Contents

Preface and acknowledgements xiii

1 Introduction 1
Mark Hawley and John Cunning
1.1 General 1
1.2 Historical context 2
1.3 The Large Open Pit Project 5
1.4 Waste rock dump surveys and databases 5
1.4.1 1991 British Columbia waste dump survey 5
1.4.2 Database of mine waste dump failures 6
1.4.3 British Columbia Ministry of Energy, Mines and Natural Gas database of waste dump incidents 6
1.4.4 2013 Large Open Pit waste dump, dragline spoil and stockpile survey 6
1.5 Terminology 6
1.6 Waste dump and stockpile types 7

2 Basic design considerations 13
Mark Hawley
2.1 General 13
2.2 Site selection factors 13
2.2.1 Regulatory and social factors 15
2.2.2 Mining factors 17
2.2.3 Terrain and geology factors 18
2.2.4 Environmental factors 18
2.2.5 Geotechnical factors 19
2.2.6 Fill material quality factors 20
2.2.7 Closure factors 20
2.3 Initial site identification 21
2.3.1 Preliminary ranking of potential sites 21
2.4 Conceptual design 21
2.5 Pre-feasibility design 23
2.6 Feasibility design 23
2.7 Detailed design and construction 24
2.8 Operation 24
2.9 Closure 24
2.10 Study requirements 24

3 Waste dump and stockpile stability rating and hazard classification system 29
Mark Hawley
3.1 Introduction 29
3.2 Waste dump and stockpile stability rating and hazard classification system 31
 3.2.1 Regional setting 33
 3.2.2 Foundation conditions 34
 3.2.3 Material quality 41
 3.2.4 Geometry and mass 44
 3.2.5 Stability analysis 45
 3.2.6 Construction 47
 3.2.7 Performance 49
 3.2.8 Waste dump and stockpile stability rating 49
 3.2.9 Waste dump and stockpile hazard class 50

4 Site characterisation 55
Michael Etezad, John Cunning, James Hogarth and Geoff Beale

4.1 Introduction 55
 4.1.1 Conceptual studies 55
 4.1.2 Planning of field investigations 56

4.2 Site characterisation methods 56

4.3 Study areas 56
 4.3.1 Physiography and geomorphology 56
 4.3.2 Geology 63
 4.3.3 Natural hazards 64
 4.3.4 Climate 68

4.4 Field investigations for geotechnical conditions 69
 4.4.1 Planning of geotechnical field investigations 69
 4.4.2 Foundation investigations 70
 4.4.3 Errors and deficiencies in geotechnical site investigations 77

5 Material characterisation 79
Leonardo Dorador, John Cunning, Fernando Junqueira and Mark Hawley

5.1 Introduction 79
 5.1.1 Definitions 79

5.2 Foundation materials 80

5.3 Foundation soils 80
 5.3.1 Soil description versus classification 80
 5.3.2 Soil description 80
 5.3.3 Soil index properties 81
 5.3.4 Soil classification 84
 5.3.5 Shear strength 85
 5.3.6 Hydraulic conductivity 86
 5.3.7 Consolidation and creep 87
 5.3.8 Permafrost and frozen ground 87

5.4 Foundation bedrock 87
 5.4.1 Rock characterisation standards and methods 87
 5.4.2 Bedrock geology and rock types 88
 5.4.3 Intact rock strength 88
 5.4.4 Alteration and weathering 88
 5.4.5 Discontinuities and fabric 88
 5.4.6 Rock mass classification 89
 5.4.7 Rock mass strength 89
5.4.8 Mineralogy and petrography 90
5.4.9 Durability 91
5.4.10 Hydraulic conductivity 91

5.5 Waste dump and stockpile fill materials 91
5.5.1 Rockfill 91
5.5.2 Overburden and mixed fills 97

6 Surface water and groundwater characterisation 99

6.1 Introduction 99

6.2 Investigation of surface water and groundwater 99
6.2.1 Components of the investigation program 99
6.2.2 Planning considerations 100
6.2.3 Investigation of conditions upgradient and beneath the footprint of the facility 100
6.2.4 Investigation of conditions within and downgradient of the facility 104

