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Abstract. I have addressed the biological rather than bioinformatics aspects of molecular sequence alignment by
covering a series of topics that have been under-valued, particularly within the context of phylogenetic analysis. First,
phylogenetic analysis is only one of the many objectives of sequence alignment, and the most appropriate multiple
alignment may not be the same for all of these purposes. Phylogenetic alignment thus occupies a specific place
within a broader context. Second, homology assessment plays an intricate role in phylogenetic analysis, with sequence
alignment consisting of primary homology assessment and tree building being secondary homology assessment.
The objective of phylogenetic alignment thus distinguishes it from other sorts of alignment. Third, I summarise
what is known about the serious limitations of using phenetic similarity as a criterion for automated multiple
alignment, and provide an overview of what is currently being done to improve these computerised procedures. This
synthesises information that is apparently not widely known among phylogeneticists. Fourth, I then consider the
recent development of automated procedures for combining alignment and tree building, thus integrating primary
and secondary homology assessment. Finally, I outline various strategies for increasing the biological content of
sequence alignment procedures, which consists of taking into account known evolutionary processes when making
alignment decisions. These procedures can be objective and repeatable, and can involve computerised algorithms
to automate much of the work. Perhaps the most important suggestion is that alignment should be seen as a process
where new sequences are added to a pre-existing alignment that has been manually curated by the biologist.

Introduction
Sequence alignment is a fascinating subject. Unfortunately,
what is often most fascinating about it is not the actual topic

itself but, rather, the somewhat cavalier way that so many
molecular biologists treat it. They will spend a huge amount
of time collecting their data, and then potentially throw away
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all of their good work by feeding the data into a computer
program with default parameter settings, apparently trusting
the outcome to good luck rather than to good management.
This attitude has always seemed incomprehensible to me
(and therefore perversely fascinating) because I have always
believed that there should be as much biology in a sequence
alignment as there is mathematics and computing. This
review is about just that idea, and is dedicated to putting
biology back into the sequence alignment procedures used
as part of phylogenetic analyses. The primary importance of
biological insight in phylogenetic studies is something that
L. A. S. Johnson was very insistent upon; and this topic is
thus one of which I feel he would have approved.

Alignment is all about mapping the relationships between
residues in a set of molecular sequences. These sequences
could be nucleotide (DNA) sequences, or they could be
products of the DNA such as RNA or amino acid sequences.
They could be coding gene sequences such as proteins
or rRNA, or they could be non-coding sequences such
as introns or spacers. Whatever form the sequences take,
before we can further analyse them we need to map the
one-to-one relationships between the residues, so that we
are comparing like with like. If the sequences are almost
identical then this process may be unproblematic, especially
if the sequences are almost identical in length. However, as
the percentage identity decreases the process of alignment
becomes more problematic, particularly when the lengths
are unequal, as this means that gaps must be introduced into
one or more of the sequences in order to equalise the lengths.
(Note that gaps may also need to be added to equal-length
sequences, if this helps map the relationships). Some form of
quantitative procedure is needed, in order to produce reliable
and repeatable alignments.

Relative to (say) studies of sequence alignment for
protein structure prediction or database searching, much
less attention seems to have been paid to date to problems
of sequence alignment in phylogenetic studies, except to
note that the problems of insertions and deletions (indels)
can make alignment of sequences (or parts of sequences)
not only difficult, but sometimes impossible. However,
these alignment issues are at least as important as are
other problems in phylogenetic tree building (e.g. sequence
length, tree-inference methods, compositional bias, site-to-
site variation) because they are fundamental to the concepts
of character and character-state homology. More to the point,
establishing homology for molecular characters may actually
be harder than for other types of characters.

The alignment process is thus seen by many biologists
as being a bioinformatics issue rather than a biological one.
Indeed, sequence alignment is often claimed to be one of the
major ‘open’ problems in computational biology (Karp 2002;
Greenberg et al. 2004). This is why the alignment process is
usually left to a computer program, perhaps with some post
hoc re-alignment by eye. However, no-one has yet succeeded

in putting much biological insight into sequence alignment
programs, although this is not for want of trying. Therefore
this insight must come directly from the biologist, who needs
to pay careful attention to the rationale for the alignment
decisions—the mathematics and computing are there to help,
but not to replace, the biology.

Mathematics is about manipulating symbols, without
reference to the objects being symbolised; that is its
universal strength. So, algorithmically, sequence alignment
is about lining up ‘strings’ of ‘letters’ into ‘columns’
by padding them out with ‘gaps’, and no heed needs
to be paid to what the strings, letters, columns or gaps
represent. However, biologically, sequence alignment is about
establishing relationships between physical characteristics of
real organisms; and to a biologist the characteristics of the
objects being symbolised take precedence over the symbols
themselves. In phylogeny, we do not align letters into columns
but instead establish homology between characters and their
states. This is not a trivial semantic issue, because many of
the algorithms used for sequence alignment have precious
little relevance to establishing homology, even if they do line
up the letters quite neatly.

Putting biology into an alignment consists of thinking
about the biological processes that you are postulating must
have occurred in order to generate the alignment in the
first place, and making these hypotheses plausible as well as
parsimonious. Many alignments may look superficially
very similar, and indeed they may behave identically in
any specified data analysis, but that does not mean that
they are equally plausible biologically. Alignments are
representations of evolutionary history, and as biologists we
cannot accept implausible hypotheses of evolutionary events,
even if they seem not to affect the immediate data analyses.
For example, a choice between two similar alignments may
not affect construction of a phylogenetic tree but they can have
consequences when we come to consider character evolution
on that tree (e.g. the origin of molecular functions).

Our alignment procedures are thus an imperfect attempt to
reconstruct unknowable evolutionary events, and to represent
those events in a particular format. In many ways this is
the hardest thing that a biologist can try to do, because
the patterns being examined are unobservable historical
ones rather than contemporary empirical observations.
Consequently, the only protection that we can have against
false conclusions is the quality of the data analysis.
An alignment is only as good as the steps taken to ensure
the highest quality of data and to evaluate and use the most
appropriate method for the data analysis. Most scientists are
very aware of (and try to avoid) the ‘garbage in, garbage out’
phenomenon, but it is equally possible to put useful things in
and still get garbage out, if the processing is inappropriate.
This will happen if biology ceases to be a science and
becomes instead a series of algorithms. Our objective should
be biological plausibility rather than mathematical optimality.
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Since there is no simple way to turn our biological criterion
into a mathematical one (i.e. it is difficult to give a formal
definition of the biological task of studying evolutionary
history that could then be turned into an optimisation
problem with a mathematical solution; Vingron 1999), we
cannot unthinkingly trust our alignment decisions solely to a
computer algorithm.

I start this review of these topics by pointing out that the
use of multiple alignments for phylogenetic purposes is only
one of the many objectives of sequence alignment, and that
the most appropriate alignment may not be the same for all of
these purposes; this places phylogenetic alignment within a
broader context. I then proceed to emphasise the intricate role
that homology assessment plays in phylogenetic analyses,
with sequence alignment consisting of primary homology
assessment and tree building being secondary homology
assessment; this provides the theoretical background for
understanding the objective of phylogenetic alignment. I then
summarise what is known about the serious limitations
of using phenetic similarity as a criterion for producing
automated multiple alignments, before proceeding to an
overview of what is currently being done to improve these
computerised procedures; this synthesises information that
is apparently not widely known among phylogeneticists.
Then follows some consideration of the recent development
of automated procedures for combining alignment and tree
building, thus integrating primary and secondary homology
assessment. I then finish by outlining various strategies for
increasing the biological insight that is used for sequence
alignment procedures; this is the most important part of the
review.

The 4 × 4 = 16 (and more) types of sequence alignment

There is a strong tendency for biologists to speak of ‘sequence
alignment’ as though it is a single concept. However,
there are four distinctly different objectives for sequence
alignment and there are four different modes of sequence
alignment, making a total of 16 different types, none of which
necessarily entails the same alignment for any particular set
of sequences. Moreover, the most commonly used type of
alignment in practice is referred to as an ‘optimal alignment’,
which may refer to optimisation of either global or local
similarity; and this will probably be a suboptimal progressive
alignment in practice anyway. So, sequence alignment is even
more complex than my simple 16-group classification. It
is my intention in this introductory section to highlight the
difference between these various types of alignment, and to
illustrate why they may actually all be mutually exclusive in
practice. This will put alignment for phylogenetic purposes
into context, and emphasise that it is a specialist procedure
within a much broader field.

My illustrative example concerns a small section of the
amino-acid sequence of the metallo-β-lactamase protein
domain-superfamily (also known as Lactamase B in many

of the protein databases), for a set of six species for
which the protein structures are known (Fig. 1). The average
pairwise amino-acid identity among the six full sequences
is 21%, which is within what is known as the ‘twilight
zone’ of protein similarity, where sequence alignment can be
very problematic. The two most different sequences, human
hydroxyacylglutathione hydrolase (or glyoxalase II) (labelled
1qh5A in the figure) and a bacterial penicillinase (labelled
1smlA), have only 16% amino-acid identity. Needless to say,
I have deliberately chosen this example because it neatly
illustrates the points that I wish to make—I do not suggest
that anyone would necessarily wish to analyse these data for
phylogenetic purposes. (Note, incidentally, that if I used a
nucleotide sequence instead of an amino acid sequence as
my example, then I would choose a sequence coding for a
structural RNA rather than a protein.)

The four different objectives for sequence alignment
are: (i) structure prediction, (ii) sequence comparison,
(iii) database searching, and (iv) phylogenetic analysis. The
alignment that is best suited to one of these purposes is not
necessarily the one that is best suited to any of the other
purposes. Let’s consider each of these purposes in turn, using
the pairwise alignment of 1qh5A and 1smlA for illustration.

The objective when using a sequence alignment for
structure prediction is to deduce the secondary and tertiary
structure of a gene product from knowledge of the
gene sequence (reviewed by Gardner and Giegerich 2004;
Simossis and Heringa 2004). That is, we use the gene
sequence to predict the structure of a protein or RNA
molecule based on alignment of the sequence to a gene
(or genes) for which the structure is already known, and
from which we can then infer other characteristics such
as residue accessibility, functional specificity and tertiary
interactions. For this procedure to be successful, we need
to align those residues that occupy the same 3-dimensional
position in the protein or RNA. This is a tricky business, but
several computer programs exist to automate the procedure
between pairs of molecules. In the example (Fig. 1a), I have
used the data from the FSSP database of pairwise structure
alignments (Holm and Sander 1996), which employs the
DALI program. I have indicated the common structure
along with the alignment, showing where the two structures
are known to agree closely. The last three amino acids
in the section of sequence shown are not aligned because
the structures differ considerably at that point. However,
the sequences are otherwise alignable, which is to be expected
given that they are classified in the same protein-structure
superfamily.

Sequence comparison [objective (ii)] is a rather diverse
topic, and can include everything from: estimation of
consensuses and genetic distances between sequences;
the prediction and annotation of functional sites within
sequences; gene prediction, identification and validation;
primer and drug design; and on to the classification of protein
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(a) Structure                                       (b) Function 
1smlA     MAGHTPGSTAWTWTDTRNGKPVRIAYADS---LSA       1smlA     MAGHTPGSTAWTWTDTRNGKPVRIAYADSLSA
1qh5A     TPCHTSGHICYFVSK-PGGSEPPAVFTGDTLF???       1qh5A     TPCHTSGHICYFVSK-PGGSEPPAVFTGDTLF
Structure --BBBTT-SSSSSS---TT----SSSS--TSS---       Function  -A-ZAA----------------------A--A
 
(c) Database searching                              (d) Phylogeny 
1smlA     ??MAGHTPGSTAWTWTDT---RNGKPVRIAYADSLSA     1smlA     MAGHTPGSTAWTWTDTRNGKPVRIAYADSLSA
1qh5A     TPCHTSGHICYFVSKPGGSEPPAVFTGDTLF??????     1qh5A     TPCHTSGHICYFVSKPG-GSEPPAVFTGDTLF
Consensus TPHPGHGPGHVVVYLGGG---KVLFTGDLLFSGGCGR 
 
(e) Global similarity                            (f) Local similarity 
1smlA     MAGHTPGSTAWTWTDTRNGKPVRIAYADSLSA       1smlA     ---magHTPGSTAWTWTDTRNGKPVRIAYADSLSA
1qh5A     TPCHTSGHICYFVSKPGGSEPPAVFTGDTLF?       1qh5A     tpc---HTSGHICYFVSKPGGSEPPAVFTGDTLF?
 
(g) Structure                                       (h) Function 
1smlA     M-AGHTPGSTAWTWTDTRNGKPVRIAYADSLSA         1smlA     MAGHTPGSTAWTWTDTRNGKPVRIAYADSLSA
1k07A     T-PGHTRGCTTWTMKLKDHGKQYQAVIIGSIGV         1k07A     TPGHTRGCTTWTMKLKDHGKQYQAVIIGSIGV
3bc2      ?GKGHTEDNIVVWLPQ------YNILVGGCLVK         3bc2      GKGHTEDNIVVWLPQ------YNILVGGCLVK
1jjtA     ?GPGHTPDNVVVWLPE------RKILFGGCFIK         1jjtA     GPGHTPDNVVVWLPE------RKILFGGCFIK
1znbA     ?GGGHATDNIVVWLPT------ENILFGGCMLK         1znbA     GGGHATDNIVVWLPT------ENILFGGCMLK
1qh5A     T-PCHTSGHICYFVSK-PGGSEPPAVFTGDTLF         1qh5A     TPCHTSGHICYFVSK-PGGSEPPAVFTGDTLF
Structure ----------SSSS----------SSSS-----         Function  -A-ZAA----------------------A--A
 
(i) Database searching                              (j) Phylogeny 
1smlA     MAGHTPGSTAWTWTDTRNG----KPVRIAYADSLSA      1smlA     MAGHTPGSTAWTWTDTRNGKPVRIAYADSLSA
1k07A     ????TPGHTRGCTTWTMKLKDHGKQYQAVIIGSIGV      1k07A     TPGHTRGCTTWTMKLKDHGKQYQAVIIGSIGV
3bc2      ??GKGHTEDNIVVWL--------PQYNILVGGCLVK      3bc2      GKGHTEDNIVVWLPQ------YNILVGGCLVK
1jjtA     ??GPGHTPDNVVVWL--------PERKILFGGCFIK      1jjtA     GPGHTPDNVVVWLPE------RKILFGGCFIK
1znbA     ??GGGHATDNIVVWL--------PTENILFGGCMLK      1znbA     GGGHATDNIVVWLPT------ENILFGGCMLK
1qh5A     ??TPCHTSGHICYFVSKPGG---SEPPAVFTGDTLF      1qh5A     TPCHTSGHICYFVSKPG-GSEPPAVFTGDTLF
Model     THHPGHGPGHVVVYL--------P-GKVLFTGDLLF 
 
(k) Global similarity                              (l) Local similarity 
1smlA     MAGHTPGSTAWTWTDTRNGKPVRIAYADSLSA         1smlA     MAGHTPGSTAWTWT-DTRNGKPVRIAYADSLSA
1k07A     TPGHTRGCTTWTMKLKDHGKQYQAVIIGSIGV         1k07A     TPGHTRGCTTWTmklKDHGKQYQAVIIGSigv-
3bc2      GKGHTEDNIV-VWLPQYN-----ILVGGCLVK         3bc2      ?GKGHTEDNIVVWL-PQYNI----LVGGCLVK?
1jjtA     GPGHTPDNVV-VWLPERK-----ILFGGCFIK         1jjtA     ?GPGHTPDNVVVWL-PERKI----LFGGCFIK?
1znbA     GGGHATDNIV-VWLPTEN-----ILFGGCMLK         1znbA     ?GGGHATDNIVVWL-PTENI----LFGGCMLK?
1qh5A     TPCHTSGHIC-YFVSKPGGSEPPAVFTGDTLF         1qh5A     TPCHTSGHICYFVS-KPGGSEPPAVFTGDTLF?
 
