Contents

- Foreword iii
- Acknowledgements xiv
- Introduction xv

1 Interactions of radiation with matter

1.1 Ionising radiation 1

1.2 X-rays 2

1.2.1 Characteristic X-rays 3
1.2.2 Bremsstrahlung radiation 4

1.3 Interaction of X-rays with matter 5

1.3.1 Linear attenuation coefficient 5
1.3.2 Photoelectric effect 7
1.3.3 Compton scattering 8
1.3.4 Pair production 12
1.3.5 Coherent scattering 15
1.3.6 Total interaction coefficient 15

1.4 Interactions of heavy charged particles with matter 16

1.4.1 Bragg peak 17
1.4.2 Linear energy transfer (LET) 18
1.4.3 Stopping power (mass stopping power) 18
1.4.4 Range of charged particles 19
1.4.5 Bethe-Bloch formula 20
1.4.6 Rutherford scattering 21
1.4.7 Interactions of electrons with matter 22

1.5 Neutron interactions 24

1.5.1 Nuclear reactions with neutrons 25

1.6 Radioactivity 25

1.6.1 Basic definitions 25
1.6.2 Quantities and units of radioactivity 28
1.6.3 Sources of radionuclides and ionising radiation 30

1.7 Radiation quantities and units 30

1.7.1 Radiation weighting factors and equivalent dose 31
1.7.2 Tissue weighting factors and effective dose 31

1.8 The interaction of radiation with cells 32

1.9 DNA – the target 33

1.10 References 33

2 Elements of radiobiology

2.1 Target theory 35

2.1.1 Single hit single target theory 35
2.1.2 Single hit multiple target theory 36
2.1.3 Linear quadratic model 36

2.2 Cell survival curves 38

2.3 The cell cycle and cellular radiosensitivity 40

2.4 Characterisation of radiation damage 41
 2.4.1 Lethal damage 41
 2.4.2 Sublethal damage (SLD) 41
 2.4.3 Potentially lethal damage (PLD) 43

2.5 Loss of reproductive ability in cells 44
 2.5.1 Clonogenic assay 44
 2.5.2 Main quantifying factors in radiation biology: LET, RBE, OER 46

2.6 Linear energy transfer (LET) 46
 2.6.1 Energy dependence of LET 46

2.7 Relative biological effectiveness (RBE) 47
 2.7.1 RBE as a function of LET 48

2.8 The oxygen effect: oxygen enhancement ratio (OER) 49
 2.8.1 The oxygen ‘fixation’ hypothesis 49
 2.8.2 Oxygen enhancement ratio (OER) 49
 2.8.3 OER as a function of LET 50

2.9 References 50

3 Elements of radiotherapy physics 53

3.1 X-ray and particle generators 53
 3.1.1 Production of radioisotopes 53
 3.1.2 Production of X-rays 54
 3.1.3 X-ray tube 54
 3.1.4 Accelerators 54

3.2 Radiation quantities and units 64
 3.2.1 Particle fluence 65
 3.2.2 Energy fluence 65
 3.2.3 Exposure 65
 3.2.4 Exposure rate 65
 3.2.5 Kerma 65
 3.2.6 Absorbed dose 65
 3.2.7 Relationship between exposure, kerma and absorbed dose 66
 3.2.8 Electronic equilibrium 66