6.3 Conceptual hydrogeological model 105
6.3.1 Hydrogeological characterisation of waste dump and stockpile materials 106
6.3.2 The initial water content of the placed materials 107
6.3.3 Recharge entering the waste dump 108
6.3.4 Flow pathways through the dump materials 108
6.3.5 Discharge of water from the facility 110
6.3.6 Changes with time 111
6.3.7 Approach for characterisation studies 111
6.3.8 Chemical characterisation 112

6.4 Surface water characterisation 113
6.4.1 Introduction 113
6.4.2 Estimating the magnitude of runoff events from small upgradient catchments 113
6.4.3 Estimating the magnitude of runoff from the waste dump or stockpile 115

6.5 Infiltration and recharge 115
6.5.1 Near-surface water balance 115
6.5.2 Spatial variations 116
6.5.3 Effective rainfall 118
6.5.4 Modelling of infiltration and recharge 118

6.6 Hydrogeological modelling of the waste dump/stockpile facility 120
6.6.1 Objectives 120
6.6.2 Consideration of transient conditions 120
6.6.3 The influence of loading on hydraulic properties 120
6.6.4 Modelling approach 121
6.6.5 Rules of thumb 121
6.6.6 Analytical approach 122
6.6.7 Numerical analysis 122
6.6.8 Prediction of seepage chemistry 125

6.7 Modelling of the foundation materials 126
6.7.1 Characterisation 126
6.7.2 Pore pressure modelling 127
7 Diversions and rock drains

James Hogarth, Andy Haynes and John Cunning

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>129</td>
</tr>
<tr>
<td>7.2 Diversion channels</td>
<td>129</td>
</tr>
<tr>
<td>7.3 Rock drains</td>
<td>129</td>
</tr>
<tr>
<td>7.3.1 CANMET rock drain research program (1992–97)</td>
<td>130</td>
</tr>
<tr>
<td>7.3.2 Alignments</td>
<td>132</td>
</tr>
<tr>
<td>7.3.3 Design flows</td>
<td>132</td>
</tr>
<tr>
<td>7.3.4 Inlet capacity</td>
<td>133</td>
</tr>
<tr>
<td>7.3.5 Outlet flow</td>
<td>134</td>
</tr>
<tr>
<td>7.3.6 Overflow channel</td>
<td>135</td>
</tr>
<tr>
<td>7.3.7 Gradation</td>
<td>135</td>
</tr>
<tr>
<td>7.3.8 Geometry</td>
<td>135</td>
</tr>
<tr>
<td>7.3.9 Long-term performance</td>
<td>136</td>
</tr>
<tr>
<td>7.3.10 Precipitates</td>
<td>137</td>
</tr>
<tr>
<td>7.3.11 Instrumentation</td>
<td>137</td>
</tr>
<tr>
<td>7.4 Other drainage elements</td>
<td>138</td>
</tr>
<tr>
<td>7.4.1 Drainage blankets</td>
<td>138</td>
</tr>
<tr>
<td>7.4.2 French drains</td>
<td>138</td>
</tr>
<tr>
<td>7.4.3 Chimney drains</td>
<td>139</td>
</tr>
<tr>
<td>7.4.4 Toe drains</td>
<td>139</td>
</tr>
</tbody>
</table>

