at the low pH that normally surrounds the oxygen-evolving mechanism. This is an unusual and
significant property of this particular CA. Typically, CA does not hydrate CO₂ at pH much below 7 (Coleman 1980). However, it is an absolute requirement if bicarbonate is an intermediate in oxygen evolution, as discussed in the introduction. We have not yet been able to observe dehydration activity in CA_{int}.

Conclusions and discussion

There are two distinct sources of carbonic anhydrase associated with PSII. They appear to have different catalytic functions with respect to the hydration of CO₂ vs. the dehydration of HCO₃⁻. The intrinsic CA is probably associated with the oxygen-evolving mechanism, judging from the parallel stimulatory effects of chloride and calcium on oxygen evolution and CA activity. It may function to supply necessary bicarbonate for the operation of photosystem II. The extrinsic CA does not appear to be absolutely essential for oxygen evolution, since CaCl₂-washed membranes still evolve oxygen, albeit at a lower rate. We guess that the extrinsic CA may have some indirect role such as helping to supply CO₂ to the intrinsic CA. While the evidence presented here is consistent with bicarbonate acting as a chemical intermediate in oxygen evolution, direct evidence is still lacking.

Acknowledgements

The authors thank Goran Samuelsson for the C. reinhardtii CA antibody and Steven Theg for the pea OEC33 antibody.

References

Stemler A (1980) Inhibition of photosystem II by formate: Possible evidence for a direct role of bicarbonate in photosynthetic oxygen evolution. *Biochimica et Biophysica Acta* **593**: 103-112

Biochimica et Biophysica Acta **850**:97-107

Stemler A (1998) Photosystem II carbonic anhydrase activity depends on Cl– and Ca2+