Contents

Preface and acknowledgments xiii

1 Fundamentals of slope design 1
Peter Stacey

1.1 Introduction 1

1.2 Pit slope designs 1
1.2.1 Safety/social factors 2
1.2.2 Economic factors 2
1.2.3 Environmental and regulatory factors 3

1.3 Terminology of slope design 4
1.3.1 Slope configurations 4
1.3.2 Instability 4
1.3.3 Rockfall 6

1.4 Formulation of slope designs 6
1.4.1 Introduction 6
1.4.2 Geotechnical model 6
1.4.3 Data uncertainty (Chapter 8) 8
1.4.4 Acceptance criteria (Chapter 9) 8
1.4.5 Slope design methods (Chapter 10) 9
1.4.6 Design implementation (Chapter 11) 10
1.4.7 Slope evaluation and monitoring (Chapter 12) 10
1.4.8 Risk management (Chapter 13) 11
1.4.9 Closure (Chapter 14) 11

1.5 Design requirements by project level 11
1.5.1 Project development 11
1.5.2 Study requirements 12

1.6 Review 12
1.6.1 Overview 12
1.6.2 Review levels 14
1.6.3 Geotechnically competent person 14

1.7 Conclusion 14

2 Field data collection 15
John Read, Jarek Jakubec and Geoff Beal

2.1 Introduction 15

2.2 Outcrop mapping and logging 15
2.2.1 Introduction 15
2.2.2 General geotechnical logging 17
2.2.3 Mapping for structural analyses 19
2.2.4 Surface geophysical techniques 22

2.3 Overburden soils logging 23
2.3.1 Classification 23
2.3.2 Strength and relative density 26

2.4 Core drilling and logging 26

2.4.1 Introduction
2.4.2 Planning and scoping
2.4.3 Drill hole location and collar surveying
2.4.4 Core barrels
2.4.5 Downhole surveying
2.4.6 Core orientation
2.4.7 Core handling and documentation
2.4.8 Core sampling, storage and preservation
2.4.9 Core logging
2.4.10 Downhole geophysical techniques

2.5 Groundwater data collection
2.5.1 Approach to groundwater data collection
2.5.2 Tests conducted during RC drilling
2.5.3 Piezometer installation
2.5.4 Guidance notes: installation of test wells for pit slope depressurisation
2.5.5 Hydraulic tests
2.5.6 Setting up pilot depressurisation trials

2.6 Data management

Endnotes

3 Geological model
John Read and Luke Keene

3.1 Introduction
3.2 Physical setting
3.3 Ore body environments
3.3.1 Introduction
3.3.2 Porphyry deposits
3.3.3 Epithermal deposits
3.3.4 Kimberlites
3.3.5 VMS deposits
3.3.6 Skarn deposits
3.3.7 Stratabound deposits
3.4 Geotechnical requirements
3.5 Regional seismicity
3.5.1 Distribution of earthquakes
3.5.2 Seismic risk data
3.6 Regional stress