8 Stability analysis

Mark Hawley, James Hogarth, John Cunning and Andy Haynes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>141</td>
</tr>
<tr>
<td>8.2 Factors affecting stability</td>
<td>141</td>
</tr>
<tr>
<td>8.2.1 Foundation geometry</td>
<td>141</td>
</tr>
<tr>
<td>8.2.2 Foundation conditions</td>
<td>141</td>
</tr>
<tr>
<td>8.2.3 Waste dump and stockpile geometry and construction sequence</td>
<td>141</td>
</tr>
<tr>
<td>8.2.4 Waste rock and stockpile material characteristics</td>
<td>141</td>
</tr>
<tr>
<td>8.2.5 Surface and groundwater conditions</td>
<td>142</td>
</tr>
<tr>
<td>8.2.6 Seismicity</td>
<td>142</td>
</tr>
<tr>
<td>8.3 Acceptance criteria</td>
<td>142</td>
</tr>
<tr>
<td>8.3.1 Historical evolution of stability acceptance criteria</td>
<td>142</td>
</tr>
<tr>
<td>8.3.2 Suggested stability acceptance criteria</td>
<td>143</td>
</tr>
<tr>
<td>8.3.3 Application of stability acceptance criteria</td>
<td>146</td>
</tr>
<tr>
<td>8.4 Failure modes</td>
<td>148</td>
</tr>
<tr>
<td>8.4.1 Waste dump or stockpile material failure modes</td>
<td>148</td>
</tr>
<tr>
<td>8.4.2 Foundation failures</td>
<td>150</td>
</tr>
<tr>
<td>8.4.3 Liquefaction</td>
<td>151</td>
</tr>
<tr>
<td>8.5 Static limit equilibrium analysis</td>
<td>152</td>
</tr>
<tr>
<td>8.5.1 Infinite slope analysis</td>
<td>153</td>
</tr>
<tr>
<td>8.5.2 Plane failure analysis</td>
<td>153</td>
</tr>
<tr>
<td>8.5.3 Wedge failure analysis</td>
<td>153</td>
</tr>
<tr>
<td>8.5.4 Bi-planar failure analysis</td>
<td>155</td>
</tr>
<tr>
<td>8.5.5 Methods of slices</td>
<td>155</td>
</tr>
<tr>
<td>8.5.6 Compound or complex failures</td>
<td>156</td>
</tr>
<tr>
<td>8.5.7 Probability of failure</td>
<td>157</td>
</tr>
</tbody>
</table>
8.6 **Seismic stability analysis**
 8.6.1 Pseudo-static analysis
 8.6.2 Dynamic analysis

8.7 **Numerical methods**
 8.7.1 Finite element codes
 8.7.2 Finite difference codes

9 **Runout analysis**
 Oldřich Hungr

 9.1 **Introduction**

 9.2 **Materials**
 9.2.1 Mine waste
 9.2.2 Foundation materials

 9.3 **Landslides resulting from failures of waste dumps**
 9.3.1 Initial failure mechanisms
 9.3.2 Source volume and failure character
 9.3.3 Flowslides

 9.4 **Mechanisms of failure propagation**
 9.4.1 Sliding
 9.4.2 Granular flow
 9.4.3 Sliding surface liquefaction
 9.4.4 Earthquake and spontaneous liquefaction
 9.4.5 Rapid undrained loading

 9.5 **Empirical methods of runout analysis and prediction**
 9.5.1 Travel angle
 9.5.2 Other empirical correlations

 9.6 **Dynamic runout analysis**
 9.6.1 Framework of dynamic analysis
 9.6.2 Two- and three-dimensional differential stress-strain analyses
 9.6.3 Depth-integrated unsteady flow models
 9.6.4 Boundary conditions for flow analysis
 9.6.5 Rheological relationships for basal flow resistance
 9.6.6 Material entrainment
 9.6.7 Calibration and forecasting

 9.7 **Hazard and risk mapping**

 9.8 **Protective measures**

 9.9 **An example runout analysis**

10 **Risk assessment**
 Brian Griffin

 10.1 **Introduction**

 10.2 **Definition of risk**

 10.3 **Types of risk receptors**

 10.4 **Types of risk assessment**
 10.4.1 Qualitative to quantitative
 10.4.2 Failure modes and effects analysis
 10.4.3 Logic trees – fault and event trees

 10.5 **Risk mitigation and management**
11 Operation

Andy Haynes and Geoff Beale

11.1 Dump and stockpile management plan 197
 11.1.1 Operational guidelines and standard operating procedures 197
 11.1.2 Roles and responsibilities 197
 11.1.3 Monitoring protocols and trigger action response plans 197

11.2 Foundation preparation 198

11.3 Climatic conditions 198
 11.3.1 Surface water management 198
 11.3.2 Groundwater management 200
 11.3.3 Snow and avalanche management 200

11.4 Concurrent reclamation 201

11.5 Material quality control 202

11.6 Dumping operations 202
 11.6.1 Crest berms 202
 11.6.2 Dump platform 202
 11.6.3 Signs 202
 11.6.4 Dump lighting 202
 11.6.5 Safety slings 203
 11.6.6 Roads 203
 11.6.7 Rock roll-out 203
 11.6.8 Runout zones 203
 11.6.9 Dumping sequence 203

