Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants

Molecular phylogenetic analysis of Dendrobium (Orchidaceae), with emphasis on the Australian section Dendrocoryne, and implications for generic classification

Jacinta M. Burke A C , Michael J. Bayly A , Peter B. Adams A B and Pauline Y. Ladiges A B

A School of Botany, The University of Melbourne, Vic. 3010, Australia.

B Royal Botanic Gardens, Melbourne, Private Bag 2000, South Yarra, Vic. 3141, Australia.

C Corresponding author. Email:

Australian Systematic Botany 21(1) 1-14
Submitted: 16 August 2007  Accepted: 3 December 2007   Published: 3 April 2008


Sequences of the internal transcribed spacers (ITS) of nuclear rDNA were obtained for a broad range of dendrobium orchids for phylogenetic analysis using parsimony. A progressive approach was used to identify functional outgroups for analysis of all taxa in Dendrobium sect. Dendrocoryne. Our first, broadest analysis confirmed the results of other workers that Dendrobium sensu lato includes a major Australasian clade and a sister Asian clade. In the Australasian clade, the New Zealand species D. cunninghamii (=gen. Winika, Clements et al. 1997) was identified as the sister group to a well supported clade that includes the genera Cadetia, Diplocaulobium and Flickingeria, and Dendrobium sects Grastidium, Latouria, Spatulata, Australorchis (=gen. Australorchis), Rhizobium (= gen. Dockrillia) and Dendrocoryne. Sect. Dendrocoryne is probably polyphyletic, with two species, D. aemulum and D. callitrophilum (=gen. Tropilis), outside the main group and sect. Rhizobium (= gen. Dockrillia) nested within it. Sect. Australorchis (= gen. Australorchis) is possibly the sister group to the clade of Rhizobium plus the main group of Dendrocoryne. Thelychiton (a genus reinstated for several species in Dendrocoryne) is polyphyletic, given that Tetrabaculum (=D. tetragonum complex) and Dockrillia fall within the same clade. The splitting of the Australasian dendrobiums into various genera by other authors is excessive and unnecessary, and alternative taxonomic treatments are offered here for debate. Our study included accessions for all varieties in the following three widespread eastern Australian species: D. speciosum, D. kingianum and D. tetragonum. Each of these species showed significant sequence divergence between particular geographic regions, but some varieties had identical sequences. The splitting of D. speciosum into 11 species is not supported. We identified pseudogenes in the ITS region for D. fleckeri and D. finniganense, which appear to have evolved before these two species diverged, but support their sister relationship. Sequences for D. callitrophilum and D. (Grastidium) baileyi (the latter from GenBank) also appear to be pseudogenes, and these taxa need further study.


We thank J. Bataldo, B. Gray, P. Lavarack, J. Nuss, G. Stocker and D. Williams for supply of some orchid material, and Dr D. Murphy for advice and access to the Molecular Systematics Laboratory, Royal Botanic Gardens, Melbourne. J. B. acknowledges support from the Hansjorg Eichler Scientific Research Fund, the Macbain Research Scholarship and a University of Melbourne Research Scholarship.


Adams PB, Burke JM, Lawson SD (2006a) A review of the taxonomy and relationships of the Dendrobium speciosum complex (Orchidaceae), and recognition of two new taxa. Telopea 11, 195–232. open url image1

Adams PB, Burke JM, Lawson SD (2006b) Systematic analysis of Dendrobium Swartz section Dendrocoryne in the Australian region. Plant Systematics and Evolution 260, 65–80.
CrossRef | open url image1

Adams PB, Burke JM, Lawson SD (2006c) Dendrobium speciosum (Dendrocoryne: Orchidaceae) complex in north Queensland. Australian Systematic Botany 19, 259–271.
CrossRef | open url image1

Bailey CD, Carr TG, Harris SA, Hughes CE (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution 29, 435–455.
CrossRef | PubMed | open url image1

Bayly MJ, Ladiges PY (2007) Divergent paralogues of ribosomal DNA in eucalypts. Molecular Phylogenetics and Evolution 44, 346–356.
CrossRef | PubMed | open url image1

Bayly MJ, Udovicic F, Gibbs AK, Parra-O. C, Ladiges PY (2008) Ribosomal DNA pseudogenes are widespread in the eucalypt group (Myrtaceae): implications for phylogenetic analysis. Cladistics , open url image1