3.3 Radiation dose measurements 67
 3.3.1 Ionisation in gases 68
 3.3.2 Ionisation potential 68
 3.3.3 Average energy per ion pair, W 68
 3.3.4 Experimental values of W for gases 68
 3.3.5 Ionisation in solids 69
 3.3.6 Bragg–Gray cavity theory 69
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.7</td>
<td>Spencer–Attix cavity theory</td>
<td>70</td>
</tr>
<tr>
<td>3.4</td>
<td>Radiation detectors and dosimeters</td>
<td>71</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Ionisation chamber</td>
<td>71</td>
</tr>
<tr>
<td>3.5</td>
<td>Determination of absorbed dose</td>
<td>78</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Absorbed dose in free space</td>
<td>78</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Absorbed dose in a phantom</td>
<td>78</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Determination of absorbed dose for megavoltage X-rays</td>
<td>79</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Absorbed dose in the neighbourhood of an interface between different materials</td>
<td>80</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Dosimetry for electron beams</td>
<td>80</td>
</tr>
<tr>
<td>3.6</td>
<td>Radiotherapy dosimetry protocols</td>
<td>80</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Calibration of low energy X-rays</td>
<td>81</td>
</tr>
<tr>
<td>3.7</td>
<td>Quality assurance</td>
<td>82</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Secondary standard equipment and calibration</td>
<td>83</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Ionisation chamber</td>
<td>83</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Measuring assembly (electrometer)</td>
<td>84</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Portable stability check source</td>
<td>84</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Transfer of secondary standard calibration to field instruments; measuring the output of an X-ray machine with cross-calibrated field ionisation chambers</td>
<td>84</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Quality assurance tests on radiotherapy treatment machines</td>
<td>85</td>
</tr>
<tr>
<td>3.8</td>
<td>References</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>Tumour characteristics, development and response to radiation</td>
<td>89</td>
</tr>
<tr>
<td>4.1</td>
<td>The induction of cancer</td>
<td>89</td>
</tr>
<tr>
<td>4.2</td>
<td>Normal cells versus malignant cells</td>
<td>89</td>
</tr>
<tr>
<td>4.3</td>
<td>Tumour growth characteristics</td>
<td>91</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Tumour kinetic parameters</td>
<td>91</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Tumour composition and characteristics of tumour cells</td>
<td>92</td>
</tr>
<tr>
<td>4.4</td>
<td>Tumour kinetic parameters</td>
<td>93</td>
</tr>
<tr>
<td>4.5</td>
<td>Tumour behaviour during radiotherapy</td>
<td>93</td>
</tr>
<tr>
<td>4.6</td>
<td>Tumour cell death</td>
<td>96</td>
</tr>
<tr>
<td>4.7</td>
<td>Tumour hypoxia and angiogenesis</td>
<td>97</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Tumour hypoxia</td>
<td>97</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Tumour angiogenesis</td>
<td>100</td>
</tr>
<tr>
<td>4.8</td>
<td>Tumour metastasis</td>
<td>101</td>
</tr>
<tr>
<td>4.9</td>
<td>References</td>
<td>103</td>
</tr>
<tr>
<td>5</td>
<td>Fractionation and altered fractionation in radiotherapy</td>
<td>107</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>107</td>
</tr>
<tr>
<td>5.2</td>
<td>The 5 R’s of radiobiology</td>
<td>107</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Repair</td>
<td>108</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Repopulation</td>
<td>110</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Redistribution</td>
<td>110</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Reoxygenation</td>
<td>110</td>
</tr>
</tbody>
</table>
5.2.5 Radiosensitivity 111
5.3 Organ architecture: functional sub-units (FSU) 112
 5.3.1 Volume effects 112
5.4 Fractionation in radiotherapy 112
5.5 Biologically effective doses in radiotherapy 116
5.6 Incomplete repair model 116
5.7 The LQ model at high dose per fraction regions 117
5.8 Altered fractionation schedules 118
 5.8.1 Altered fractionation schedules for head & neck cancers 118
 5.8.2 Altered fractionation schedules for prostate cancers 120
 5.8.3 Altered fractionation schedules for breast cancer 122
5.9 Summary 124
5.10 References 124

6 Three-dimensional conformal radiotherapy: technical and physics aspects of treatment 129
 6.1 Introduction 129
 6.2 Three-dimensional radiation therapy 130
 6.3 Treatment simulation 132
 6.3.1 CT scanner 133
 6.3.2 Virtual simulator software 134
 6.4 Digitally reconstructed radiographs (DRR) 135
 6.5 Dose-volume histograms 135
 6.6 Dose calculation 136
 6.7 Dynamic wedge 140
 6.8 Multi leaf collimator 141
 6.8.1 Leaf travel 143
 6.8.2 MLC radiation transmission 143
 6.8.3 Tongue-and-groove effects 144
 6.8.4 Multileaf collimator dose undulation 145
 6.8.5 MLC QA 146
 6.9 Electronic portal imaging devices 146
 6.10 Record and verify system 151
 6.11 Implementation of 3D CRT 152
 6.12 References 153