11.7 Advance rate 203

12 Instrumentation and monitoring 207

James Hogarth, Mark Hawley and Geoff Beale

12.1 Introduction 207

12.2 Visual inspections 207

12.3 Displacement monitoring systems 208
 12.3.1 Prisms 208
 12.3.2 Wireline extensometers 210
 12.3.3 Global positioning systems 212
 12.3.4 Slope inclinometers 213
 12.3.5 Time domain reflectometry 215
 12.3.6 Slope stability radar 216
 12.3.7 Laser imaging/scanning 218
 12.3.8 Acoustic monitoring 218
 12.3.9 Tiltmeters 218
 12.3.10 Crack monitoring 218
 12.3.11 Tell-tales 219
 12.3.12 Laser distance measuring systems 220
 12.3.13 Autonomous wirelessly networked sensors 220

12.4 Surface water and groundwater monitoring 221
 12.4.1 Introduction 221
 12.4.2 Types of surface water and groundwater monitoring data 221
 12.4.3 Pore pressure monitoring 222
 12.4.4 Pneumatic piezometer 222
 12.4.5 Vibrating wire piezometer 222
12.4.6 Strain gauge piezometer 224
12.4.7 Standpipe piezometer 224
12.4.8 Multiport or multilevel piezometer 225
12.5 Monitoring guidelines and trigger action response plans 225
 12.5.1 Monitoring program 226
 12.5.2 Data acquisition and telemetry 226
 12.5.3 Data assessment and reporting 228
 12.5.4 Trigger action response plans 228

13 Dragline spoils 233
 John Simmons and Robert Yarkosky
 13.1 Draglines 233
 13.2 Dragline operating methods 234
 13.3 Dragline tub slip 238
 13.4 Dragline operating bench stability 239
 13.4.1 Machine load action effects 239
 13.4.2 Geotechnical hazards for dragline bench loadings 240
 13.5 Dragline dump profile stability 241
 13.5.1 Dragline dump profile geometry 241
 13.5.2 Characterisation of dumped waste materials 241
 13.5.3 Characterisation of foundations 243
 13.5.4 Groundwater conditions within dragline dump profiles 245
 13.5.5 Infiltration and drawdown of water ponded in mining voids 246
 13.5.6 Surcharge loadings 247
 13.5.7 Dynamic loadings: blasting and earthquake 247
 13.5.8 Potential instability mechanisms and stability assessment methods 248
 13.5.9 Stress-deformation modelling considerations for dragline spoils 256

14 Management of acid rock drainage 259
 Ward Wilson
 14.1 Introduction 259
 14.2 Principles of acid rock drainage and metal leaching 259
 14.2.1 Drivers of acid rock drainage 259
 14.2.2 Geochemical weathering processes 259
 14.2.3 Characterising acid rock drainage potential 260
 14.2.4 Climate 262
 14.2.5 Waste dump structure and hydrology 263
 14.2.6 Oxygen and water transport 264
 14.3 Prevention and control of acid rock drainage through special handling techniques 265
 14.3.1 Segregation 265
 14.3.2 Blending 266
 14.3.3 Encapsulation 266
 14.3.4 Barriers and seals 266
 14.3.5 Subaqueous disposal 267
 14.4 Conclusion 268
15 **Emerging technologies**
Ward Wilson

15.1 Introduction
15.2 Co-disposal techniques
 - 15.2.1 Waste rock disposal in tailings storage facilities
 - 15.2.2 Tailings disposal in waste rock
 - 15.2.3 Layered co-mingling of waste rock
 - 15.2.4 Paste rock and homogenous mixtures of tailings and waste rock
 - 15.2.5 Blending potentially acid forming and non-acid forming waste rock
 - 15.2.6 Progressive sealing of waste lifts during construction

15.3 Conclusions

16 **Closure and reclamation**
Björn Weeks and Eduardo Salfate

16.1 Introduction

16.2 Approach to closure and reclamation planning
 - 16.2.1 Conceptual models for closure
 - 16.2.2 Closure criteria

16.3 Geochemical stability
 - 16.3.1 Acid rock drainage/metal leaching prevention
 - 16.3.2 Acid rock drainage/metal leaching reduction
 - 16.3.3 Acid rock drainage/metal leaching treatment

16.4 Physical stability

16.5 Land forms and erosion control

16.6 Revegetation

Appendix 1 **Summary of British Columbia Mine Waste Dump Incidents, 1968–2005**

Appendix 2 **Summary of the 2013 Mine Waste Dump Survey**

List of symbols
Glossary
References
Index