(m) Progressive similarity 
1smlA     ????????????????MAGHTP--GSTAWTWTDTRNGKPVRIAYADSLSA 
1k07A     ????????????????TPGHTR--GCTTWTMKLKDHGKQYQAVIIGSIGV 
3bc2      ?GKGHTEDNIVVWLPQYNILVG--GCLVK?????????????????---- 
1jjtA     ?GPGHTPDNVVVWLPERKILFG--GCFIK?---?????????????---- 
1znbA     ?GGGHATDNIVVWLPTENILFG--GCMLK?????????????????---- 
1qh5A     T-PCHTSGHICYFVSKPGGSEPPAVFTGDTLF??????????????---- 
 
(n) Sequence–profile                            (o) Profile–profile 
1smlA       MAGHTPGSTAWTWTDTRNGKPVRIAYADSLSA    1smlA (prof2) MAGHTPGSTAWTWTDTRNGKPVRIAYADSLSA
1k07A       TPGHTRGCTTWTMKLKDHGKQYQAVIIGSIGV    1k07A (prof2) TPGHTRGCTTWTMKLKDHGKQYQAVIIGSIGV
3bc2        GKGHTEDNIVVWLPQ------YNILVGGCLVK    3bc2  (prof1) ?GKGHTEDNIVVWLPQ-----YNILVGGCLVK
1jjtA       GPGHTPDNVVVWLPE------RKILFGGCFIK    1jjtA (prof1) ?GPGHTPDNVVVWLPE-----RKILFGGCFIK
1znbA       GGGHATDNIVVWLPT------ENILFGGCMLK    1znbA (prof1) ?GGGHATDNIVVWLPT-----ENILFGGCMLK
1qh5A (seq) TPCHTSGHICYFVSKPGGSEPPAVFTGDTLF?    1qh5A (prof1) -TPCHTSGHICYFVSKPGGSEPPAVFTGDTLF

Fig. 1. Alignments of a small section of the amino acid sequence of the metallo-β-lactamase protein-domain superfamily (Lactamase B) for
six taxa. The alignments produced using various criteria and strategies are shown, thus illustrating just how different these alignments can be
even for the same sequences. (a) Pairwise alignment from the FSSP database, showing the secondary structure: S = H-bonded β-strand; B = bend;
T = H-bonded turn; – = random coil or equivocal structure. (b) Pairwise alignment based on information from Carfi et al. (1995), showing the
functional sites: Z = direct zinc-binding; A = enzymic active site. (c) Pairwise alignment from searching the NCBI Conserved Domain Database,
showing the consensus sequence used in the database. (d) Pairwise alignment produced manually from a consideration of structure, function and
sequence similarity. (e) Pairwise alignment from the default settings of the MSA version 2.0 computer program. (f) Pairwise alignment from the
default settings of the LAlign version 2.0u66 computer program, with lower case letters indicating unaligned residues. (g) Multiple alignment from
the Homstrad database, showing the secondary structure: S = H-bonded β-strand; – = random coil or equivocal structure. (h) Multiple alignment
based on information from Carfi et al. (1995), showing the functional sites: Z = direct zinc-binding; A = enzymic active site. (i) Multiple alignment
from searching the Pfam database, showing the template used by the hidden markov model in the database. (j) Multiple alignment produced manually
from a consideration of structure, function and sequence similarity. (k) Multiple alignment from the default settings of the MSA version 2.0 computer
program. (l) Multiple alignment from the default settings of the DiAlign version 2.2.1 computer program, with lower case letters indicating unaligned
residues. (m) Progressive multiple alignment from the default settings of the ClustalW version 1.83 computer program. (n) Sequence–profile
alignment from the default settings of ClustalW. (o) Profile–profile alignment from the default settings of ClustalW. In all cases the full protein
domain was aligned (163–192 amino acids), but only one small section of the alignment is shown, where ? = an amino acid from outside the
section and − = a gap.
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and RNA families (Miller 2001; Chain et al. 2003; del Sol
Mesa et al. 2003). Therefore, the usual objective of sequence
alignment for comparative purposes is to juxtapose residues
representing conserved sequence features (e.g. conserved
motifs, such as occur at active sites and binding sites,
or signal sequences and transmembrane regions). This
allows, for example, functional predictions for sequences
of unknown function or detection of unsuspected functions
in known sequences, because it is evolutionary constraints
due to function that usually create the conserved sequence
features. In the example (Fig. 1b) I have used the information
from Carfi et al. (1995), who discuss the catalytic role of
the sequence elements of zinc-binding lactamases. I have
indicated the protein ligands that directly bind the Zn2+
in the functional protein, as well as those residues in the
alignment that have a role in the catalytic (i.e. enzymatic)
activity. Note that this involves aligning the final three amino
acids in the section of sequence shown, as they perform the
same functional roles. Otherwise, the function alignment is
the same as the structure alignment because the structure is
constrained by the function.

The objective when using a sequence alignment for
database searching [objective (iii)] is to maximise the
distinction between homologous and non-homologous
sequences (reviewed by Pearson and Sierk 2005). That is,
we want the high-scoring database matches to be sequences
that are homologous to our query sequence, and non-
homologous sequences to be low-scoring matches. To this
end, we can simply search for a (nearly) perfectly matched
sequence, or we can search for the appropriate family of
homologous protein domains or RNA families. In the latter
case, methods have been developed that use: ‘fingerprints’
consisting of small conserved motifs; regular expression
patterns or consensus templates representing multi-sequence
profiles; or hidden markov models expressing the positional
probabilities. In the example (Fig. 1c) I have searched the
Conserved Domain Database (Marchler-Bauer et al. 2005),
which employs consensus templates, and in the figure I show
the resulting alignment of each of the two sequences to the
consensus template. The searches were successful, in the
sense that they produced high-scoring matches only to
the Lactamase B domain. However, it is obvious that the
pairwise sequence alignment implied by the search results
is very different from the previous two alignments.

For phylogenetic analysis, the objective of sequence
alignment is to produce plausible hypotheses of evolutionary
homology among the residues. That is, we hypothesise that
each of the aligned residues has descended from a common
ancestral residue. Note that this is distinct from database
searching, which searches for homology between the genes
as a whole rather than homology between the individual
residues. Indeed, alignment for structural, comparison or
phylogenetic purposes assumes that you have already
determined that the sequences themselves are homologous.

It is also distinct from structure and function prediction,
where there is no necessity that evolutionarily homologous
residues be aligned. Furthermore, phylogenetic alignment is a
very different objective from the other three purposes in that
it explicitly involves historical and therefore unobservable
events. Whereas the success of the previous objectives is
amenable to some experimental testing in all three cases, there
is no gold standard of phylogeny with which we can compare
an alignment, and so there is no straightforward means either
to produce or to assess a phylogenetic alignment. This is
discussed in more detail in a later section. In the example
(Fig. 1d) I have, as my criteria, used structural and functional
similarity plus sequence similarity at both the amino acid and
nucleotide levels. The alignment is thus basically the same as
the functional alignment but with several of the ambiguous
residues re-aligned to increase the sequence similarity at the
nucleotide level.

Thus, we have four different pairwise sequence
alignments, each optimised for a different purpose.
Unfortunately, in practice the most commonly used
automated alignment procedures use little more information
than the overall phenetic similarity between the sequences.
That is, some scoring scheme is employed (a function
encoding the objective) that measures the degree of similarity
between pairs of residues, and the alignment procedure
then tries to optimise the overall score for the sequence of
juxtaposed residues (e.g. to maximise the sum of the scores
produced by the string of aligned residue pairs). Hence, the
complexity of the four alignment purposes is reduced to
finding the alignment with the maximum similarity among
the sequences, so that similarity is used as a substitute for each
of the four criteria outlined above. This similarity alignment
is often referred to as ‘the optimal’ alignment, but it really
should be ‘one of the optimal’ alignments.

In this context, there are two main optimisation options:
to use either global or local similarity. In the former case, it
is the total score for the entire alignment that is optimised,
whereas in the latter case some residues are allowed to be
unaligned and thus do not contribute to the score. In a global
alignment all residues are paired and scored, and there is a
trade-off along the alignment, where potentially high-scoring
pairs do not align because an even higher score can be
achieved with a mutually exclusive arrangement. A local
alignment is a single block of high-scoring residue pairs,
which does not necessarily include the whole sequence. If
a series of local alignments is applied to the sequences,
then only small ungapped blocks or equivalent segments will
be displayed (e.g. by database-search or motif-recognition
software), interspersed with non-scoring residues.

In the example, the global alignment (Fig. 1e) was
produced by the MSA computer program (Gupta et al. 1995)
and the local alignment (Fig. 1f ) by the LAlign program
(Huang and Miller 1991). Note that the global alignment does
not insert a gap in the middle of the 1qh5A sequence, as do
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all of the previous alignments. This allows both a proline (P)
and an aspartic acid (D) to be paired, thus increasing the
overall pairwise similarity. The local alignment aligns these
same pairs, but it leaves unaligned the first three amino acids
in the section of sequence shown. Neither of these similarity
alignments matches the best alignments determined for
any of the four purposes outlined above. In this case,
similarity is not a perfect substitute for any of the other
four criteria.

The four different modes of sequence alignment
are: (i) pairwise alignment, (ii) multiple alignment,
(iii) sequence–profile alignment, and (iv) profile–profile
alignment. (Note that there are many ways of classifying
the modes of sequence alignment. I am focusing here on the
point of view of the user rather than the developer of the
methods. Also, I am not including manual alignment.) All
of the alignments discussed so far have been pairwise
alignments, since only two sequences were involved. I will
illustrate each of the other three modes by adding four more
sequences to the existing pair. One of these new sequences
(1k07A) is relatively similar to the 1smlA sequence, while
the other three are similar to each other but quite different
from both 1smlA and 1qh5A.

The basic distinction between multiple and pairwise
alignment is that in the former situation each pair of
sequences cannot necessarily be optimised, but instead
there are tradeoffs where some pairs may have suboptimal
alignments in order to increase the overall optimality among
the group of sequences. That is, the pairwise alignments are
judged simultaneously in the context of the other sequences,
so that the pairwise alignments occur within a larger
framework rather than in isolation. This distinction can be
illustrated by comparing the pairwise alignments discussed
above (Fig. 1a–d) with how these same two sequences are
aligned within multiple alignments designed for the same
four purposes (Fig. 1g–j).

For the structure alignment (Fig. 1g) I have used the
data from the Homstrad database of multiple structure
alignments (Stebbings and Mizuguchi 2004), which has
manually curated alignments based originally on the STAMP
program. Note that the last three amino acids in the section of
sequence shown are now aligned, but otherwise the pairwise
structure alignment is the same as before (Fig. 1a). This
difference is a result of the changed context within which
the structural super-positions are assessed. Indeed, aligning
sequence A against structure B does not necessarily produce
the same result as aligning sequence B against structure A. For
the sequence-comparison alignment (Fig. 1h) I have used the
function information from Carfi et al. (1995). As expected,
the pairwise alignment is the same as before (Fig. 1b), since
the functions of the residues are the same. For the database-
search alignment (Fig. 1i) I have searched the Pfam database
(Finn et al. 2006), which employs hidden markov models,
and in the figure I show the resulting alignment of each of

the six sequences to the model template. All of the searches
were successful, in the sense that they produced high-scoring
matches only to the Lactamase B domain. The pairwise
sequence alignment implied by the search results is quite
different from the previous search alignment (Fig. 1c), now
being more similar to the other alignments. This is often
the case when using markov models, which are considered
to be superior to the use of consensus sequences, although
they are much slower to calculate. For the phylogenetic
alignment (Fig. 1j) I used the same principles as outlined
above. As expected, the pairwise alignment is the same as
before (Fig. 1d), since the alignment represents a set of
hypotheses of ancestry, which should not change just because
other descendants are included in the alignment.

For multiple alignment in practice, the most commonly
used automated alignment procedures also use either global
or local similarity as their criterion, rather than optimising the
alignment for any of the four purposes that I have outlined.
In the example, the global alignment (Fig. 1k) was produced
by the MSA program and the local alignment (Fig. 1l ) by
the DiAlign2 program (Morgenstern 1999). In both cases
the pairwise alignment between 1smlA and 1qh5A differs
from before (Fig. 1e, f ), because there are trade-offs in
the assessment of similarity. Moreover, not only do these
two multiple alignments differ from each other they also
differ from all of the other multiple alignments. So, once
again, similarity is not a perfect substitute for any of the other
four criteria.

Even more importantly, the most commonly used
automated procedures for multiple sequence alignment do
not actually optimise similarity but instead use heuristic
procedures to approximate the optimal result. The best-
known heuristic technique is progressive alignment, where
the sequences are aligned in some order rather than
simultaneously. That is, there is no attempt at a simultaneous
assessment of all possible pairwise alignments, but instead
the pairwise assessments occur sequentially. For the example,
I have used the most popular sequence-alignment program,
ClustalW (Thompson et al. 1994). Clearly, the resulting
alignment (Fig. 1m) bears little relationship to any of the other
alignments. In this case, the procedure has aligned the group
of three similar sequences reasonably well, along with the
pair of similar sequences, but it has not successfully aligned
these two groups to each other or to the sixth sequence. This
problem arises from the low levels of pairwise identity among
the sequences, as the twilight zone is not a region where the
progressive-similarity strategy can be expected to work well
(as discussed in a later section).