7 Image guided radiotherapy: radiobiology and physics aspects of treatment 155
 7.1 Introduction 155
 7.2 Use of X-ray imaging in radiation therapy 156
 7.2.1 Development of computed tomography 156
 7.2.2 Cone beam computed tomography 158
 7.2.3 Cone beam CT imaging devices 158
 7.3 Adaptive radiation therapy 163
7.4 Alternative approaches to IGRT 164
7.4.1 Tomotherapy 164
7.4.2 In-room CT 166
7.4.3 US-guided EBRT 166
7.4.4 US-guided brachytherapy 167
7.4.5 Beacon guided radiation therapy 168
7.5 Four-dimensional imaging and tumour tracking 169
7.6 Radiobiological aspects of image-guided radiotherapy (IGRT) 171
7.6.1 Clinical trials/studies 172
7.6.2 IMRT-IGRT 172
7.6.4 Image guided stereotactic body radiotherapy (IG-SBRT) 173
7.7 The future of IGRT: biologic image-guided radiotherapy 174
7.8 Conclusion 176
7.9 References 177

8 Intensity modulated radiotherapy: radiobiology and physics aspects of treatment 183
8.1 Introduction 183
8.2 Principles of IMRT – delivery methods 184
8.2.1 Step-and-shoot or segmented IMRT 186
8.2.2 Three-dimensional physical compensator-based IMRT 186
8.2.3 Dynamic or ‘sliding-window’ IMRT 187
8.3 IMRT treatment planning – dose calculation algorithms 188
8.3.1 Traditional IMRT optimisation 190
8.3.2 Direct machine parameter optimisation 191
8.3.3 Dose calculation algorithms 191
8.4 Quality assurance in IMRT 191
8.4.1 Patient set-up verification 193
8.4.2 Treatment planning system QA 193
8.4.3 Multileaf collimator QA 193
8.4.4 IMRT dose delivery QA 194
8.5 Volumetric IMRT – Intensity Modulated Arc Therapy (IMAT) 195
8.6 The radiobiology of IMRT 197
8.7 IMRT in clinical trials 198
8.7.1 Head & neck cancer 198
8.7.2 Brain cancer 200
8.7.3 Prostate cancer 202
References 203

Colour plates 209

9 Brachytherapy: radiobiology and physics aspects of treatment 225
9.1 Short history of brachytherapy 225
Biomedical Physics in Radiotherapy for Cancer

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2 Physical and radiobiological aspects of brachytherapy</td>
<td>226</td>
</tr>
<tr>
<td>9.2.1 Classification of brachytherapy</td>
<td>227</td>
</tr>
<tr>
<td>9.2.2 Dose rate classification</td>
<td>227</td>
</tr>
<tr>
<td>9.2.3 Radioisotopes used in brachytherapy: physical and biological characteristics</td>
<td>228</td>
</tr>
<tr>
<td>9.3 Radiobiological models in brachytherapy (the LQ model)</td>
<td>230</td>
</tr>
<tr>
<td>9.4 Dose prescription and dose calculation in brachytherapy</td>
<td>231</td>
</tr>
<tr>
<td>9.4.1 Manchester system</td>
<td>231</td>
</tr>
<tr>
<td>9.4.2 Paris system</td>
<td>232</td>
</tr>
<tr>
<td>9.4.3 Present reporting</td>
<td>232</td>
</tr>
<tr>
<td>9.4.4 Intracavitary treatments</td>
<td>232</td>
</tr>
<tr>
<td>9.4.5 Interstitial treatments</td>
<td>233</td>
</tr>
<tr>
<td>9.4.6 Dose calculations</td>
<td>233</td>
</tr>
<tr>
<td>9.5 Brachytherapy for various tumour sites</td>
<td>234</td>
</tr>
<tr>
<td>9.5.1 Brachytherapy for prostate cancer</td>
<td>234</td>
</tr>
<tr>
<td>9.5.2 Brachytherapy for head & neck cancers</td>
<td>237</td>
</tr>
<tr>
<td>9.5.3 Brachytherapy for breast cancer – MammoSite</td>
<td>238</td>
</tr>
<tr>
<td>9.5.4 Brachytherapy for gynaecological malignancies</td>
<td>242</td>
</tr>
<tr>
<td>9.5.5 Ophthalmic brachytherapy (eye plaques)</td>
<td>242</td>
</tr>
<tr>
<td>9.6 Radiation protection and quality assurance</td>
<td>244</td>
</tr>
<tr>
<td>9.7 References</td>
<td>245</td>
</tr>
</tbody>
</table>

| Appendix A1 | |

10 Stereotactic radiosurgery: radiobiology and physics aspects of treatment	253
10.1 Introduction	253
10.2 Treatment planning and dose prescription	254
10.3 Treatment delivery	255
10.3.1 Treatment delivery techniques	255
10.3.2 Frame-based procedures	259
10.3.3 Frameless procedures	259
10.4 Stereotactic body radiotherapy (SBRT)	261
10.5 Radiobiological aspects of SRS/SRT	261
10.5.1 The radiosensitivity of the brain	262
10.6 Radiosurgery of radiation-induced secondary (intracranial) tumours	264
10.7 References	265

