Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Phylogenetic revision of Backhousieae (Myrtaceae): Neogene divergence, a revised circumscription of Backhousia and two new species

Mark G. Harrington A G , Betsy R. Jackes B , Matthew D. Barrett C D E , Lyn A. Craven F and Russell L. Barrett C D E
+ Author Affiliations
- Author Affiliations

A Australian Tropical Herbarium, James Cook University, Cairns, Qld 4870, Australia.

B School of Marine and Tropical Biology, James Cook University, Townsville, Qld 4811, Australia.

C Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, WA 6005, Australia.

D School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley, WA 6009, Australia.

E Western Australian Herbarium, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia.

F Australian National Herbarium, Centre for Australian National Biodiversity Research, CSIRO Plant Industry, Canberra, ACT 2601, Australia.

G Corresponding author. Email: Mark.Harrington@jcu.edu.au

Australian Systematic Botany 25(6) 404-417 https://doi.org/10.1071/SB12015
Submitted: 11 May 2012  Accepted: 29 October 2012   Published: 14 December 2012

Abstract

Backhousieae is a small tribe of Myrtaceae composed of two genera (Backhousia and Choricarpia) endemic to Australia. Phylogenetic analyses (parsimony, maximum likelihood and Bayesian) were performed on a combined chloroplast (matK, trnH–psbA, trnC–psbM, trnLF, rps16) and nuclear (internal transcribed spacers) dataset for all nine species of Backhousia, two species of Choricarpia and two undescribed species. Backhousieae is monophyletic; however, Choricarpia is embedded within Backhousia. In all analyses there were four strongly supported clades containing two to four taxa, with no support for relationships among clades, and the relationships of B. bancroftii and B. citriodora remain unresolved. Bayesian relaxed-clock molecular dating indicated that the Backhousieae has been potentially present in rainforest across Australia for more than 50 million years. The current distribution of Backhousia is inferred to be largely due to the contraction of Australian rainforest in the Neogene. New combinations in Backhousia are made for the two species of Choricarpia, and B. gundarara and B. tetraptera are described as new species. B. gundarara is known only from the Kimberley region of Western Australia, widely disjunct from the remaining Backhousia in eastern Queensland and New South Wales, and appears to be a lineage isolated by increasing aridity during the Miocene.


References

Bamber RK (1962) The anatomy of the barks of Leptospermoideae. Australian Journal of Botany 10, 25–54.
The anatomy of the barks of Leptospermoideae.Crossref | GoogleScholarGoogle Scholar |

Barlow BA, Hyland BP (1988) The origins of the flora of Australia’s wet tropics. Proceedings of the Ecological Society of Australia 15, 1–17.

Barraclough TG, Vogler AP (2002) Recent diversification rates in North America tiger beetles estimated from a dated mtDNA phylogenetic tree. Molecular Biology and Evolution 19, 1706–1716.
Recent diversification rates in North America tiger beetles estimated from a dated mtDNA phylogenetic tree.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFSlurY%3D&md5=5a707bbec41a8398bee2f8725b7d2a98CAS |

Biffin E, Lucas EJ, Craven LA, Ribeiro da Costa I, Harrington MG, Crisp MD (2010) Evolution of exceptional species richness amongst lineages of fleshy fruited Myrtaceae. Annals of Botany 106, 79–93.
Evolution of exceptional species richness amongst lineages of fleshy fruited Myrtaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWjsLk%3D&md5=386011f8ff2a7d92808aa189c0ba3d05CAS |

Briggs BG, Johnson LAS (1979) Evolution in the Myrtaceae: evidence from inflorescence structure. Proceedings of the Linnean Society of New South Wales 102, 157–256.

Brophy JJ, Goldsack RJ, Forster PI (1994) The essential oils of Choricarpia leptopetala (F.Muell.) Domin and C. subargentea (C.T.White) L.A.S.Johnson (Myrtaceae). Flavour and Fragrance Journal 9, 7–10.
The essential oils of Choricarpia leptopetala (F.Muell.) Domin and C. subargentea (C.T.White) L.A.S.Johnson (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFChs70%3D&md5=a14a197d984b7f8090992521425a7cd3CAS |

Brophy JJ, Goldsack RJ, Fookes CJ, Forster PI (1995) Leaf oils of the genus Backhousia (Myrtaceae). Journal of Essential Oil Research 7, 237–254.
Leaf oils of the genus Backhousia (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmslWiu7s%3D&md5=b09ef35b8f12d2a709f3e392e70e1533CAS |

Brophy JJ, Goldsack RJ, Craven LA, Ford AJ (2007) Leaf oil of Backhousia enata (Myrtaceae). Journal of Essential Oil Research 19, 26–27.
Leaf oil of Backhousia enata (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVegtrk%3D&md5=6c394bd6a432af528bd160de7db44c9cCAS |

Brown JM, Lemmon AR (2007) The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. Systematic Biology 56, 643–655.
The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Carnegie A, Lidbetter JR (2012) Rapidly expanding host range for Puccinia psidii sensu lato in Australia. Australasian Plant Pathology 41, 13–29.
Rapidly expanding host range for Puccinia psidii sensu lato in Australia.Crossref | GoogleScholarGoogle Scholar |