Sequence–profile alignment is a third mode of alignment,
where a single sequence is aligned against a pre-existing
multiple alignment (which is then called a profile; Wang
and Dunbrack 2004). The profiles do not have to be
actual alignments, but may be ‘condensed’ alignments such
as consensus templates or hidden markov models. Either
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way, the aligned residues in the profile remain aligned,
although gaps can be inserted between aligned positions,
as well as within the other sequence. For the example,
I have aligned the 1qh5A sequence (the least similar
sequence) against the profile formed from the phylogenetic
multiple alignment of the other five sequences (Fig. 1n),
using the ClustalW program. Note that the alignment of
1qh5A and 1smlA is similar to that shown for the global-
similarity pairwise alignment (Fig. 1e) rather than that for the
progressive-similarity alignment (Fig. 1m). This is because
the extra information in the profile is used for assessment
(i.e. the profile already has a simultaneous assessment of
the sequences that it contains), so that sequence–profile
alignments are expected to be superior to progressive
alignments (Edgar and Sjölander 2004).

Profile–profile alignments involve, as the name suggests,
the alignment of two profiles. For the example, I have aligned
the profile formed from the phylogenetic multiple alignment
of the 1smlA and 1k07A sequences (the two badly aligned
sequences in the progressive alignment) against the profile
formed from the phylogenetic multiple alignment of the
other four sequences (Fig. 1o), using the ClustalW program.
The pairwise alignment of 1qh5A and 1smlA is improved
compared to the progressive-similarity alignment (Fig. 1m),
because the extra information in the two profiles is used for
assessment, so that profile–profile alignments are expected
to be superior even to sequence–profile alignments (Ohlson
et al. 2004).

So, my conceptual framework for sequence alignment is
this: there are four objectives (structure prediction, database
searching, sequence comparison, phylogenetic analysis) and
there are four different modes (pairwise, multiple, sequence–
profile, profile–profile), but in practice we don’t actually
optimise these methods based on these criteria, but instead
we optimise either global or local similarity for pairwise
alignment and use progressive similarity for the other three.
This complexity should make it clear why alignment is
considered to be problematic. This complexity will usually
not be apparent for closely related (and thus similar)
sequences, but as sequences diverge over evolutionary time
the different objectives, modes and practices will result in
different alignments.

Finally, it is important to note that most of the sequence-
alignment computer programs were developed originally
for sequence comparison, and they have been applied
subsequently to the other three purposes in an ad hoc manner,
without regard for their suitability. Specialist programs
have recently been developed for structure alignment, such
as DALI, Mammoth and VAST for pairwise amino-acid
alignments, CE, SSAP and STAMP for multiple amino-
acid alignments, and RNAforester for RNA alignments.
Nevertheless, alignment errors are still considered to be
the biggest problem in structure prediction (Cozzetto and
Tramontano 2005; Kolodny et al. 2005). There are also now

specialist programs for database-search alignment, such as
the pairwise programs SSearch, FASTA and BLAST, and
profile-search programs such as PSI-BLAST, Compass and
COACH. In addition, the search for functionally conserved
subsequences (i.e. sequence comparison) has focused on
the use of local alignment strategies, with programs such
as Consensus, MEME and BioProspector. Here, the major
limitation seems to be the weakness (i.e. subtlety) of the
motifs rather than the alignment strategy used (Frith et al.
2004).

However, there can be no such thing as a computer
program for phylogenetic alignment since this involves a
study of historical accidents, for which there can be no
objective function to optimise. Homology is an inference,
not an observation (unless we have a time machine), and
hence we cannot expect to optimise an alignment with respect
to homology. Since phylogenetic alignment is not amenable
to an automated (i.e. computerised) procedure, no such
‘recent developments’ have occurred in this field. Therefore,
most people still seem to use the original global sequence-
comparison programs. This has long been known to have a
negative effect on phylogenetic analyses if the alignments
are unsuitable (Ellis and Morrison 1995; Morrison and Ellis
1997). The problems caused by this issue are the topic of this
review.

Most of the recent developments in the commonly used
alignment programs have also been designed for sequence
comparison, especially for amino acid sequences rather than
nucleotide sequences. This is mainly because the larger
‘alphabet’ of amino acids (20) compared with nucleotides (4)
allows more information to be used in making alignment
decisions, although structural modelling of proteins has also
motivated some of the improvements. (Note that the codon
alphabet of 61 should be even better, but it has so far been
too unwieldy to be put into practice easily.) In addition,
database searches are usually more effective when using
amino acid sequences compared with nucleotide sequences,
and this has provided impetus for other improvements.
However, for nucleotide alignment, which is the prevalent
mode in phylogenetic analyses, very little has changed in
practice over the last 20 years (Taylor 1996; Phillips et al.
2000; Raghava et al. 2003), when the progressive-alignment
strategy was first developed (Hogeweg and Hesper 1984; Feng
and Doolittle 1987; Taylor 1987). Nevertheless, some of these
developments could usefully be moved across to phylogenetic
analysis of nucleotides as well, and they are discussed in more
detail in several sections below.

Homology and similarity

Characters and character-state homology

For phylogenetic analysis, homologous rather than analogous
characters and character states must be compared across the
taxa. That is, for all of the taxa we must be comparing like
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with like regarding the evolutionary origin of the attributes.
While the term homology has been used historically to refer to
a wide variety of concepts (Wagner 1989; Sluys 1996; Butler
and Saidel 2000), the evolutionary concept of homology
refers to the relationships of features that are shared among
taxa due to common ancestry (i.e. they all inherited the feature
from their most recent common ancestor). Systematists and
phylogeneticists have long insisted on this definition, and
there have been calls for all molecular biologists to use it
as well (Reeck et al. 1987).

In phylogenetic analysis this definition serves the
very useful purpose of highlighting the fact that
similarity �= homology. In phylogenetics (and comparative
biology in general) similarity = homology + analogy,
instead. Analogy refers to similarity resulting from the
same function rather than similarity resulting from the same
evolutionary origin. Analogy will lead to incongruences
among the characters compared to the relationships shown
by homology, and these will confound our ability to detect
homology. That is, some of the apparent relationships among
taxa will be due to homology and some will be due to
analogy, and these two patterns of relationship are unlikely
to be in agreement. We are then caught in the bind of trying
to disentangle the two patterns, because the one due to
homology is the one that we really want, in an evolutionary
context. So, mistaken hypotheses of homology are the
primary source of error in evolutionary studies.

Consequently, one of the essential steps in the cladistic
reconstruction of phylogenetic history is the establishment of
hypotheses of character and character-state homology among
the taxa being studied. The choice of characters to be included
in a phylogenetic analysis may be somewhat arbitrary, but can
include intrinsic (phenotypic or genotypic) attributes from
morphology, anatomy, embryology, behaviour, physiology,
ultrastructure, cytology, biochemistry, and immunology.
Each of these disciplines may have their own criteria of
homology (Sluys 1996), but the important points are that
the characters used in the analysis are hypothesised to
reflect the evolutionary history of the taxa, and that the
character states of a single character are hypothesised to
have a unique evolutionary origin. Note that these are
hypotheses not observations; we cannot observe homologies
in nature but must instead speculate about their existence.
We can observe similarity, from which we then infer
either homology or analogy. This is what makes sequence
alignment so difficult—it is not intrinsically an empirical
subject, and yet we must make it so to the best of our
ability. We cannot know where the evidence is that will
reveal the evolutionary history of the sequences—we
can only hypothesise that there will be some evidence
somewhere in the sequences. This is a radical difference
from experimental science, where our experimental
hypothesis specifies exactly where to look for the
relevant evidence.

Alignment of molecular sequences for phylogenetic
purposes is thus a series of hypotheses of homology among
the taxa, with one hypothesis of homology for each position
(nucleotide or amino acid) in the aligned sequences. That is,
we hypothesise that the nucleotides or amino acids at each
position are descended from the same positional residue in a
common ancestral sequence. Two sequences are homologous
if they have descended through a chain of replication
from a common precursor molecule (Cartmill 1994), and
residues are homologous if they have maintained the same
positions in those sequences (Dewey and Pachter 2006).
Differences in residues at an aligned position thus represent
explicit hypotheses about the evolutionary events that caused
the differences, and our hypotheses about these events
should be plausible and parsimonious. Plausibility is an
obvious requirement for any hypothesis, while parsimony is
simply the methodological convention that we should not
create hypotheses that are more complex than is strictly
necessary. (Note that this is descriptive parsimony, where
we prefer simpler explanations, rather than ontological
parsimony, where we claim that evolution itself necessarily
acts parsimoniously; Johnson 1982.)

The idea that alignments represent hypotheses about
evolutionary events can be made clear by a simple example
(Fig. 2). The sequences are from the study by O’Donnell
et al. (2000) of the phylogeography of the microfungi causing
wheat scab and blight. The short stretch of sequence shown
represents, as far as evolutionary events are concerned,
a series of dinucleotide (TC) repeats with subsequent
substitutions in the second nucleotide. The aligned Cs and

Fig. 2. Alignment of nucleotide sequences from Fusarium
pseudograminearum (blight) strains, illustrating the concept that
aligned columns represent explicit hypotheses about the evolutionary
events that created the sequence patterns. The gene is labelled by
O’Donnell et al. (2000) as ‘similar to ammonia ligase 1’. The multiple
alignment was produced by the ClustalW 1.83 program, with default
settings. The vertical bars delimit a region of dinucleotide repeats.
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Ts at position 18 are thus hypothesised to have arisen from
a repeat followed by a substitution, as are the aligned As at
position 26. However, the four T–T– at positions 21–24 are
not treated that way—instead the alignment actually treats
them as having arisen from two separate repeats followed by
two deletions. That is, by aligning the Ts we are explicitly
claiming that they are homologous with the other Ts, and so
they arose from the same duplication events. If, on the other
hand, the second Ts were to be moved one position to the
left (i.e. TT—) then the evolutionary hypothesis would also
involve one repeat followed by a substitution. This is a more
parsimonious evolutionary scenario (involving two events
instead of four), and thus it represents a more plausible set of
hypotheses of positional homology among the residues. An
alternative scenario is that the second set of Ts is not part
of a dinucleotide repeat but a separate insertion, so that the
evolutionary hypothesis involves one repeat followed by a
deletion and an insertion (i.e. three events). For this scenario
the second set of Ts should be aligned against a gap in all of
the other sequences.

Homology assessment can be considered to involve
two steps (de Pinna 1991). The first step is the conjecture,
before data analysis, that similarity among certain characters
and character states may represent evidence of evolutionary
groupings of the taxa; this is ‘primary homology’. The
second step concerns the recognition of congruence
among the primary homologies as a result of a tree-
building analysis of the data—the shared derived character
states (synapomorphies) on the phylogenetic tree represent
homologies; this is ‘secondary homology’. Thus, primary
homology is a conjectural assessment of homology before
phylogenetic analysis (an assessment of ‘essential samenesss’
without reference to an ancestor) while secondary homology
is a corroborated homology assessment subsequent to
the analysis (an assessment of ‘congruence’ that explains
the sameness as resulting from common ancestry). From
this perspective, sequence alignment is primary homology
assessment (Mindell 1991; Brower and Schawaroch 1996;
Phillips et al. 2000; Phillips 2006). Also, secondary
homology does not mean that the homology assessment is
necessarily correct, since errors may also be congruent.

It has been traditional in phylogenetic analyses to
keep assessment of primary and secondary homology
separate. For example, it is usually considered necessary
to have specialist expertise when assessing morphological,
anatomical or ultrastructural characters (or the sorts of
macro-biological characteristics often used for unicellular
organisms, such as host, tissue and vector specificities), and
researchers will spend hours contemplating the rationale
for their decisions regarding primary homology assessment.
Indeed, as far as time is concerned the assessment of
these phenotypic characters may be the major part of any
one study, and it may take up most of the space in the
subsequent publication. Secondary homology assessment,

on the other hand, is a process requiring a common
expertise from all phylogeneticists. In this sense, sequence
alignment (primary homology assessment) is separate from
tree building (secondary homology assessment).

There are two basic concepts within primary homology
(Brower and Schawaroch 1996): topographic identity
and character-state identity. The first of these refers to
the identification of comparable features among the taxa
concerned (i.e. the creation of a blank characters × taxa
data matrix), while the second refers to the decision about
which character-states are to be classified as identical
(i.e. the filling in of the cells of the data matrix) (Brower
and Schawaroch 1996). As discussed below, the distinction
between topographic identity and character-state identity
is important when considering the relationship between
molecular data and phenotypic data. Furthermore, it is
useful to remember that homology is a hierarchical concept
(Rieppel 1994), so that characters may be homologous at a
more general (inclusive) level but not at a more specific level
(e.g. bird wings and bat wings are homologous as forelimbs,
which are common to all vertebrates, but not as wings,
which arose independently in birds and bats). From this
point of view, characters are just hypotheses of homology
at a more inclusive level than those of character states
(Patterson 1988).

When dealing with phenotypic data (e.g. morphology,
anatomy), characters and their states can be postulated
as homologous on the basis of their structural,
positional, ontogenetic, compositional and / or functional
correspondences; and they can be postulated between
different taxa so as to maximise the number of one-to-one
correspondences of their parts. That is, the features are
decomposed into their constituent parts, and these are
compared in terms of their positional and connectional
relationships (i.e. topology) (Rieppel 1994). This concept
may be problematic (for example, deciding on what
constitutes the ultimate parts to be compared), but it can
be put into practice through a detailed comparative and / or
experimental study of the organisms concerned (what has
traditionally been called comparative anatomy), where the
constancy of the topological relationships is used as the main
criterion for recognising primary homology (Rieppel 1994).
In particular, structural and positional similarity of complex
structures has traditionally been taken as good evidence
of primary homology (Donoghue and Sanderson 1994;
Rieppel and Kearney 2002). So, for phenotypes determining
topographic identity may, in fact, be uncontroversial
(de Pinna 1991), while character-state identity may be more
complicated (Brower and Schawaroch 1996).