11 Total body irradiation: radiobiology and physics aspects of treatment	269
11.1 Introduction	269
11.2 Physics and technical aspects of TBI	270
11.3 TBI dose prescription	274
11.3.1 Inhomogeneity compensation in TBI	275
11.3.2 Set-up procedure	276
11.3.3 In vivo dosimetry in TBI	277
11.3.4 Quality assurance in TBI	278
11.4 Radiobiological aspects of TBI
- 11.4.1 The hematopoietic system
- 11.4.2 The spinal cord
- 11.4.3 The lung
- 11.4.4 TBI treatment

11.5 Clinical trials

11.6 References

12 Electron therapy: radiobiology and physics aspects of treatment
- 12.1 Introduction
- 12.2 Production of electron beams
- 12.3 Electron interactions
- 12.4 Electron dose distribution
 - 12.4.1 Percentage depth dose curve of an electron beam
- 12.4 Electron therapy treatment planning
 - 12.4.1 Lead skin collimation
 - 12.4.2 Internal shielding
 - 12.4.3 Bolus
 - 12.4.4 Electron field abutment
 - 12.4.5 Tissue heterogeneities
- 12.5 Total skin electron therapy (TSET)
- 12.6 Intraoperative Electron Radiation Therapy (IOERT)
- 12.7 Electron boost radiotherapy
- 12.8 Modulated Electron Radiotherapy (MERT)
- 12.9 References

13 External beam hadron radiotherapy
- 13.1 Radiobiology
- 13.2 Medical accelerators
- 13.3 Beam shaping
- 13.4 Clinical studies of proton beam radiotherapy
- 13.5 Protons versus Intensity Modulated Radiotherapy (IMRT)
 - 13.5.1 Dose distributions
- 13.6 Heavy Ion Therapy (HIT)
- 13.7 Clinical studies of carbon ion radiotherapy
- 13.6 Conclusions
- 13.7 References

14 Fast neutron therapy
- 14.1 Introduction
- 14.2 Radiobiology
 - 14.2.1 Hypoxia
 - 14.2.2 Cell cycle effects
Contents

16.5.3 Conclusions 380
16.6 Multidisciplinary care and telemedicine 380
16.7 Consensus and recommendations 381
16.8 References 381

17 Predictive assays 383

17.1 Introduction 383
17.2 Predictive assays 383
 17.2.1 Predictive assays for tumour response 384
 17.2.2 Predictive assays for normal tissue response 391
17.3 Disease staging 393
17.4 Treatment assessment
 17.4.1 Dose volume histograms 394
17.5 References 395

18 Elements of health physics 399

18.1 Radiation response and tolerance of normal tissue 399
18.2 Low level irradiation 400
18.3 Deterministic and stochastic effects of radiation 400
 18.3.1 Deterministic effects 401
 18.3.2 Stochastic effects 401
 18.3.3 Detriment 401
18.4 Radiation hormesis 402
18.5 Natural background radiation 403
18.6 Bystander effects and adaptive responses to radiation 404
18.7 Bystander effects and clinical implications
 18.7.1 Bystander effects and implications for head & neck cancer 406
 18.7.2 Bystander effects and implications for prostate cancer 407
 18.7.3 Bystander effects and implications for lung cancer 408
18.8 Radiation incidents and radiation accidents in medical environment 408
18.9 Biological dosimetry 409
18.10 Radioprotectors 410
18.11 Risk of second cancer development following radiation therapy 412
 18.11.1 Evaluations of the second primary cancer risk 414
 18.11.2 Estimation of second primary cancer risks using radiation dosimetric data and risk models 414
 18.11.3 Peripheral photon and neutron doses from cancer external beam irradiation and the risk of second primary cancers 418
18.12 References 419

Index 424