Brieger FG (1981) Subtribus Dendrobiinae. In ‘Die Orchideen’, 3rd edn (11–12). R. Schlechter. (Eds FG Brieger, R Maatsch, K Sanghas) pp. 636–752. (Parey: Berlin)

Buckler ES, Ippolito A, Holtsford TP (1997) The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145, 821–832.
PubMed |
open url image1

Burke JM, Adams PB (2002) Variation in the Dendrobium speciosum (Orchidaceae) complex: a numerical approach to the species problem. Australian Systematic Botany 15, 63–80.
CrossRef | open url image1

Clements MA (2003) Molecular phylogenetic systematics in the Dendrobiinae (Orchidaceae), with emphasis on Dendrobium section Pedilonum. Telopea 10, 247–298. open url image1

Clements MA (2006) Molecular phylogenetic systematics in Dendrobieae (Orchidaceae). Aliso 22, 465–480. open url image1

Clements MA, Jones DL (2002) Nomenclatural changes in the Dendrobieae (Orchidaceae). 1: The Australasian region. Orchadian 13, 485–497. open url image1

Clements MA, Jones DL, Sharma IK, Knightingale ME, Garratt MJ, Fitzgerald KJ, Mackenzie AM, Malloy BPJ (2002) Phylogenetics of Diurideae (Orchidaceae) based on the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA. Lindleyana 17, 135–171. open url image1

Clements ML, Jones DL, Molloy BPJ (1997) Winika, a new monotypic genus for the New Zealand orchid previously known as Dendrobium cunninghamii Lindl. Orchadian 12, 214–219. open url image1

Devos N, Oh S-H, Raspe O, Jacquemart A-L, Manos PS (2005) Nuclear ribosomal DNA sequence variation and evolution of spotted marsh-orchids (Dactylorhiza maculata group). Molecular Phylogenetics and Evolution 36, 568–580.
CrossRef | PubMed | open url image1

Douzery EJP, Pridgeon AM, Kores P, Linder HP, Kurzweil H, Chase MW (1999) Molecular phylogenetics of Diseae (Orchidaceae): a contribution from nuclear ribosomal ITS sequences. American Journal of Botany 86, 887–899.
CrossRef | PubMed | open url image1

Felsenstein J (2004) ‘PHYLIP (phylogeny inference package) version 3.6.’ Distributed by the author. (Department of Genome Sciences, University of Washington: Seattle, WA)

Jobes DV, Thien LB (1997) A conserved motif in the 5.8S ribosomal RNA (rRNA) gene is a useful diagnostic marker for plant internal transcribed spacer (ITS) sequences. Plant Molecular Biology Reporter 15, 326–334.
CrossRef | open url image1

Jones DL (1988) ‘Native orchids of Australia.’ (Reed Books: Sydney)

Jones DL, Clements MA, Sharma I (2006) Towards a revision of the Thelychiton speciosus group. Australian Orchid Research 5, 34–44. open url image1

Kass E, Wink M (1997) Molecular phylogeny and phylogeography of Lupinus (Leguminosae) inferred from nucleotide sequences of the rbcL gene and ITS1 + 2 regions of rDNA. Plant Systematics and Evolution 208, 139–167.
CrossRef | open url image1

Koehler S, Williams NH, Whitten WM, do Amaral Md CE (2002) Phylogeny of the Bifrenaria (Orchidaceae) complex based on morphology and sequence data from nuclear rDNA internal transcribed spacers (ITS) and chloroplast trnL–trnF region. International Journal of Plant Sciences 163, 1055–1066.
CrossRef | open url image1

Lindley J (1844) Dendrobium. Botanical Register 30, 46–64. open url image1

Lindley J, Paxton J (1851) The transparent dendrobe. Paxton’s Flower Garden 1, 133–136. open url image1

Liston A, Robinson WA, Oliphant JM, Alvarez-Buylla ER (1996) Length variation in the nuclear ribosomal DNA internal transcribed spacer region of non-flowering seed plants. Systematic Botany 21, 109–120.
CrossRef | open url image1

Liu JS, Schardl CL (1994) A conserved sequence in internal transcribed spacer 1 of plant nuclear rRNA genes. Plant Molecular Biology 26, 775–778.
CrossRef | PubMed | open url image1

Mayol M, Roselló JA (2001) Why nuclear ribosomal spacers (ITS) tell different stories in Quercus. Molecular Phylogenetics and Evolution 19, 167–176.
CrossRef | PubMed | open url image1

Pridgeon AM, Solano R, Chase MW (2001) Phylogenetic relationships in Pleurothallidinae (Orchidaceae): combined evidence from nuclear and plastid DNA sequences. American Journal of Botany 88, 2286–2308.
CrossRef | open url image1

Rambaut A (1996) ‘Se-Al: sequence alignment editor.’