Molecular homology

When dealing with molecular data concepts of homology
have often been rather confused (Winter et al. 1968; Reeck
et al. 1987; Patterson 1988; Hillis 1994; Fitch 2000;
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De Laet 2005), with the word homology being used to mean
several unrelated things, which could perhaps better be given
alternative names. In particular, ‘sequence homology’ is often
used as a synonym for ‘sequence identity’ (i.e. the number
of nucleotides or amino acids that are inferred to be held in
common between two sequences). These are not necessarily
the same thing (Reeck et al. 1987), since similarity can be the
result either of common ancestry or of chance convergence,
parallelism or reversal; and ‘isology’ may be a better term to
use (Wegnez 1987).

Nevertheless, for primary homology at a general level,
considerable thought has been given to the study of molecular
data (Patterson 1988; Williams 1993). For example, it has
long been recognised that the sequences being compared must
themselves be homologous rather than analogous. However,
for analyses using molecular sequence data, the assessment
of primary homology also involves the alignment of the
nucleotides or amino acids; that is, ‘positional homology’
for the components of the homologous sequences. This point
has not received very much consideration in discussions
of molecular homology to date (Dewey and Pachter 2006;
Phillips 2006), as these discussions have mainly focused
on the more general level of homology among genes
(e.g. Patterson 1988; Hillis 1994). Nevertheless, positional
homology is just as important for the assessment of character
and character-state homology (contra Wheeler 2005).

The positional homologues can be represented by either
identical character-states (nucleotides or amino acids) in all of
the sequences, substitutions in one or more of the sequences
(representing point mutations), or insertions / deletions
(indels) in one or more of the sequences—substitutions and
indels are produced by different mechanisms and so are
evolutionarily distinct. The concepts of primary homology in
molecular and morphological studies are thus fundamentally
the same (Patterson 1988; de Pinna 1991; Williams 1993),
as sequence alignment is simply the process of determining
topographic identity (Brower and Schawaroch 1996). Indeed,
the recognition of the constituent parts that are to be compared
(i.e. the nucleotides and amino acids) is usually considered
to be unproblematic for molecular data, compared with the
problems encountered for phenotypic data.

Unfortunately, the concept that positional alignments
should explicitly reflect evolutionary homology has often
been ignored in molecular biology. In‘fact, most computer-
based alignment methods use phenetic pattern-matching
algorithms (discussed in the next section), and their
procedures are thus based on maximising sequence similarity
(i.e. isology). This is a result of the idea that the dominant
test for homology in molecular studies concerns empirical
observations of similarity — that is, homology in classical
and molecular biology do differ in that assessments of
similarity are a strong test of homology for molecular data
but are not for phenotypic data (Patterson 1988). This has
been seen as an equivalent of the attempt to maximise

the number of one-to-one correspondences of phenotypic
features. However, this idea follows from the consideration
of molecular sequences as being one-dimensional (i.e. a
string of nucleotides or amino acids), rather than being three-
dimensional in the same way as are phenotypic features,
so that the recognition of homology (as opposed to its
definition) is seen as being simply a statistical problem
of similarity assessment (Aboitiz 1987; Patterson 1988).
However, this view is incorrect when the focus is shifted
from the level of gene homology to the level of positional
homology (Donoghue and Sanderson 1994).

Note that assessment of character-state identity is often
assumed to be uncontroversial for sequence data. That
is, an adenine is obviously an ‘adenine’ and a proline is
obviously a ‘proline’. However, this misses the essential point
that, when assessing homology, identity of character-states
needs to reflect evolutionary history. Therefore, two adenines
represent the same character state only if they originated
as adenines as a result of the same evolutionary event
(i.e. an adenine is only the same as an adenine with
which it is aligned). That is, character states can only
be defined by reference to both nucleotide type and to
position, and any sequence alignment procedure proceeds by
shuffling character states among characters (which usually
does not happen when dealing with morphological characters,
for example). Furthermore, if multiple substitutions have
occurred then the apparent similarity of any two adenines
may represent homoplasy rather than homology. Assessing
character-state homology is the same as assessing character
homology but just at a different level of generality.

Structure, function and homology

For molecular data it has been traditionally accepted that
there is little possibility of further investigations (similar to
comparative anatomy) to assess the topographic identity of
alignments (Patterson 1988), and this is why the phenetic
algorithms have been employed in computerised sequence
alignment. So, in practice primary homology assessment has
been very different in molecular analyses compared with
analyses of phenotype. It is important to recognise this,
because the correct formulation of hypotheses of homology
is just as important for molecular data as it is for phenotypic
data.

Nevertheless, I maintain that it is possible to employ
detailed structural and positional analyses of molecular
sequences to assist in the alignment of homologous positions,
just as it is possible to use them for the analysis of phenotypic
characters. This is because the sequences are, in most cases,
merely the code for the production of a molecule (e.g. a
protein or an RNA) in which certain active sites must be
maintained, and consequently the order of the nucleotide or
amino acid sequence is constrained by the structure and / or
function of its end product. Comparative sequence analysis
(Gutell et al. 2002; Errami et al. 2003) has shown that during
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evolution the structure of the end product molecule has
been better conserved than has the corresponding DNA or
amino acid sequence, and therefore even quite divergent
sequences must still produce a molecule with the same three-
dimensional structure and the same molecular function. So,
the primary structure of the sequences can continue to evolve,
but only within the constraints needed to maintain the same
secondary and tertiary structure (and therefore molecular
function) of the molecule.

There are thus actually three components that can be
used to help decide whether two sequences (and their parts)
have evolved from a common precursor: (i) the DNA,
RNA and / or amino acid sequences are similar; (ii) the
three-dimensional structures of the product being coded for
(e.g. RNA or protein) are similar; and (iii) the active sites
and functional activities (e.g. catalytic mechanisms, enzyme-
substrate interactions) are similar. Note that these were the
three criteria that I used to formulate the ‘phylogenetic
alignments’ in Fig. 1.

These three are related concepts but they are not identical,
as structural, functional and sequence similarity may be
mutually inconsistent (Shakhnovich 2005). For example,
proteins are known that share a common structure and
function but have a low sequence similarity (e.g. histone
deacetylase and arginase), while others share sequence
similarity and function but not structure (e.g. Bir A domain II
and SH2 domain), others share similarity and structure but not
function (e.g. lysozyme and α-lactaburin), and others have
sequence similarity but share neither structure nor function
(e.g. β-heamoglobin and cellulase E2). Thus, similarity
of topology and shared functional constraints represent
evidence on which to base hypotheses of homology, but they
may still actually represent homoplasy rather than homology
(for further examples see Morris and Cobabe 1991; Graham
et al. 2000; Pearson and Sierk 2005).

Many recent advances in sequence alignment involve
trying to explicitly incorporate (ii), and to some extent (iii),
into the process. Thus, the sequence–structure–function
relationship provides a mechanism for incorporating studies
of primary homology into molecular sequence alignment
(e.g. Kjer 1995, 2004; Hickson et al. 1996; Jennings et al.
2001; Simossis and Heringa 2004). As an example of the
perceived importance of this relationship, evaluation of the
quality of procedures for multiple sequence alignment is
now frequently assessed using structure-based reference
alignments as the best estimate of the ‘correct’ alignment,
including BAliBASE (Thompson et al. 1999a, 2005; Bahr
et al. 2001), OXBench (Raghava et al. 2003), PREFAB
(Edgar 2004b), SABmark (Van Walle et al. 2005), IRMBase
(Subramanian et al. 2005) and BRAliBASE (Gardner
et al. 2005); and a similar approach has been taken to
evaluation of pairwise alignment for database searches and
structure prediction (Brenner et al. 1998; Domingues et al.
2000; Sauder et al. 2000; Marsden and Abagyan 2004;

Marti-Renom et al. 2004). Note that this approach explicitly
uses a biological criterion to judge the quality of the
alignments, rather than whatever mathematical criterion
was used to produce the alignments. It does not, however,
make any explicit claim that a structural alignment must
necessarily correspond to the true evolutionary alignment,
since knowledge of this ‘gold standard’ would require a time
machine.

The important conclusion for sequence alignment is that
if the two- or three-dimensional structure of a molecule is
known, even approximately, then the sequence alignment
process can be constrained by that model. From this point
of view, molecular sequences are three-dimensional in
the same way as are phenotypic features (contra Patterson
1988), and adding dimensions to the assessment of primary
homology must make these assessments more reliable
(Donoghue and Sanderson 1994). That is, if topology is
considered to be ‘the ultimate operational clue to homology’
(Rieppel 1994) for phenotypic characters, then the molecular
equivalent must involve the secondary and tertiary structures
of the molecules. Furthermore, these structures make
explicit the frame of reference within which the topological
relationships are to be assessed, which is quite problematic for
phenotypic data.

Detailed structural and functional analyses thus have
exactly the same role to play in homology assessments as
they do for phenotypic data—they can provide evidence for
primary homology (since we can never know about true
evolutionary homology). This idea is not new, as it is implicit
in Winter et al.’s (1968) definition of homology as ‘structural
similarity among proteins greater than might be anticipated
by chance alone’ [my italics], but the potential role that
structural considerations have to play in sequence alignment
has generally been ignored to date. Indeed, these have
often been considered as secondary to sequence similarity
as criteria for alignment (e.g. Hillis 1994). Note that this
viewpoint suggests an explicitly biological solution (the
consideration of the biological relationship between structure
and function) to the problem of finding the correct alignment,
rather than the traditional purely mathematical solution (the
search for an optimal alignment).

Gaps and recombination events

If we think of homologies as being character states shared
by (at least) two organisms that are derived from a single
transformation / mutation event in their common ancestor
(Vogt 2002), then there are several complicating factors
when trying to assess positional homology of nucleotides
and amino acids (i.e. we have difficulties inferring the
evolutionary events). These are examples of general problems
when dealing with homology, but it is important to emphasise
them here, as they will recur in later sections.

First, homologies are hierarchical, so that homologous
structures at one spatial or temporal scale (i.e. level of
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generality) are not necessarily homologous at some other
scale. That is, positional homology in an alignment implies
that the sequences are homologous, but the converse is not
necessarily true. This means that any process that involves
sequence transposition will lead to complex structural
homology (Bledsoe and Sheldon 1990).

At the simplest level, two different aligned nucleotides
are homologous if the evolutionary event that created their
difference was a point mutation leading to a substitution.
However, recombination, gene conversion and horizontal
(or lateral) gene transfer create gene sequences that are spatial
mosaics. In this context, aligned positions may not differ in
a substitution event but instead differ in a recombination
or transfer event involving a whole block of positions. So,
at one level of generality the aligned nucleotides are not
homologous (because their similarities and differences are
not the result of ancestry by descent), but at a more general
level they are homologous if the same piece of gene is
involved in the event (i.e. the nucleotides in the genes do
have a common ancestor further back in history). In this
sense, horizontal gene transfer can be thought of as ‘non-
homologous recombination’, since it involves a genomic
region that is new to a genome, whereas ‘homologous
recombination’ involves a new variant of a genomic region
that is already present.

A similar situation occurs with regard to protein domains.
Protein chains are made up of one or more domains,
which are the basic structural and functional units, the
combination of domains determining the function of the
protein. A domain is thus a structurally and functionally
defined region of a protein chain (which is self-stabilising
and usually folds independently of the rest of the chain).
Domains are normally not unique to the protein products of
one gene, but instead occur in a variety of proteins and thus
form domain families. Therefore, a single protein may not be
composed of domains with a common ancestry by descent,
while apparently unrelated proteins may actually be related
by descent if they have a related domain. Alignment of
positions within and between domains may thus be complex,
as any two gene sequences may not be related over their entire
lengths. This all means that only homologous positions at the
relevant hierarchical level should be aligned. An alignment
thus depends on the context, where an alignment may
represent homology at one level of generality but not at a
lower level.

The second complication concerns the mosaic nature of
sequences created by the various events that lead to gaps
being inserted in one or more of the sequences. That is,
there are various ways in which a gap can arise, including
long or short indels and sequencing mistakes. Whether a gap
can be considered to be homologous to the residues at the
same alignment position depends on the nature of the event
that created the gap. Note that a distinction will be made
here between gaps, which relate to sequences (the ‘rows’),

and evolutionary events, which relate to alignment positions
(the ‘columns’).

On the one hand, if a gap arises from a single nucleotide
insertion or deletion at an aligned position then it is
homologous with the residues at that position, because the
gap represents a single (inferred) evolutionary event just like a
substitution. Thus, the gap could be treated as a fifth character
state in a nucleotide alignment or a 21st state in an amino
acid alignment. However, note that this is artificial, because
a gap is not an observation, but rather we infer the gap after
having observed the presence of a residue in at least one other
sequence (Geiger 2002).

On the other hand, a multi-position insertion or deletion is
not homologous with the aligned residues because there is no
evolutionary event associated with each single gap position,
so that the residues do not have an homologous character
state at the gap. Instead, the relevant evolutionary event is the
insertion or deletion of the block of residues, so that the gap
is homologous to a set of residues in the ungapped sequences
rather than to a single residue. In this sense, for substitutions
each aligned position is a character and the residues are the
character states, but for long indels each character covers
more than one aligned position and the character states are
presence / absence. One can even argue that for an insertion
the gap does not represent the event at all but rather the
absence of the event, so that the gap should be coded as
‘inapplicable’ rather than as a character state. In contrast,
for a deletion the gap does represent the event, but the whole
gap is a single character state.

Moreover, each indel event occurs on a particular branch
of the evolutionary tree and therefore refers only to a subset of
the sequences. So, if multiple indels occur in the same length
of sequence, then some of the aligned gaps may represent
‘inapplicable’ in one subset of sequences but ‘deletion’ in
another subset. This complexity is illustrated in Fig. 3.

Nevertheless, an evolutionary event (or more than one)
has occurred for every gap, so this information should be

TaxonA
TaxonB
TaxonC
TaxonD

AACCAAACTT––––GAGAAAAAAGAGAA
AACCAAACTTAAAAGAGAAAAAAGAGAA

AACCA–––––????–––––AAAAGAGAA
AACCA–––––????–––––AAAAGAGAA

1
2

Fig. 3. Artificial nucleotide sequences for four taxa along with their
phylogenetic history (rooted at the right), showing the complexity of
homology that can be associated with gaps. After divergence from their
common ancestor, the ancestor of TaxonA and TaxonB acquired an
insertion (event 1), which is indicated by the gap in the sequences
of TaxonC and TaxonD. The gap thus represents absence of the
evolutionary event. TaxonA then underwent a deletion within the
inserted sequence (event 2), which is indicated by a gap in TaxonA. This
gap thus represents presence of the evolutionary event. Furthermore,
this second event is inapplicable to TaxonC and TaxonD, which do not
have the insertion, and this is indicated by missing characters in their
sequences.
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represented in the phylogenetic analysis somehow. Coding
the gap as ‘missing’ is just a roundabout way of trying to leave
the substitution information in the alignment without actually
acknowledging the existence of the evolutionary event that
created the gap (Geiger 2002). This leads to the concept of
coding gaps as separate characters (i.e. presence or absence
of a specified gap). If a gap represents a sequencing error,
then it should be coded as ‘missing’, of course.