Crisp MD, Cook LG, Steane DA (2004) Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Philosophical Transactions of the Royal Society B – Biological Sciences 359, 1551–1571.
Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities?Crossref | GoogleScholarGoogle Scholar |

Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar |

Floyd AG (1989) ‘Rainforest trees of Mainland South-eastern Australia.’ (Inkata Press: Melbourne)

Ford AJ, Craven LA, Brophy JJ (2005) Backhousia enata A.J.Ford, Craven & J.Holmes (Myrtaceae), a new species from north-eastern Queensland. Austrobaileya 7, 121–127.

Gadek PA, Martin HA (1981) Pollen morphology in the subtribe Metrosiderinae of the Leptospermoideae (Myrtaceae) and its taxonomic significance. Australian Journal of Botany 29, 159–184.
Pollen morphology in the subtribe Metrosiderinae of the Leptospermoideae (Myrtaceae) and its taxonomic significance.Crossref | GoogleScholarGoogle Scholar |

Greenwood DR, Herold N, Huber M, Müller RD, Seton M (2012) Early to middle Miocene monsoon climate in Australia. Geology 40, e274
Early to middle Miocene monsoon climate in Australia.Crossref | GoogleScholarGoogle Scholar |

Guymer GP (1988) A new species of Backhousia Hook. & Harvey (Myrtaceae) from Queensland and a reappraisal of Backhousia floribunda A.J.Scott. Austrobaileya 2, 567–569.

Herold N, Huber M, Greenwood DR, Müller RD, Seton M (2011) Early to middle Miocene monsoon climate in Australia. Geology 39, 3–6.
Early to middle Miocene monsoon climate in Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVantr4%3D&md5=67fb8f4d00d2cf360bea2450dc337784CAS |

Ingle HD, Dadswell HE (1953) The anatomy of the timbers of the south-west Pacific area. III. Myrtaceae. Australian Journal of Botany 1, 353–401.
The anatomy of the timbers of the south-west Pacific area. III. Myrtaceae.Crossref | GoogleScholarGoogle Scholar |

Jackes BR (2005) Revision of Myrsine (Myrsinaceae) in Australia. Australian Systematic Botany 18, 399–438.
Revision of Myrsine (Myrsinaceae) in Australia.Crossref | GoogleScholarGoogle Scholar |

Kass RE, Rafferty AE (1995) Bayes factors. Journal of the American Statistical Association 90, 773–795.
Bayes factors.Crossref | GoogleScholarGoogle Scholar |

Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9, 286–298.
Recent developments in the MAFFT multiple sequence alignment program.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1artrs%3D&md5=2bbffa334bc45fc8c98005cac9670aaaCAS |

Kenneally KF, Keighery GJ, Hyland BM (1991) Floristics and phytogeography of Kimberley rainforests, Western Australia. In ‘Kimberley Rainforests Australia. (Eds NL McKenzie, RB Johnston, PG Kendrick) pp. 93–131. (Surrey Beatty: Sydney)

Kershaw AP, Martin HA, McEwen Mason JR (1994) The Neogene: a period of transition. In ‘History of the Australian Vegetation: Cretaceous to Recent’. (Ed. RS Hill) pp. 299–327. (Cambridge University Press: Cambridge, UK)

Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences, USA 102, 8369–8374.
Use of DNA barcodes to identify flowering plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsV2mtbY%3D&md5=610628f74b9c43efffa61343277f6180CAS |

Ladiges PY, Udovicic F, Nelson G (2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. Journal of Biogeography 30, 989–998.
Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae.Crossref | GoogleScholarGoogle Scholar |

Liddle DT, Russell-Smith J, Brock J, Leach GJ, Conners GT (1994) ‘Atlas of the Vascular Rainforest Plants of the Northern Territory.’ (Australian Biological Resources Study: Canberra)

Martin HA (2006) Cenozoic climate change and development of the arid vegetation in Australia. Journal of Arid Environments 66, 533–563.
Cenozoic climate change and development of the arid vegetation in Australia.Crossref | GoogleScholarGoogle Scholar |

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’. 14 November 2010, New Orleans, LA. pp. 1–8. (Cyberinfrastructure for Phylogenetic Research) Available at http://www.phylo.org/sub_sections/portal/sc2010_paper.pdf [Verified 8 November 2012]

Mueller FJH (1859) ‘Fragmenta Phytographiae Australiae.’ 1(4). (Melbourne Printers: Melbourne)

Pybus OG, Harvey PH (2000) Testing macro-evolutionary models using incomplete molecular phylogenies. Proceedings of the Royal Society of London B – Biological Sciences 267, 2267–2272.
Testing macro-evolutionary models using incomplete molecular phylogenies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzltFSlsw%3D%3D&md5=db0de5286819255355360a03124da61aCAS |

