Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
EDITORIAL

Further progress in historical biogeography

Malte C. Ebach A , Juan J. Morrone B , Isabel Sanmartín C and Tania Escalante D
+ Author Affiliations
- Author Affiliations

A Palaeontology, Geobiology and Earth Archives Research Centre (PANGEA), School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW 2052, Australia.

B Museo de Zoología ‘Alfonso L. Herrera’, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), 04510 Mexico City, Mexico.

C Department of Biodiversity and Conservation, Real Jardín Botánico (RJB-CSIC), Madrid, Spain.

D Grupo de Biogeografía de la Conservación, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.

Australian Systematic Botany 30(6) i-i https://doi.org/10.1071/SBv30n6_ED
Published: 31 January 2018


References

Amorim DS, Santos CMD (2017) Flies, endemicity, and the Atlantic Forest: a biogeographical study using topographic units of analysis. Australian Systematic Botany 30, 439–469.
Flies, endemicity, and the Atlantic Forest: a biogeographical study using topographic units of analysis.Crossref | GoogleScholarGoogle Scholar |

Chen Y, Escalante T (2017) Correlates of ecological-niche diversity and extinction risk of amphibians in China under climate change. Australian Systematic Botany 30, 414–421.
Correlates of ecological-niche diversity and extinction risk of amphibians in China under climate change.Crossref | GoogleScholarGoogle Scholar |

Ferrari A (2017) Biogeographical units matter. Australian Systematic Botany 30, 391–402.
Biogeographical units matter.Crossref | GoogleScholarGoogle Scholar |

Giraudo AR, Arzamendia V (2017) Descriptive bioregionalisation and conservation biogeography: what is the true bioregional representativeness of protected areas? Australian Systematic Botany 30, 403–413.
Descriptive bioregionalisation and conservation biogeography: what is the true bioregional representativeness of protected areas?Crossref | GoogleScholarGoogle Scholar |

Heads M (2017) Metapopulation vicariance in the Pacific genus Coprosma (Rubiaceae) and its Gondwanan relatives. Australian Systematic Botany 30, 422–438.
Metapopulation vicariance in the Pacific genus Coprosma (Rubiaceae) and its Gondwanan relatives.Crossref | GoogleScholarGoogle Scholar |

King AR, Ebach MC (2017) A novel approach to time-slicing areas within biogeographic-area classifications: Wallacea as an example. Australian Systematic Botany 30, 495–512.
A novel approach to time-slicing areas within biogeographic-area classifications: Wallacea as an example.Crossref | GoogleScholarGoogle Scholar |

Ladiges PY, Humphries CJ, Martinelli LW (Eds) (1991). ‘Austral Biogeography.’ (CSIRO: Melbourne, Vic., Australia)

Noguera-Urbano EA, Escalante T (2017) The Neotropical region sensu the areas of endemism of terrestrial mammals. Australian Systematic Botany 30, 470–484.
The Neotropical region sensu the areas of endemism of terrestrial mammals.Crossref | GoogleScholarGoogle Scholar |

Noguera-Urbano EA, Ferro I (2017) Environmental factors related to biogeographical transition zones of areas of endemism of Neotropical mammals. Australian Systematic Botany 30, 485–494.
Environmental factors related to biogeographical transition zones of areas of endemism of Neotropical mammals.Crossref | GoogleScholarGoogle Scholar |