The third complication is simply an extension of the
second one: at the molecular level there are actually several
different mutational events that affect blocks of sequence
simultaneously (Phillips 2006). These include (Benson
1997): inversions (replacement of a subsequence by its
reversed sequence); translocations (removal of a subsequence
and its insertion at another location); transpositions (copying
of a subsequence to another location); and tandem
duplications (copying a subsequence to an immediately
adjacent position). All of these will confound assessments
of positional homology, as it is the subsequences that are
homologous but not necessarily the individual positions. That
is, we can no longer treat individual sequence positions as
independent characters. Such events can be expected to occur
in longer sequences.

In summary, there are at least six processes that
can create sequence differences that require alignment:
(1) substitutions (which don’t change the sequence length);
(2) short insertions (such as microsatellite repeats or hairpin
inversions); (3) short deletions; (4) long insertions (such
as horizontal gene transfer); (5) long deletions (such as
deletion of a helix); and (6) long replacements (such
as recombination, conversion, inversion; these also do
not change the length). It seems unlikely that we will
ever be able to put all of these processes into a single
quantitative model that could be used to guide sequence
alignment. The computer programs to be discussed in the
next section only work well for protein-coding sequences,
where indels and replacements are relatively rare and can
be modelled as different types of ‘substitutions’. Indels are
quite common in RNA-coding sequences and especially
in non-coding sequences, making their alignment much
more problematic.

Computerised sequence alignment

Pattern-matching alignment

If the goal of sequence alignment is to infer the
true evolutionary relationships between sequences without
knowledge of the evolutionary events themselves (Waterman
1995), then in practice the establishment of a sequence
alignment requires a set of criteria to determine the ‘success’
of the alignment. To this end, there is an almost universal
use of computerised pattern-matching algorithms, which
produce so-called ‘optimal’ sequence alignments based on
an assessment of phenetic similarity, as these methods are

seen as providing ‘explicit and objective rules for inferences
of positional homology’ (Hillis 1994). However, because
homology �= similarity, there is no necessary reason to expect
these algorithms to produce multiple-sequence alignments
based on evolutionary homology (features shared due to
common ancestry) as opposed to homoplasy (features shared
due to chance similarity); and, furthermore, evolutionary
homologues do not necessarily even have a great deal of
phenetic resemblance (van Valen 1982). The fundamental
problem with automated alignment, then, is that the resulting
hypotheses of evolutionary homology are frequently not
plausible.

It may be possible to produce a plausible alignment by
hand when there are apparently relatively few gaps needed
to align the sequences (i.e. the alignment is apparently
optimal under all conditions), such as in closely related
sequences. Under these circumstances, there will be a high
per-cent isology, and maximising sequence identity will be
effective at detecting homology as well as straightforward
to carry out. However, this is almost never true of non-
translated sequences such as rDNAs or introns, where there
are usually large differences in sequence length, especially
as the sequences become less similar to each other. It is
then necessary to introduce large numbers of gaps into the
sequences to equalise their lengths, and the location of these
gaps is not straightforward to determine. Note, incidentally,
that it is not the unequal lengths that necessitates the gaps, but
the low similarity—even equal-length sequences may need
gaps in order to align homologues.

In situations where there is low per-cent isology between
the sequences, it has been usual to use a mathematical
algorithm to produce the alignment, because under these
circumstances ‘eyeball’ alignment will be time-consuming,
tedious, irreproducible and often biased (Henikoff 1991;
Thorne et al. 1991). Interestingly, sequence divergence is
good for tree building, since character variation is what
provides support for the inferred branches on the tree (even
homoplasy can provide branch support), but it is not good
for alignment, since this is what makes the process difficult,
and yet successful tree building is dependent on successful
alignment.

So, phenetic pattern-matching algorithms are most
commonly used, although other alignment strategies exist
(as discussed in the next section). Clearly these algorithms,
if based solely on the primary sequence information, can
only succeed at uncovering evolutionary relationships to the
extent that sequence similarity is the result of homology in
the particular set of sequences being aligned. So, it is usually
recognised that the ‘correct’ alignment may differ from the
‘optimal’ alignment. Unfortunately, even the mathematically
optimal pairwise alignment will have statistical limitations
on its accuracy (Holmes and Durbin 1998).

These pattern-matching algorithms all attempt to produce
a sequence alignment that optimises some chosen criterion
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of match between the individual sequences (an objective
function or overall cost). That is, the sequences are
compared by a pattern-matching process that searches for
correspondence between the elements of the sequences,
introducing gaps into the sequences as required to optimise
some criterion for correspondence (usually minimising the
cost, which is the sum of the weights applied to mismatches
and gaps). From this point of view, the objective is to get
the gaps in the right place—if each gap represents an indel
(or sequencing error) then we have the evolutionarily correct
alignment.

There are many algorithms currently available (reviewed
by Gotoh 1999; Duret and Abdeddaı̈m 2000; Phillips et al.
2000; Nicholas et al. 2002; Notredame 2002; Lambert et al.
2003; Batzoglou 2005; Wallace et al. 2005a; Edgar and
Batzoglou 2006; see Apostolico and Giancarlo 1998 for an
overview of the earlier history). These optimise a variety of
mathematical functions measuring the overall alignment cost,
such as sum-of-pairs (sum of pairwise similarities), entropy
(variation within an alignment column), log-expectation (a
profile probability score) or consistency (agreement with a
list of constraints). They operate in various modes, such
as simultaneous, progressive, exact, stochastic (or non-
deterministic, so that different runs of the program may
produce different alignments) and iterative (so that the
alignment is produced by a series of refinements). They are
mostly based on dynamic programming (a process described
by Wheeler 1994; Phillips et al. 2000; Phillips 2006) although
other strategies exist. Unfortunately, the multiple-sequence
alignment problem is mathematically NP-complete in all of
its various guises (Wang and Jiang 1994; Wareham 1995;
Bonizzoni and Della Vedova 2001; Just 2001; Elias 2003; Just
and Della Vedova 2004; Kececioglu and Starrett 2004), and
the number of possible alignments increases combinatorially
with the length of the sequences and combinatorially again
with the number of sequences (Slowinski 1998). So, there
is no expectation that it will ever be practical to align
many sequences simultaneously to find the globally optimal
solution.

Therefore, for more than two sequences most of the
alignment algorithms use exact procedures (which guarantee
to find the optimal solution) to align the sequences pairwise,
but then use heuristic procedures (computationally efficient
strategies that should produce a solution that is at least
close to the optimal one) to progressively braid these
pairwise alignments into a multiple alignment (Hogeweg and
Hesper 1984). These progressive-alignment procedures do
not guarantee to produce the globally optimal alignment,
because both the order in which the sequences are added
and the optimisation path that the procedure chooses can
affect the result (Wheeler 1994). Thus, there may be many
equally optimal solutions, and misalignments made early in
the process cannot subsequently be corrected (i.e. ‘once a gap
always a gap’; Feng and Doolittle 1987).

Variation in the outcome of the computerised sequence-
alignment process thus occurs in at least two distinct
ways. First, the different algorithms can produce different
alignments. This is because they adopt different objective
functions, and they have different heuristics for trying to
optimise those functions. The phylogenetic trees resulting
from these alignments can be on average more dissimilar
to each other than are the trees produced by different tree-
building methods (Morrison and Ellis 1997; Ogden and
Rosenberg 2006). This is an important point, because most
attention to date has been focused on variation caused by
differences in the method of phylogenetic inference (tree
building, which assesses secondary homology) rather than in
the assessment of topographic identity (sequence alignment,
which assesses primary homology).

Second, most alignment algorithms have a series of
available parameters that can be varied. For example, protein
alignments require decisions concerning the relative costs of
the different substitutions among the various amino acids,
and nucleotide alignments can require relative costs for
transitions and transversions. However, probably the most
important of the parameters are the alignment-gap cost-ratios
(gap weights or penalties), which refer to the relative cost of
inserting a new gap into a sequence or extending an already-
existing gap compared to a substitution. Ideally, the relative
costs should reflect the probability of the indel events relative
to substitution events (Wheeler 1993), but in practice there
is no objective criterion for choosing the costs (Vingron and
Waterman 1994), there is no way of determining analytically
what these costs should be (Rinsma-Melchert 1993), and
in spite of much analysis there is little empirical guidance
(Britten et al. 2003; Kececioglu and Kim 2006).

Thus, the computer programs that implement the
alignment algorithms usually have default values for the costs
that are designed to produce ‘biologically interesting’ results,
in the sense that an effort has been made to use biological data
to infer meaningful values (e.g. based on typical globular
proteins). There is, however, no reason to assume that the
authors of the programs have optimised the choice of these
values for any particular purpose (Blackshields et al. 2006).
Very few biologists seem to be willing to deviate from these
default choices, but the assessments published to date show
that the values chosen can have significant effects for the
alignment of amino acids (Fitch and Smith 1983; Henneke
1989; Tyson 1992; Taylor 1996) and nucleotides (Fitch and
Smith 1983; Wheeler 1995; Milinkovitch et al. 1996; Titus
and Frost 1996; Morrison and Ellis 1997; Cerchio and Tucker
1998; O’Brien et al. 1998; Smith and Hurst 1998; Sanchis
et al. 2001; Terry and Whiting 2005), and that these effects
increase as the sequences become less similar to each other.
Furthermore, gap costs are likely to differ between different
gene types; for example, in a protein-coding gene even a small
gap may create a frame-shift that has a large effect on the
function of the translated product, while for an RNA-coding
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gene the same gap can, at worst, affect a single functional
motif. It has also been argued that even for a single gene
there can be no fixed costs, because the probability of indels
varies from one region of the sequence to another (Kjer 1995,
2004). Several programs exist to explore the sensitivity of an
alignment to variation in these parameter values (Yuan et al.
1999; Löytynoja and Milinkovitch 2001), and this approach
(called sensitivity analysis) could be more usefully employed
to assess uncertainty arising from the optimisation parameters
(Giribet and Wheeler 1999; Phillips et al. 2000; Terry and
Whiting 2005), although this should not be mistaken for an
assessment of uncertainty (or robustness) in the alignment
itself (Redelings and Suchard 2005). Clearly, it is inadequate
to simply report that a particular computer program was used
to align the sequences, without also reporting the parameter
values used.

There is now much empirical evidence that multiple-
sequence alignments produced by the pattern-matching
programs are not necessarily similar to those based on
structure or function considerations, both for amino acids
(Taylor 1986; Barton and Sternberg 1987; Johnson et al.
1990; Gotoh 1996; Briffeuil et al. 1998; Thompson et al.
1999b; Katoh et al. 2002, 2005a, 2005b; Lassmann and
Sonnhammer 2002; Marchler-Bauer et al. 2002; Raghava
et al. 2003; Edgar 2004b; Van Walle et al. 2004; Yamada
et al. 2004; Do et al. 2005; Subramanian et al. 2005;
Simossis et al. 2005; Zhou and Zhou 2005; Sze et al. 2006)
and for nucleotides (Ellis and Morrison 1995; Kjer 1995;
Morrison and Ellis 1997; Beebe et al. 2000; Hickson et al.
2000; Mugridge et al. 2000; Gardner et al. 2005; Katoh et al.
2005b; Lebrun et al. 2006). It is therefore worthwhile to
explore this problem in more detail. Most of the detailed
information will relate to amino acid sequences, since this
is where it has accumulated, but the same general principles
will apply to nucleotide sequences as well.

Simple sequence alignment

Far and away the most commonly used progressive-alignment
computer program in molecular phylogenetic studies is
Clustal, either in the character-based version W (Thompson
et al. 1994) or the graphics-based version X (Thompson et al.
1997). This is a justified choice for phenetic alignment, as
this program uses a relatively simple and quick algorithm
that can be very effective, making it the benchmark standard
for such programs for nearly 20 years (Chenna et al. 2003).
For this reason, I will use this program as the basis for a
discussion of the limitations of pattern-matching programs
for phylogenetic sequence alignment. It is important that we
understand these limitations because they will have a serious
effect on our ability to obtain a multiple alignment that is
usable for phylogenetic purposes.

Clustal uses a heuristic device to approximate the global
similarity alignment. It employs a sum-of-pairs criterion
to evaluate the multiple alignment, the objective being to

maximise the sum of the pairwise similarities between the
aligned sequences, based on a cost matrix that quantifies
the similarity of every pair of residues. Since finding the
global optimum is an NP-hard problem, approximations are
used to find a solution that is near to the optimum without
guaranteeing to have found it, the basic heuristic device
being progressive rather than simultaneous evaluation of the
pairwise alignments. Thus, there is an optimality criterion for
the procedure, but there is no way of knowing how close any
result is to the optimum result.

The program first performs all possible pairwise
alignments using the dynamic programming algorithm. From
these alignments a matrix of all possible pairwise distances
is calculated, and a neighbour-joining tree is produced. This
acts as a guide tree to determine the order in which the
sequences enter the multiple-alignment process, working
from the tips towards the root. The multiple alignment is
produced by dynamic programming using a combination of
sequence–sequence alignment, sequence–profile alignment
and profile–profile alignment. The substitution cost matrix
used varies depending on the degree of sequence divergences,
the gap penalties depend on how many other sequences have
a gap at the same position and on the solvent accessibility
of the nearby amino acids (if relevant), and the sequences
are weighted inversely to how many close relatives they have
in the alignment. This overall algorithm produces a flexible
alignment procedure that is very efficient in straightforward
situations, especially for amino acid alignments, which are
treated in a somewhat more sophisticated manner than are
nucleotide alignments.

Note that most of this sophistication comes from trying
to put some biological insight into the procedure, to counter-
balance the simple idea of maximising sequence similarity.
For example, the use of substitution-cost matrices for amino
acids (such as the BLOSUM, Gonnet and PAM series) is
an attempt to quantify evolutionary relatedness (Vogt et al.
1995). The estimates of exchangeability among the residues
contained in these matrices is an attempt to quantify the
likelihood of evolutionary relationships among the amino
acids (they could, for example, be based on physico-chemical
properties, instead). This is actually a brave attempt to
treat mathematically the nebulous concept of substitutions
as unobservable historical events; we reach the limits of
mathematics when we want to reconstruct unique historical
events, and we end up with probabilities instead. Little
has been done along this line for nucleotide sequences,
although such matrices could be based on variability due to
the transition : transversion ratio and nucleotide frequencies
(Chiaromonte et al. 2002). Moreover, the use of gap penalties
that vary depending on the adjacent amino acids is an attempt
to avoid placing gaps in secondary structure features that
are known to be relatively free of gaps, such as helices and
sheets or solvent-inaccessible regions of proteins (Henneke
1989). Thus, the program cannot be accused of being free of
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biological insight, even if that insight is always implemented
through the idea of similarity.