4 Structural model
John Read

4.1 Introduction
4.2 Model components
4.2.1 Major structures
4.2.2 Fabric
4.3 Geological environments
4.3.1 Introduction
4.3.2 Intrusive
<table>
<thead>
<tr>
<th>4.3.3</th>
<th>Sedimentary</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.4</td>
<td>Metamorphic</td>
<td>77</td>
</tr>
<tr>
<td>4.4</td>
<td>Structural modelling tools</td>
<td>77</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Solid modelling</td>
<td>77</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Stereographic projection</td>
<td>77</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Discrete fracture network modelling</td>
<td>79</td>
</tr>
<tr>
<td>4.5</td>
<td>Structural domain definition</td>
<td>80</td>
</tr>
<tr>
<td>4.5.1</td>
<td>General guidelines</td>
<td>80</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Example application</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Rock mass model</th>
<th>83</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>83</td>
</tr>
<tr>
<td>5.2</td>
<td>Intact rock strength</td>
<td>83</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Introduction</td>
<td>83</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Index properties</td>
<td>85</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Mechanical properties</td>
<td>88</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Special conditions</td>
<td>92</td>
</tr>
<tr>
<td>5.3</td>
<td>Strength of structural defects</td>
<td>94</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Terminology and classification</td>
<td>94</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Defect strength</td>
<td>94</td>
</tr>
<tr>
<td>5.4</td>
<td>Rock mass classification</td>
<td>117</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Introduction</td>
<td>117</td>
</tr>
<tr>
<td>5.4.2</td>
<td>RMR, Bieniawski</td>
<td>117</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Laubscher IRMR and MRMR</td>
<td>119</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Hoek-Brown GSI</td>
<td>123</td>
</tr>
<tr>
<td>5.5</td>
<td>Rock mass strength</td>
<td>127</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Introduction</td>
<td>127</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Laubscher strength criteria</td>
<td>127</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Hoek-Brown strength criterion</td>
<td>128</td>
</tr>
<tr>
<td>5.5.4</td>
<td>CNI criterion</td>
<td>130</td>
</tr>
<tr>
<td>5.5.5</td>
<td>Directional rock mass strength</td>
<td>132</td>
</tr>
<tr>
<td>5.5.6</td>
<td>Synthetic rock mass model</td>
<td>138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Hydrogeological model</th>
<th>141</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Hydrogeology and slope engineering</td>
<td>141</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Introduction</td>
<td>141</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Porosity and pore pressure</td>
<td>141</td>
</tr>
<tr>
<td>6.1.3</td>
<td>General mine dewatering and localised pore pressure control</td>
<td>146</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Making the decision to depressurise</td>
<td>148</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Developing a slope depressurisation program</td>
<td>151</td>
</tr>
<tr>
<td>6.2</td>
<td>Background to groundwater hydraulics</td>
<td>151</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Groundwater flow</td>
<td>151</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Porous-medium (intergranular) groundwater settings</td>
<td>154</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Fracture-flow groundwater settings</td>
<td>156</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Influences on fracturing and groundwater</td>
<td>161</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Mechanisms controlling pore pressure reduction</td>
<td>163</td>
</tr>
</tbody>
</table>
6.3 Developing a conceptual hydrogeological model of pit slopes 166
 6.3.1 Integrating the pit slope model into the regional model 166
 6.3.2 Conceptual mine scale hydrogeological model 166
 6.3.3 Detailed hydrogeological model of pit slopes 167

6.4 Numerical hydrogeological models 168
 6.4.1 Introduction 168
 6.4.2 Numerical hydrogeological models for mine scale dewatering applications 169
 6.4.3 Pit slope scale numerical modelling 173
 6.4.4 Numerical modelling for pit slope pore pressures 175
 6.4.5 Coupling pore pressure and geotechnical models 179

6.5 Implementing a slope depressurisation program 180
 6.5.1 General mine dewatering 180
 6.5.2 Specific programs for control of pit slope pressures 181
 6.5.3 Selecting a slope depressurisation method 192
 6.5.4 Use of blasting to open up drainage pathways 192
 6.5.5 Water management and control 192

6.6 Areas for future research 195
 6.6.1 Introduction 195
 6.6.2 Relative pore pressure behaviour between high-order and low-order fractures 195
 6.6.3 Standardising the interaction between pore pressure and geotechnical models 196
 6.6.4 Investigation of transient pore pressures 197
 6.6.5 Coupled pore pressure and geotechnical modelling 197

7 Geotechnical model 201
 Alan Guest and John Read

 7.1 Introduction 201
 7.2 Constructing the geotechnical model 201
 7.2.1 Required output 201
 7.2.2 Model development 202
 7.2.3 Building the model 202
 7.2.4 Block modelling approach 205
 7.3 Applying the geotechnical model 206
 7.3.1 Scale effects 206
 7.3.2 Classification systems 210
 7.3.3 Hoek-Brown rock mass strength criterion 210
 7.3.4 Pore pressure considerations 211