Rambaut A, Drummond AJ (2007) ‘Tracer v1.5.’ Available at http://beast.bio.ed.ac.uk/Tracer [Verified 8 November 2012]

Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MRBAYES 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=c3efa0cf361d593855ae82b9093dc1d2CAS |

Savolainen V, Anstett M-C, Lexer C, Hutton I, Clarkson JJ, Norup MV, Powell MP, Springate D, Salamin N, Baker WJ (2006) Sympatric speciation in palms on an oceanic island. Nature 441, 210–213.
Sympatric speciation in palms on an oceanic island.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVGnsrs%3D&md5=a91e4455a77507ee0d09822f82d0cee1CAS |

Shaw J, Small RL (2004) Addressing the ‘hardest puzzle in American pomology’. Phylogeny of Prunus sect. Prunocerasus (Rosaceae) based on seven noncoding chlopoplast DNA regions. American Journal of Botany 91, 985–996.
Addressing the ‘hardest puzzle in American pomology’. Phylogeny of Prunus sect. Prunocerasus (Rosaceae) based on seven noncoding chlopoplast DNA regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvFajtrw%3D&md5=723faaaafb415c30a8425a2a45cb03d1CAS |

Sniderman JR, Jordan GJ (2011) Extent and timing of floristic exchange between Australian and Asian rain forests. Journal of Biogeography 38, 1445–1455.
Extent and timing of floristic exchange between Australian and Asian rain forests.Crossref | GoogleScholarGoogle Scholar |

Stamatakis A, Ludwig T, Meier H (2005) RAxMLl-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21, 456–463.
RAxMLl-III: a fast program for maximum likelihood-based inference of large phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFSgu7s%3D&md5=917582e7e3f8f2412660f04f590d1fb0CAS | [Published online early 17 December 2004]

Sun Y, Skinner DZ, Liang GH, Hulbert SH (1994) Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theoretical and Applied Genetics 89, 26–32.
Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivFWkt7k%3D&md5=5c6de875b92adac672cbe1c47ee02554CAS |

Swofford DL (2002) ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associates, Sunderland, MA)

Thornhill AH, Popple LW, Carter RJ, Ho SY, Crisp MD (2012a) Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae. Molecular Phylogenetics and Evolution 63, 15–27.
Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae.Crossref | GoogleScholarGoogle Scholar |

Thornhill AH, Hope GS, Craven LA, Crisp MD (2012b) Pollen morphology of the Myrtaceae. Part 2: tribes Backhousieae, Melaleuceae, Metrosidereae, Osbornieae and Syzygieae. Australian Journal of Botany 60, 200–224.
Pollen morphology of the Myrtaceae. Part 2: tribes Backhousieae, Melaleuceae, Metrosidereae, Osbornieae and Syzygieae.Crossref | GoogleScholarGoogle Scholar |

Travouillon KJ, Legendre S, Archer M, Hand SJ (2009) Palaeoecological analyses of Riversleigh’s Oligo–Miocene sites: implications for Oligo–Miocene climate change in Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 276, 24–37.
Palaeoecological analyses of Riversleigh’s Oligo–Miocene sites: implications for Oligo–Miocene climate change in Australia.Crossref | GoogleScholarGoogle Scholar |

Travouillon KJ, Archer M, Hand SJ (2012) Early to middle Miocene monsoon climate in Australia. Geology 40, e273
Early to middle Miocene monsoon climate in Australia.Crossref | GoogleScholarGoogle Scholar |

White CT (1919) Contributions to the Queensland flora. Department of Agriculture and Stock, Queensland, Botany Bulletin 21. (Brisbane)

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In ‘PCR Protocols: a Guide to Methods and Applications’. (Eds MD Innis, D Gelfand, J Sninsky, T White) pp. 315–322. (Academic Press: San Diego, CA)

Wilson PG (2011) Myrtaceae. In ‘The families and genera of vascular plants. X. Flowering Plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae’. (Ed. K Kubitzki) pp. 212–271. (Springer-Verlag: Berlin)

Wilson PG, O’Brien MM, Quinn CJ (2000) Anetholea (Myrtaceae) a new genus for Backhousia anisata: a cryptic member of the Acmena alliance. Australian Systematic Botany 13, 429–435.
Anetholea (Myrtaceae) a new genus for Backhousia anisata: a cryptic member of the Acmena alliance.Crossref | GoogleScholarGoogle Scholar |

Wilson PG, O’Brien MM, Heslewood MM, Quinn CJ (2005) Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution 251, 3–19.
Relationships within Myrtaceae sensu lato based on a matK phylogeny.Crossref | GoogleScholarGoogle Scholar |

Zhou LL, Su YCF, Thomas DC, Saunders RM (2012) ‘Out-of-Africa’ dispersal of tropical floras during the Miocene climatic optimum: evidence from Uvaria (Annonaceae). Journal of Biogeography 39, 322–335.
‘Out-of-Africa’ dispersal of tropical floras during the Miocene climatic optimum: evidence from Uvaria (Annonaceae).Crossref | GoogleScholarGoogle Scholar |