Unfortunately, in many complex situations progressive-
alignment programs have serious limitations, both for amino
acid and nucleotide alignment. Complexity is largely created
by sequence divergence—the less similar the sequences are
to each other then the harder it is to align them, since the
alignment procedure is based solely on similarity. There are
many patterns for divergence among sequences, but we can
consider the simplest one first. This is where the sequences
are all approximately equally similar (or dissimilar) to each
other. Under these circumstances, decreasing similarity
creates decreasing accuracy of the multiple alignment
(Simmons and Freudenstein 2003). An example of this
is shown in Fig. 4, where decreasing identity among
the sequences measures divergence. (Note that, strictly
speaking, sequence identity can only be measured on the true
alignment; Gardner et al. 2005; Rosenberg 2005a. It also
requires specification of the denominator in the calculation,
which could be, for example, length of the alignment, number
of non-gap positions, length of the shortest sequence, or mean
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Fig. 4. Two examples of the relationship between sequence identity
and alignment correctness, showing the dramatic decrease in accuracy
as sequence identity decreases. Each solid point represents a single
amino-acid alignment from Reference Set 1 of the BAliBASE set of
manually curated alignments (Thompson et al. 1999a); these reference
alignments are assumed to be correct based on 3D structural super-
positions of the proteins. Each open point represents a single nucleotide
alignment generated by the Rose simulation program (Stoye et al.
1998), which simulates the evolution of sequences under a simple
artificial model; the HKY substitution model was used to create
eight sequences each 250 bases long, with nucleotide frequencies set
to those of coding sequences in the current public databases, and indel
frequencies and sizes based on those of Gu and Li (1995). The multiple
alignments for comparison in both cases were performed with the
ClustalW 1.83 program, with default settings; and the score shows the
average percentage of alignment positions that were correctly aligned
by comparison with the reference alignment.

length of the sequences; May 2004. I have used the number
of non-gap positions.)

The consensus opinion from those studies done to date
on the accuracy of progressive-alignment programs such
as Clustal seems to be something like Table 1 for amino
acid sequences. The region of 20–40% identity is known
as the Twilight Zone (Doolittle 1981), where homologous
pairs of proteins usually show structural similarity but not
primary sequence similarity. Here, alignment accuracy can
be unpredictably anywhere between 0 and 100% if based
on similarity alone (Fig. 4). The region of <20% identity
is the Midnight Zone, where sequence alignment is likely
to be no better than random. In fact, if all amino acids are
equally abundant in two sequences then perfectly random
alignment will occur at 5% identity; for the relative amino
acid abundances in the current public databases the expected
value is 6–7% identity. Not surprisingly, the empirical
Dayhoff model of protein evolution (on which the well
known PAM matrices of amino acid similarity are based)
reaches equilibrium at this same point (Higgins et al. 1996).
Successful structure-based pairwise alignments are known
down to ∼3% amino acid identity, however (Stebbings and
Mizuguchi 2004).

Clearly, only those Clustal alignments at >80% amino
acid identity are likely to be acceptable for phylogenetic
analysis without some sort of intervention to supplement
the sequence-similarity information. (Note that Clustal
version 1.83 can output a percent identity matrix, so that you
can check whether this situation applies to your analysis;
Chenna et al. 2003.) Alternative alignment strategies should
then be preferred. As discussed in the next section, alignment
methods appear to have the following order of accuracy:
profile–profile > hidden markov models > sequence–
profile > dynamic programming > heuristic (Marti-Renom
et al. 2004).

Similar qualities apply to nucleotide sequences, although
the situation is quantitatively different. For example,
randomly aligned nucleotide sequences will have ≥25%
identity, depending on the base composition. Given the
relative nucleotide frequencies in the current public databases
(G ≈ C ≈ 21%, A ≈ T ≈ 29% for coding sequences), an
alignment between two random sequences will have ∼27%
identity. Thus, the form of the curve for nucleotides
shown in Fig. 4 is similar to that for amino acids, but
is shifted to the right to a location that depends on the

Table 1. Accuracy of progressive alignment programs for amino
acid sequences

Amino acid identity (%) Alignment accuracy (%)

>80 >95
>60 >90
>40 >80
<20 <80
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nucleotide composition of the sequences being aligned,
with the Twilight Zone at 40–50% (cf. Gardner et al. 2005).
Thus, the accuracy of progressive-alignment programs
such as Clustal seems to be something like Table 2 for
nucleotide sequences. As you can see, it is generally
more difficult to align nucleotide sequences than
amino acid sequences—as a generalisation, alignment
difficulty at 50% identity for amino acids might
correspond to 70% for nucleotides (Duret and
Abdeddaı̈m 2000).

The basic limitation for trying to assess sequence
homology is that the current tree-building analyses are
based on the primary sequence data only. So, low percent
identity among sequences means that tree building can
fail even if the homology assessment is perfectly correct
(i.e. the hypotheses of homology cannot be assessed on the
tree effectively). There will thus be a practical lower limit
for per-cent identity below which a sequence alignment is
useless for phylogenetic purposes, as the data patterns will
be effectively random. Sequence alignment in the Twilight
Zone thus may be useful only for database searching,
sequence comparison and structure prediction. Under these
circumstances a phylogenetic analyses needs to be based on
other data types, such as gene order or distances between
secondary structures.

What I have said so far applies only to the simplest
situation for patterns of divergence among sequences
(i.e. approximately equal similarity among the sequences).
Many other possible patterns are known to affect the success
of sequence alignment even more than simple decreasing
similarity. These include sets of sequences where there
are: (i) a small number of ‘orphan’ sequences, which
do not have close similarity to the remaining sequences
(Fig. 5c); (ii) a series of distinct sequence subgroups that
have high similarity within subgroups but not between
subgroups (Fig. 5d); (iii) long-terminal or internal gaps
(Fig. 5a, b); and (iv) sequence complexities such as repeats,
translocations and inversions (Table 3). In order of difficulty
for progressive-alignment programs these are likely to be
(iv) > (ii) > (iii) > (i). Note that situations (i) and (ii) will
correspond to the situation where the outgroup taxa are
quite different from the ingroup taxa, and so they might
be common in phylogenetic studies. Indeed, they probably
constitute a major part of the reason why so many problems
have been identified with the use of distant outgroups in

Table 2. Accuracy of progressive alignment programs for
nucleotide sequences

Nucleotide identity (%) Alignment accuracy (%)

>90 >95
>80 >90
>70 >80
<60 <80

tree-building analyses (Morrison 2006). Situation (iii) is
often a by-product of using different primers for sequencing
different taxa, and so is also quite common in phylogenetic
studies. Sequence regions subject to (iv) are usually actively
avoided in phylogenetic studies, at least partly because of
the extreme difficulty of analysing the data (see Pei and
Grishin 2006).

Figure 6 shows a specific example of the sorts of
problems that can arise in practice when using a progressive
alignment program. The sequences are taken from the seed
amino-acid alignment of the gp120 family in the Pfam
protein-domain database. Gp120 is the crucial envelope
protein of HIV (lentiviruses, a subfamily of the retroviruses)
that facilitates binding to and fusion with the target cells,
which are human CD4 lymphocytes. The figure compares a
progressive alignment with the structure-based alignment, as
I have done throughout this section. The basic conclusion
is that the hypotheses of evolutionary events are far more
parsimonious and plausible for the structure-based alignment
than for the similarity-based alignment.

In this example, the Clustal program does quite well with
most of the conserved parts of the sequences, but not with
the five variable regions. The success occurs because the
program has various weighting factors inbuilt, which allow
it to detect structural features such as helices, sheets and
bridges, and to preferentially avoid putting gaps into these
locations. However, this procedure is not always successful.
There are two alignment blocks illustrated in Fig. 6, showing
that most of the alignment is structurally correct but with
several notable errors. For example, the first disulfide bridge
(positions 6–7) is not conserved in this alignment (although
the other two are), as the HIV-1 and HIV-2 sequences are
misaligned against each other. This mistake occurs at the final
step of the profile-alignment iterations, where the two main
sequence groups are finally aligned against each other; and
failure to align such conserved residues is considered to
be the most common error made by progressive-alignment
programs (Nicholas et al. 2002). Second, the second helix
(positions 10–30) has a two-amino-acid gap inserted into it
near the end, causing misalignment. Note that the structure
alignment has a one-amino-acid gap near the beginning of
the helix, indicating that the HIV-1 and HIV-2 proteins do not
have identical structures. Third, for the first β-sheet (positions
40–45) the HIV-1 and HIV-2 sequences are correctly aligned
within each taxonomic group but not between groups.
Fourth, the final helix (the second alignment block) starts
correctly but becomes misaligned. This is because the HIV-1
and HIV-2 proteins do not have the same structure at this
point, requiring a gap to be inserted into the helix. However,
ClustalW preferentially down-weights terminal gaps, so that
it rarely inserts internal gaps near the ends of an alignment.
This is a known limitation of the program, and it has the
same problem at the beginning of its alignments as well as
at the end.
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Fig. 5. Four examples of the effect of sequence characteristics on the success of progressive multiple sequence alignment, illustrating the
circumstances under which similarity-based alignments will fail. Each point represents a single amino-acid alignment from one of the pooled
Reference Sets of the structure-based BAliBASE versions 2 and 3 manually curated alignments (Bahr et al. 2001; Thompson et al. 2005); these
reference alignments are assumed to be correct based on 3D structural super-positions of the proteins. The multiple alignments for comparison
were performed with the ClustalW 1.83 program, with default settings. (a) Average percentage of pairwise alignment positions that were correctly
aligned for sequences with N / C-terminal extensions (or deletions); the length ratio is shown only for the range 1–8 (the original data range to 35).
(b) Average percentage of pairwise alignment positions that were correctly aligned for sequences with internal insertions or deletions; the length
ratio is shown only for the range 1–2 (the original data range to 6). (c) Decrease in percentage of alignment positions that were correctly aligned for
sequences with 1–4 highly divergent ‘orphan’ sequences; the abscissa is the ratio of average % identity between the orphan sequences and the other
sequences to average percentage identity among the other sequences. (d) Percentage of alignment positions that were correctly aligned for sequences
containing 2–5 subgroups with <25% residue identity between groups; the abscissa is the ratio of average percentage identity within the subgroups
to average percentage identity between the subgroups.

Gap costs and character definition
From a theoretical perspective, the main reason for the failure
of similarity-based alignment is that it does not provide all
three of the characteristics that science requires: description,
prediction, and explanation. The alignment procedure tries
solely to provide an efficient description of the patterns in the
data, which it does by providing a parsimonious alignment of
the residues. This alignment can then be used by a scientist as

an implicit set of predictions about homology of the residues,
but the alignment procedure itself does not explicitly try to
provide this (i.e. it describes patterns without regard to how
they were formed) and therefore it comes as no surprise that it
frequently fails. Moreover, the models used by the algorithm
do not try to model sequence evolution at all (i.e. they
model sequence patterns rather than historical processes),
and so the resulting alignments do not necessarily provide any
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Table 3. Accuracy of the ClustalW program for BAliBASE reference sets 6–8
The data refer to the decrease in average percentage of pairwise alignment positions that were correctly aligned by comparison with the

structure-based BAliBASE reference alignment (Bahr et al. 2001). The repeats have been classified into several subtypes according to their residue
similarity. For each dataset, the repeated sequence was aligned alone, to provide the reference degree of alignment accuracy, and then the complete

sequences were aligned. The reduction in accuracy is the difference in accuracy between the whole alignment and the repeat alignment as a
percentage of the accuracy of the repeat alignment. Only datasets with average sequence identity >80%, and the repeat sequence length <50% of

the whole sequence, were included

Description of sequence pattern Sample size Reduction in accuracy (%)

The same number of repeats of a unique subtype 4 29.6
A variable number of repeats of a unique subtype 5 34.5
The same number of repeats with different subtypes in the same order 11 35.0
The same number of repeats with different subtypes, but in a different order 17 50.7
A variable number of different repeat subtypes 18 36.7
The presence of an additional non-repeated conserved domain 8 30.5
The presence of more than one different repeat type 8 79.3
Inverted domains 4 62.2

Similarity alignment 
            1       10        20        30        40        50        60        70       1       10       
ENV_HV1A2   IRKAHCNISRAQWNNTLEQIVKKLR--EQFG-----NNKTIVFNQSSGGDPEIVMHSFNCRGEFFYCNTTQLFN   KAKRRVVQREKR---- 
ENV_HV1B1   MRQAHCNISRAKWNNTLKQIDSKLR--EQFG-----NNKTIIFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFN   KAKRRVVQREKR---- 
ENV_HV1C4   IRQAHCNISRAQWNNTLQQIATTLR--EQF------GNKTIAFNQSSGGDPEIVMHSFNCGGEFFYCNSTQLFN   KAKRRVVQREKR---- 
ENV_HV1EL   IGQAHCNISRAQWSKTLQQVARKLG--TLL------NKTIIKFKPSSGGDPEITTHSFNCGGEFFYCNTSGLFN   RAKRRVVEREKR---- 
ENV_HV1RH   IRKAHCNLSRAQWNNTLKQVVTKLR--EQF------DNKTIVFTSSSGGDPEIVLHSFNCGGEFFYCNTTQLFN   RAKRRVVQREKR---- 
ENV_HV1W1   IRQAHCNISRAKWNNTLKQIVEKLR--EQF------KNKTIVFNHSSGGDPEIVTHSFNCGGEFFYCDSTQLFN   KAKRRVVQREKR---- 
ENV_HV1Z8   IRQAYCNISAAAWNKTLQQVAKKLG--DLL------NQTTIIFKPPAGGDPEITTHSFNCGGEFFYCNTSRLFN   RAKRRVVEREKR---- 
ENV_SIVCZ   TRSAYCKINGTTWNRTVEEVKKALA--TSSNR----TAANITLNRASGGDPEVTHHMFNCGGEFFYCNTSQIFT   KARRHTVARQKDRQKR 
ENV_HV2BE   RPRQAWCRFGGRWREAMQEVKQTLVQHPRYKG-INDTGKINFTKPGAGSDPEVAFMWTNCRGEFLYCNMTWFLN   DQRR-SSTPV-RNKR- 
ENV_HV2CA   RPRQAWCWFKGNWTEAMQEVKQTLAEHPRYKG-TKNITDITFKAPERGSDPEVTYMWSNCRGEFFYCNMTWFLN   SQKRYSPAHG-RPKR- 
ENV_HV2D1   KPGQAWCWFQGNWIEAMREVKQTLAKHPRYGG-TNDTGKINFTKPGIGSDPEVTYMWTNCRGEFLYCNMTWFLN   KEKRYSSAPV-RNKR- 
ENV_HV2G1   RPRQAWCWFKGKWREAMQEVKQTLIKHPRYKG-TNDTKNINFTKPGRGSDPEVAYMWTNCRGEFLYCNMTWFLN   REKRYSSAPV-RNKR- 
ENV_HV2NZ   KPRQAWCWFEGQWKEAMQEVKETLAKHPRYKGNRSRTENIKFKAPGRGSDPEVTYMWTNCRGESLYCNMTWFLN   SVKRYSSAHQ-RHTR- 
ENV_SIVM1   RPKQAWCRFGGNWKEAIKEVKQTIVKHPRYTG-TNNTDKINLTAPR-GGDPEVTFMWTNCRGEFLYCKMNWFLN   NVKRYTTGGTSRNKR- 
 