Razafimandimbison SG, Kellogg EA, Bremer B (2004) Recent origin and phylogenetic utility of divergent ITS putative pseudogenes: a case study from Naucleeae (Rubiaceae). Systematic Biology 53, 177–192.
CrossRef | PubMed |
open url image1

Rosner B (1983) Percentage points for a generalized ESD many-outlier procedure. Technometrics 25, 165–172.
CrossRef | open url image1

Sanderson MJ, Doyle JJ (1992) Reconstruction of organismal and gene phylogenies from data on multigene families: concerted evolution, homoplasy, and confidence. Systematic Biology 41, 4–17.
CrossRef | open url image1

Schlechter R (1911–1914) Gruppe XX Dendrobiinae. In ‘Die Orchidaceen von Deutsch-Neu-Guinea’. pp. 420–680. (Verlag des Repertorium: Berlin)

Schluter PM, Kohl G, Stuessy TF, Paulus HF (2007) A screen of low copy genes reveals the LFY gene as phylogenetically informative in closely related species of orchids (Ophrys). Taxon 56, 493–504. open url image1

Sokal RR , Rohlf FJ (1969). ‘Biometry.’ 1st edn. (WH Freeman and Company: San Francisco, CA)

Sun Y, Skinner DZ, Liang GH, Hulbert SH (1994) Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theoretical and Applied Genetics 89, 26–32.
CrossRef | open url image1

Swofford DL (2002) ‘PAUP* 4.0: phylogenetic analysis using parsimony (*and other methods).’ (Sinauer Associates: Sunderland, MA)

van den Berg C, Ryan A, Cribb PJ, Chase MW (2002) Molecular phylogenetics of Cymbidium (Orchidaceae: Maxillarieae): sequence data from internal transcribed spacers (ITS) of nuclear ribosomal DNA and plastid matK. Lindleyana 17, 102–111. open url image1

van den Berg C, Goldman DH, Freudenstein JV, Pridgeon AM, Cameron KM, Chase MW (2005) An overview of the phylogenetic relationships within Epidendroideae inferred from multiple DNA regions and recircumscription of Epidendreae and Arethuseae (Orchidaceae). American Journal of Botany 92, 613–624.
CrossRef |
open url image1

White TJ , Bruns T , Lee S , Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In ‘PCR protocols: a guide to methods and applications’. (Eds MA Innes, DH Gelfland, JJ Sninsky, TJ White) pp. 315–322. (Academic Press: New York)

Whitten WM, Williams NH, Chase MW (2000) Subtribal and generic relationships of Maxillarieae (Orchidaceae) with emphasis of Stanhopeinae: combined molecular evidence. American Journal of Botany 87, 1842–1856.
CrossRef | PubMed | open url image1

Yukawa T (2001) Molecular phylogeny of Dendrobium. In ‘Proceedings of the seventh Asia Pacific orchid conference (APOC7)’. (Eds H Nagata, S Ichihashi) pp. 69–71. (Nagoya, Japan)

Yukawa T, Uehara K (1996) Vegetative diversification and radiation in subtribe Dendrobiinae (Orchidaceae): evidence from chloroplast DNA phylogeny and anatomical characters. Plant Systematics and Evolution 201, 1–14.
CrossRef | open url image1

Yukawa T, Kurita S, Nishida M, Hasebe M (1993) Phylogenetic implications of chloroplast DNA restriction site variation in subtribe Dendrobiinae (Orchidacaeae). Lindleyana 8, 211–221. open url image1

Yukawa T, Ohba H, Cameron KM, Chase MW (1996) Choloroplast DNA phylogeny of subtribe Dendrobiinae (Orchidaceae): insights from a combined analysis based on rbcL sequences and restriction site variation. Journal of Plant Research 109, 169–176.
CrossRef | open url image1

Yukawa T , Kita K , Handa T (2000) DNA phylogeny and morphological diversification of Australian Dendrobium (Orchidaceae). In ‘Monocots: systematics and evolution’. (Eds KL Wilson, DA Morrison) pp. 465–471. (CSIRO Publishing: Melbourne)

Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31, 3406–3415.
CrossRef | PubMed | open url image1

Export Citation Cited By (19)