8 Data uncertainty 213
 John Read

 8.1 Introduction 213
 8.2 Causes of data uncertainty 213
 8.3 Impact of data uncertainty 213
 8.4 Quantifying data uncertainty 215
 8.4.1 Overview 215
 8.4.2 Subjective assessment 215
8.4.3 Relative frequency concepts
8.5 Reporting data uncertainty
 8.5.1 Geotechnical reporting system
 8.5.2 Assessment criteria checklist
8.6 Summary and conclusions

9 Acceptance criteria
Johan Wesseloo and John Read
9.1 Introduction
9.2 Factor of safety
 9.2.1 FoS as a design criterion
 9.2.2 Tolerable factors of safety
9.3 Probability of failure
 9.3.1 PoF as a design criterion
 9.3.2 Acceptable levels of PoF
9.4 Risk model
 9.4.1 Introduction
 9.4.2 Cost–benefit analysis
 9.4.3 Risk model process
 9.4.4 Formulating acceptance criteria
 9.4.5 Slope angles and levels of confidence
9.5 Summary

10 Slope design methods
Loren Lorig, Peter Stacey and John Read
10.1 Introduction
 10.1.1 Design steps
 10.1.2 Design analyses
10.2 Kinematic analyses
 10.2.1 Benches
 10.2.2 Inter-ramp slopes
10.3 Rock mass analyses
 10.3.1 Overview
 10.3.2 Empirical methods
 10.3.3 Limit equilibrium methods
 10.3.4 Numerical methods
 10.3.5 Summary recommendations

11 Design implementation
Peter Williams, John Floyd, Gideon Chitombo and Trevor Maton
11.1 Introduction
11.2 Mine planning aspects of slope design
 11.2.1 Introduction
 11.2.2 Open pit design philosophy
 11.2.3 Open pit design process
 11.2.4 Application of slope design criteria in mine design
 11.2.5 Summary and conclusions
13.2 Overview of risk management

13.2.1 Definitions
13.2.2 General risk management process
13.2.3 Risk management in the minerals industry

13.3 Geotechnical risk management for open pit slopes

13.4 Risk assessment methodologies

13.4.1 Approaches to risk assessment
13.4.2 Risk identification
13.4.3 Risk analysis
13.4.4 Risk evaluation

13.5 Risk mitigation

13.5.1 Overview
13.5.2 Hierarchy of controls
13.5.3 Geotechnical control measures
13.5.4 Mitigation plans
13.5.5 Monitoring, review and feedback

14 Open pit closure

Dirk van Zyl

14.1 Introduction

14.2 Mine closure planning for open pits

14.2.1 Introduction
14.2.2 Closure planning for new mines
14.2.3 Closure planning for existing mines
14.2.4 Risk assessment and management

14.3 Open pit closure planning

14.3.1 Closure goals and criteria
14.3.2 Site characterisation
14.3.3 Ore body characteristics and mining approach
14.3.4 Surface water diversion
14.3.5 Pit water balance
14.3.6 Pit lake water quality
14.3.7 Ecological risk assessment
14.3.8 Pit wall stability
14.3.9 Pit access
14.3.10 Reality of open pit closure

14.4 Open pit closure activities and post-closure monitoring

14.4.1 Closure activities
14.4.2 Post-closure monitoring

14.5 Conclusions

Endnotes

Appendix 1
Groundwater data collection

Appendix 2
Essential statistical and probability theory
Appendix 3 437
Influence of in situ stresses on open pit design
Evert Hoek, Jean Hutchinson, Kathy Kalenchuk and Mark Diederichs

Appendix 4 447
Risk management: geotechnical hazard checklists

Appendix 5 459
Example regulations for open pit closure
Terminology and definitions 462
References 467
Index 487