Structure alignment 
Structure  .HHH..D...HHHHHHHHHHHHHHHHHHH..........SSSSSS.......SSSSSSS.D..SSSSD.......   .HHHHHHH...HHHH...
ENV_HV1A2   IRKAHCNISRAQWNNTLEQIVKKLREQFGNN------KTIVFNQSS-GGDPEIVMHSFNCRGEFFYCNTTQLFN   KAKRRVVQ---REKR 
ENV_HV1B1   MRQAHCNISRAKWNNTLKQIDSKLREQFGNN------KTIIFKQSS-GGDPEIVTHSFNCGGEFFYCNSTQLFN   KAKRRVVQ---REKR 
ENV_HV1C4   IRQAHCNISRAQWNNTLQQIATTLREQFG-N------KTIAFNQSS-GGDPEIVMHSFNCGGEFFYCNSTQLFN   KAKRRVVQ---REKR 
ENV_HV1EL   IGQAHCNISRAQWSKTLQQVARKLGTLLN-K------TIIKFKPSS-GGDPEITTHSFNCGGEFFYCNTSGLFN   RAKRRVVE---REKR 
ENV_HV1RH   IRKAHCNLSRAQWNNTLKQVVTKLREQFD-N------KTIVFTSSS-GGDPEIVLHSFNCGGEFFYCNTTQLFN   RAKRRVVQ---REKR 
ENV_HV1W1   IRQAHCNISRAKWNNTLKQIVEKLREQFK-N------KTIVFNHSS-GGDPEIVTHSFNCGGEFFYCDSTQLFN   KAKRRVVQ---REKR 
ENV_HV1Z8   IRQAYCNISAAAWNKTLQQVAKKLGDLLN-Q------TTIIFKPPA-GGDPEITTHSFNCGGEFFYCNTSRLFN   RAKRRVVE---REKR 
ENV_SIVCZ   TRSAYCKINGTTWNRTVEEVKKALATSSNRTA-----ANITLNRAS-GGDPEVTHHMFNCGGEFFYCNTSQIFT   KARRHTVA---RQKDRQKR
ENV_HV2BE  RPRQAWCRFGG-RWREAMQEVKQTLVQHPRYKG-INDTGKINFTKPGAGSDPEVAFMWTNCRGEFLYCNMTWFLN   DQRRYSSTPV-RNKR 
ENV_HV2CA  RPRQAWCWFKG-NWTEAMQEVKQTLAEHPRYKG-TKNITDITFKAPERGSDPEVTYMWSNCRGEFFYCNMTWFLN   SQKRYSPAHG-RPKR 
ENV_HV2D1  KPGQAWCWFQG-NWIEAMREVKQTLAKHPRYGG-TNDTGKINFTKPGIGSDPEVTYMWTNCRGEFLYCNMTWFLN   KEKRYSSAPV-RNKR 
ENV_HV2G1  RPRQAWCWFKG-KWREAMQEVKQTLIKHPRYKG-TNDTKNINFTKPGRGSDPEVAYMWTNCRGEFLYCNMTWFLN   REKRYSSAPV-RNKR 
ENV_HV2NZ  KPRQAWCWFEG-QWKEAMQEVKETLAKHPRYKGNRSRTENIKFKAPGRGSDPEVTYMWTNCRGESLYCNMTWFLN   SVKRYSSAHQ-RHTR 
ENV_SIVM1  RPKQAWCRFGG-NWKEAIKEVKQTIVKHPRYTG-TNNTDKINLTAPR-GGDPEVTFMWTNCRGEFLYCKMNWFLN   NVKRYTTGGTSRNKR 

Fig. 6. Two parts of the seed amino-acid alignment of the gp120 family from the Pfam protein-domain database (Finn et al. 2006), each aligned
in two different ways, demonstrating the problems that can arise in progressive alignments. The sequences are from selected strains of Human
Immunodeficiency Virus One (HIV-1), Human Immunodeficiency Virus Two (HIV-2) and Simian Immunodeficiency Virus (SIV). The first alignment
shows two blocks produced by ClustalW 1.83, using default parameters. The second alignment is from the Pfam database, also showing the protein
structure associated with the sequences. There are 10 α-helices in the sequences (two shown in the figure as H), 30 β-sheets (three shown as S) and
9 disulfide bridges (part of three pairs shown as D). There are also five variable regions (loops V1–V5), which are not shown.

explanatory insights into evolutionary processes. If science
requires accurate descriptions, explicit predictions and
plausible explanations, then similarity-based alignment
can potentially fall down on both the second and
third criteria.

One of the main practical areas where this failure
becomes evident is the treatment of gap costs. As noted
above, these are usually treated as being of the form:

cost = a + b × length (i.e. a gap-opening cost plus a length-
dependent gap-extension cost), which is known as an
affine gap cost (Gotoh 1982). The problem is that this
approach does not model the evolutionary processes that
create gaps in an alignment (i.e. indels). I have already
emphasised that the alignment programs recognise residues
(nucleotides or amino acids) as the ‘characters’ in sequence
data. It is straightforward to model substitution events when
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residues are the characters, because these events affect
only one character at a time. However, it is hard to treat
indels as characters from this perspective, because when an
indel event occurs it may simultaneously affect more than
one nucleotide position in a sequence. Indel characters and
substitution characters are actually quite different things,
and it is hard to create a model that incorporates them both.
So, the problem with indels in a model is that multiple-base
indels span more than one substitutional character, and an
indel model cannot be a simple extension of our current
models. Furthermore, insertions and deletions may result
from two different sorts of events (Chang and Benner 2004),
with slipped-strand mispairing causing short indels and
unequal crossing-over, transposition and inversion causing
longer ones (>30 bases); and so an indel model may not be a
straightforward concept.

A similar problem arises for all of the other mutational
events that affect blocks of sequence simultaneously
(i.e. subsequences), such as inversions, translocations,
transpositions and tandem duplications. The treatment of
each alignment position as a single character does not treat
each of these as a single evolutionary event, but instead
treats each positional difference as a different substitution.
That is, the characters are treated as being independent of
each other when they are not. This creates a heavy weighting
against alignment of the subsequences involved, which makes
it difficult for the alignment programs to correctly detect
and align these events even in a pairwise alignment (Benson
1997; Sammeth et al. 2005), let alone a multiple alignment
(Raphael et al. 2004; Wegner et al. 2004; Sammeth and
Heringa 2006).

Instead of modelling indels as a separate concept, the
use of an affine gap cost actually models the gaps as
two different types of substitutions, one with a high cost (for
the gap-opening residue) and one with a low cost (for the
gap-extension residues). The end result is that the pattern-
matching programs add fewer and / or shorter gaps to the
alignment than the number of indels expected, especially
for distantly related sequences (Thorne and Kishino 1992;
Morrison and Ellis 1997; Nicholas et al. 2002; Simmons
and Freudenstein 2003; Löytynoja and Goldman 2005). This
problem is compounded for methods based on sum-of-pairs,
as these weight some evolutionary events more strongly than
others (Gonnet et al. 2000); and the failure of affine gap costs
to deal with long gaps also violates the triangle inequality,
which leads to trivial alignments (Aagesen et al. 2005). There
have been several empirical studies indicating the extent to
which affine gap costs underestimate the probability of long
indels in different types of sequences (Pascarella and Argos
1992; Benner et al. 1993; Gu and Li 1995; Ophir and Graur
1997; Graham et al. 2000; Qian and Goldstein 2001; Reese
and Pearson 2002; Chang and Benner 2004; Keightley and
Johnson 2004; Wrabl and Grishin 2004); that is, the frequency
distribution of gaps in real sequences has a much longer right-

hand tail than the geometric distribution modelled by the
affine gap cost. This situation becomes progressively worse
as the sequence identity decreases, which is what leads to
the decreased performance of the similarity-based programs.
Non-linear gap costs have not been used, even though
they would obviously be more appropriate (e.g. the more
biologically reasonable cost = a + b × log[length]), because
this would increase the time requirement of the pairwise
dynamic programming algorithm from the square of the
sequence length to the cube (Fitch and Smith 1983). It might
thus be better to model the number of gaps rather than the
gap lengths (Nozaki and Bellgard 2005).

Part of the problem here is the methodological convention
of parsimony. The similarity programs are based on the idea
of descriptive parsimony: inserting the minimum number and
length of gaps that are consistent with the substitution model
being used. However, this convention obscures the fact that
the descriptive parsimony is actually based on ontological
parsimony (Johnson 1982). That is, the justification for
employing descriptive parsimony is to assume that evolution
itself has been parsimonious (i.e. that evolutionary processes
are parsimonious in their use of gaps). However, there is no
empirical evidence that evolution acts parsimoniously and,
indeed, quite a lot of evidence to the contrary. Therefore, use
of descriptive parsimony only ensures that the ‘true’ situation
will not be simpler than we have hypothesised; that is, there
will not be fewer or shorter gaps than the similarity-based
programs produce. We should not be surprised, then, that
gaps are longer in reality than the programs suggest. This
does mean, unfortunately, that the resulting alignments are
wrong, even if we do know that we have underestimated the
amount of evolution that has occurred.

In this regard, it is interesting to consider whether finding
the globally optimal similarity alignment is worthwhile in the
first place. Programs such as Clustal do not guarantee to have
found the optimum alignment, since this is not practical for
the length and number of sequences that most biologists are
dealing with. However, this may not be a negative feature if
the globally optimal alignment is not the true alignment. To
assess this, I have compared the ClustalW 1.83 alignments
for the 82 BAliBASE version 2 Reference Set 1 sequences
with those produced by either the OMA version 0.98 (Reinert
et al. 2000) or the MSA version 2.1 (Gupta et al. 1995)
programs. Although neither of these latter two programs can
guarantee to find the globally optimal similarity alignment
based on sum-of-pairs (the same optimality criterion that
Clustal uses), they each make a serious attempt to do so,
and I have accepted the optimal alignment as being the
highest-scoring one produced by either of these programs.
The results of the two programs were often identical (see also
Reinert et al. 2000), but MSA did better than OMA for 11
of the 28 long sequences. The results of the comparison
with Clustal (Fig. 7) show that Clustal generally produces
alignments that are as close to the reference alignment as
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Fig. 7. Comparison of the accuracy of the globally optimal alignment
(produced by either the MSA or OMA program with default settings)
with that of a progressive alignment (produced by ClustalW 1.83 with
default settings), with reference to a structure-based alignment. Each
observation represents a single amino-acid alignment from reference
set 1 of the BAliBASE set of manually curated alignments (Thompson
et al. 1999a); these reference alignments are assumed to be correct
based on 3D structural super-positions of the proteins. The abscissa
shows the difference (ClustalW minus either OMA or MSA) in the
average percentage of alignment positions that were correctly aligned
by comparison with the reference alignment. The negative scores show
those alignments for which the progressive alignment performed better
than did the globally optimal alignment.

those from the other two programs, but that it can often
do much, much better. (Note that Althaus et al. [2002]
report similar results for their optimality program, COSA.)
In other words, (i) Clustal’s heuristic strategy mostly does a
good job of finding the optimal sum-of-pairs alignment, and
(ii) the suboptimal alignments from Clustal are as good as
or better than the optimal alignments, because the reference
alignments are not optimal in terms of similarity, but are
based on structural considerations. A similar idea applies to
phylogenetic alignment, because (as pointed out by Phillips
2006) a globally optimal alignment is effectively based
on an unresolved ‘star’ tree, and thus contains no explicit
evolutionary information. Suboptimal similarity may thus be
closer to reality than is ‘optimality’.

Improving automated alignment

Assessment of computer programs

The limitations of simple progressive sequence alignment
have long been known (although BAliBASE seems not to
have been used to illustrate them, as I have done here). Thus,
various improvements to the simple progressive alignment
algorithm have been developed, designed to deal with
the fundamental limitation, which is that misalignments
made early in the progressive process are not subsequently

corrected. Several the associated computer programs have
been compared for their ability to detect specified conserved
sequence motifs (McClure et al. 1994; Briffeuil et al.
1998; Hudak and McClure 1999; Hickson et al. 2000)
and for the overall match of their alignments to structure-
based alignments (Gotoh 1996; Morrison and Ellis 1997;
Thompson et al. 1999b; Notredame et al. 2000; Karplus
and Hu 2001; Katoh et al. 2002, 2005a, 2005b; Lassmann
and Sonnhammer 2002; Raghava et al. 2003; Edgar 2004b;
Grasso and Lee 2004; Van Walle et al. 2004; Do et al. 2005;
Subramanian et al. 2005; Simossis et al. 2005; Zhou and
Zhou 2005; Sze et al. 2006) or to simulated alignments
(Pollard et al. 2004; Ogden and Rosenberg 2006). None of
the programs are completely successful based on any of the
three criteria, and their success rate can sometimes be very
low.

Rather than provide a new assessment of these alternative
multiple-alignment programs, I will simply summarise some
of the previously published results, and then introduce a
few of the programs that seem to have direct relevance
for phylogenetic analyses. Fig. 8a summarises the results
for the PREFAB amino-acid alignment database, showing
that several of the programs are notably less affected than
Clustal by decreasing sequence identity, particularly in
the Twilight and Midnight zones of amino-acid alignment.
However, in practical terms there is little to choose between
the improved programs.

Table 4 summarises the results for the BAliBASE and
IRMBase amino-acid alignment databases, which relate
to some of the other features that I identified in the
previous section as affecting multiple alignments. [Katoh
et al. (2005b), Blackshields et al. (2006), Roshan and Livesay
(2006) and Wallace et al. (2006) provide recent comparisons
of some later versions of these programs using BAliBASE
version 3.] The BAliBASE database assesses global-
alignment success while IRMBase assesses local-alignment
success. Hence, only the two programs that incorporate local-
alignment information (DiAlign and T-Coffee) perform well
on the IRMBase alignments. For BAliBASE, the results are
quite erratic, with most of the programs performing well on
at least one Reference Set and badly on at least one other.
The major stumbling blocks for most of the programs are
Reference Set 4, consisting of sequences with N / C-terminal
extensions, and particularly Reference Set 3, consisting of
subgroups with <25% residue identity between groups; and
so you should be particularly wary of these two characteristics
if they appear in your datasets. Once again, there is little to
choose between most of the improved programs.

The only recent evaluations of multiple-alignment
programs with respect to nucleotide alignments are those
of Gardner et al. (2005) and Katoh et al. (2005b) on the
BRAliBASE database of structural RNAs. They conclude
that success at amino-acid alignment is not necessarily a
reliable guide to success at nucleotide alignment, at least
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Fig. 8. Relationship between sequence identity and alignment
correctness for several multiple-alignment programs, illustrating the rate
at which alignment success decreases as sequence identity decreases.
(a) Each point represents the average of multiple amino-acid alignments
from the PREFAB version 3 set of curated alignments (Edgar 2004b);
these reference alignments are assumed to be correct based on 3D
structural super-positions of the proteins. The programs evaluated are,
in approximate order of decreasing average accuracy: MAFFT v5,
PSAlign, ProbCons v1, Muscle v3, T-Coffee v2 and ClustalW v1.8.
The data are averaged from the experiments reported by Edgar (2004b),
Katoh et al. (2005a) and Sze et al. (2006). (b) Each point represents
the average of the simulated multiple nucleotide alignments shown in
Fig. 4. The programs evaluated are, in approximate order of decreasing
average accuracy: MAFFT v 5.731, ProAlign v 0.5a1, ClustalW v 1.83,
T-Coffee v 3.27, Muscle v 3.52, and Clustal v V.

partly because the default gap costs in many programs have
not been optimised for nucleotide sequences (as they have
been for amino acid sequences), and that the Clustal, MAFFT
and ProAlign programs are among the most consistent
performers. As I said earlier, not much seems to have changed
for multiple alignment of nucleotide sequences in the past

20 years, when most of the nucleotide-alignment procedures
of Clustal and its relatives were first developed.

To further examine this idea, I have performed a
comparison of several of the computer programs using the
simulated nucleotide data shown in Fig. 4. I used the program
settings recommended by each of the authors as being the
most accurate for nucleotide sequences; and the results are
summarised in Fig. 8b. Clearly, some things have changed, as
ClustalW version 1.83 (from 2003) performed much better
than did Clustal version V (from 1991) in the range 50–80%
sequence identity. Muscle performed slightly better than
ClustalW over the same range, but both it and T-Coffee
performed detectably worse at <50% identity. ProAlign was
very similar to ClustalW at all identities. The only consistent
improvement on the ClustalW performance was by MAFFT,
presumably as a result of the recent changes made to the gap
costs (Katoh et al. 2005b).

There is clearly scope for further detailed evaluations of
procedures for nucleotide sequence alignment, because most
phylogenetic analyses involve nucleotides and therefore that
is the type of alignment we need. After all, evolutionary
events occur at the nucleotide level, and so this is where most
of the evolutionary information exists (whereas database
searching, sequence comparison and structure prediction are
often better carried out at the amino acid level). Evaluations
could be performed by expanding the set of structure-
based RNA alignments created by Gardner et al. (2005), by
creating some empirical nucleotide alignments of protein-
coding or non-coding sequences, or by using gap-based
simulation programs such as Rose (Stoye et al. 1998),
Simulator (Fleißner 2004), DAWG (Cartwright 2005) or
MySSP (Rosenberg 2005b). Simulated data are needed for an
understanding of how variation in model parameters affects
sequence-alignment procedures, but only real datasets can
be used to assess which methods are best at producing the
‘right answer’. What is especially needed is an evaluation that
is informative with respect to the range of features that are
of importance in successful homology assessment (such as
BAliBASE), rather than evaluations that report the ‘average’
performance of the different methods across a large selection
of arbitrarily chosen datasets.

Alternative strategies

The recent computerised algorithms that I have discussed
here adopt one (or sometimes both) of two basic strategies to
deal with potential misalignments: (i) try to avoid making the
mistakes in the first place; or (ii) try to fix up the mistakes after
getting an initial multiple alignment. Both types of procedure
add steps to the progressive alignment algorithm, as described
in the previous section, rather than replacing any of them.
The program comparisons discussed above indicate quite
clearly that these extra steps can result in markedly improved
alignments when the patterns of sequence divergence are
more complex.
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Table 4. Comparison of percentage accuracy of various alignment programs for BAliBASE reference sets 1–5 and
IRMBase reference sets 1–3

The percentages for the comparisons are averaged from the experiments reported for BAliBASE versions 1 and 2
and IRMBase version 1 by Thompson et al. (1999b), Katoh et al. (2002), Edgar (2004b), Riaz et al. (2004),

Do et al. (2005), Subramanian et al. (2005), Simossis et al. (2005), Zhou and Zhou (2005) and Sze et al. (2006).
For BAliBASE only the sum-of-pairs (SP) scores have been used

Program BAliBASE IRMBase
Ref1 Ref2 Ref3 Ref4 Ref5 Ref1 Ref2 Ref3

ClustalW v1 86.0 92.2 74.4 81.1 85.8 8.0 12.7 20.2
DiAlign v2 80.8 88.0 68.6 90.7 94.0 92.3 92.7 91.9
MAFFT v3 86.6 92.4 78.8 91.0 96.1 – – –

Muscle v3 88.6 93.7 81.8 88.3 97.5 36.2 37.8 52.3
POA v2 74.7 88.3 63.1 82.6 76.7 76.8 43.6 36.9
Praline PSI 90.4 94.0 76.4 79.9 81.8 – – –

ProbCons v1 90.4 94.4 83.7 91.0 97.9 66.7 68.3 77.9
PRRP 87.1 92.7 82.3 77.2 88.5 – – –
PSAlign 90.1 94.0 80.9 90.1 98.0 – – –
SPEM 90.8 93.4 81.4 97.4 97.4 – – –
T-Coffee v1 86.6 91.9 78.3 88.3 95.6 91.2 85.6 87.8

The programs that adopt the strategy of trying to avoid
mistakes (rather than later correcting them) do so by
increasing the context within which each alignment decision
is made (see Fig. 9). The main limitation of progressive
alignment is that it performs each alignment step in isolation,
so that it never gets a global view of what the final multiple
alignment will look like—it can then carry out operations
that look optimal in isolation but which will not be so when
viewed in a larger context. Increasing the context within
which each operation is performed can then be a strategy for
avoiding suboptimal decisions. In an ideal strategy, all of the
pairwise alignments would contribute information to every
alignment decision (i.e. the information reflects the global
context), so that the multiple alignment is simultaneously
optimal over all possible alignments; but this is impractical.
Progressive alignment goes to the other extreme and each
pairwise alignment decision is made in isolation from all

B
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A B C D E F

Fig. 9. Lower triangle of a pairwise comparison matrix, showing the
possible comparisons used in different multiple alignment strategies
for sequences A–G. For the alignment of sequences D and E, an
optimal strategy would use the information from all of the comparisons
simultaneously, while a standard progressive strategy would use the
information only from the comparison marked in back. A compromise
strategy might use the information from the boxes marked in grey
as well as black.

other pairs, so that information is taken only from the
pair of sequences directly concerned (i.e. all information
reflects the local context). A compromise strategy would
use information from all of the pairwise alignments that
involve either of the two sequences involved in the pairwise
comparison (Fig. 9).

The most successful of the programs that adopt this
compromise strategy is T-Coffee (Notredame et al. 2000).
In fact, all of the comparisons show that this program has,
since its release, set the benchmark standard to which other
alignment programs need to be compared. The program tries
to increase the context within which the multiple alignment
procedure is performed by replacing the substitution matrix
with an extended library of pairwise alignments. This
provides a weighting scheme based on combining different
sources of information, which can then act as a position-
specific substitution matrix. However, instead of using
sum-of-pairs the program uses as its optimality criterion
consistency among all of the pairwise alignments (Notredame
et al. 1998). That is, the multiple alignment will be the
one that is consistent with as many of the pairwise alignments
as possible (Gotoh 1990). The use of the library means that
the pairwise alignments can be based on information from a
larger set of the sequences, rather than just the pair directly
concerned.

The main advantage of this approach is that many different
sets of pairwise alignments can be combined into the library
and thus contribute to the multiple alignment. For example,
the default strategy is to use both local (good for finding
conserved motifs and blocks) and global (good for less well
conserved regions) pairwise alignment strategies. Moreover,
it is possible to include pairwise alignment information
from any other source whatsoever, such as that based on
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3D structure information if it is available for amino acid
sequences (O’Sullivan et al. 2004; Armougom et al. 2006)
or RNA (Bauer et al. 2005a; Siebert and Backofen 2005),
thereby increasing the biological information content of the
alignment. It is even possible to combine entire multiple
alignments into the library, thus allowing the program to
produce a consensus alignment of the alignments from other
computer programs (Wallace et al. 2006); a similar idea
exists in the ComAlign program (Bucka-Lassen et al. 1999).
Interestingly, the extra context has also been reported to
sometimes be counter-productive (Edgar 2004b), a result
that I have also noted in some of my own alignments.
Unfortunately, the program suffers from severe memory
requirements, as well as the extra time taken to gather the
information into the library. This means that the program
is effectively limited to ∼50 sequences. The PCMA program
(Pei et al. 2003) tries to bypass this problem by aligning more-
similar sequences with the Clustal algorithm and less-similar
sequences with the T-Coffee algorithm, thus achieving both
high quality and speed.

An alternative tactic that tries to increase the context
of the alignment is to use constraints (Myers et al. 1996;
Parida et al. 1999). Such methods first find locally conserved
regions in the sequences and then use these as anchor sites
to create the larger alignments, thus combining local and
global alignment strategies. The constraints (usually gap-free
conserved regions) could be defined by the user, based on
prior biological knowledge such as the location of gene
boundaries or functional sites, or they could be determined
automatically using motif searching or some other local
alignment strategy. The alignment between a consistent
subset of the anchor sites then proceeds using a normal
progressive global strategy. Programs that adopt this general
approach include MACAW (Schuler et al. 1991), the various
developments of DiAlign (Morgenstern 1999; Subramanian
et al. 2005; Morgenstern et al. 2006), DbClustal (Thompson
et al. 2000), FMAlign (Chakrabarti et al. 2004), MuSiC
(Tsai et al. 2004; Lu and Huang 2005), RAlign (Sammeth
and Heringa 2006), and Sigma (Siddharthan 2006). Align-m
(Van Walle et al. 2004) can also be seen as fitting into this
category. One of the main advantages of this approach is
that it can be used to effectively deal with repeats, inversions
etc, as the boundaries of the sequence blocks can be used
as the constraints that anchor the alignment (Morgenstern
et al. 2006; Sammeth and Heringa 2006). Note, also,
that not all of these programs necessarily align complete
sequences, as some of them allow sequence segments to
remain unaligned (thus increasing specificity at the expense
of sensitivity).

The second general approach to improving the progressive
alignment strategy is based on the idea of refinement.
That is, an initial multiple alignment is produced in some
manner and is then used as the basis for an iterative series
of attempts at improvement (Barton and Sternberg 1987;

Corpet 1988). This is a simplified version of the procedure
originally suggested by Hogeweg and Hesper (1984), in
which a new guide tree was calculated from the initial
alignment, leading to a new alignment, and so on. Refinement
can proceed in one of several ways. The most common
approach is to repeatedly divide the taxa into two subgroups
and then to re-align the subgroup profiles (i.e. profile–profile
alignment), until no further improvement occurs between
iterations (Hirosawa et al. 1995; Wallace et al. 2005b).
Several approaches for choosing the subgroups have been
proposed, including random choice and using the internal
branches of the guide tree to define the subgroups, with
tree-based randomisation often considered to be the better
approach (Hirosawa et al. 1995). An alternative successful
approach is to realign each sequence individually to the
profile formed by the remaining sequences (i.e. sequence–
profile alignment) (Wallace et al. 2005b).

Among the earliest, and certainly the most complex, of the
programs that adopt the strategy of trying to correct mistakes
made early in the alignment process is PRRN (Gotoh 1995,
1996; Yamada et al. 2004). The iterative refinement is tree-
based, and uses dynamic programming to align the profiles.
However, PRRN (which now incorporates the PRRP program
as well) takes this basic form of iteration one step further by
also re-estimating the tree that is used to calculate the weights
that define the optimality of the alignment. This creates a
doubly nested iterative refinement, where the inner iterations
optimise the alignment based on the current weights and
the outer iterations optimise the weights, the whole process
terminating when the weights have converged. This approach
is limited mainly by the extra time taken for the double set
of iterations, although all refinement procedures suffer from
being ‘hill-climbing’ strategies that can get stuck in local
optima rather than finding the global optimum.

Of the currently available programs that use solely
primary sequence information, ProbCons (Do et al. 2005)
is among the most successful for amino acid sequences.
It optimises a consistency-based function, thus taking
advantage of the increased context, but unlike T-Coffee it
uses a library of pair-hidden markov models instead, thus
directly modelling sequence alignment probabilities. This
use of hidden markov models replaces the classification
approach adopted by the other programs with an approach
based on statistical modelling (Eddy 1998). After producing
an initial progressive alignment the program then uses a
random bipartitioning algorithm for iterative refinement,
thus trying to get the best of both worlds. ProbAlign
(Roshan and Livesay 2006) adopts a similar strategy but
replaces the hidden markov model probabilities with partition
function probabilities, with a similar degree of alignment
success. Alternatively, Mummals (Pei and Grishin 2006)
uses markov models that also incorporate local structural
information, without making explicit structure predictions,
with considerable success. Although faster than T-Coffee,
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these are relatively slow compared to some of the other
programs, since they have to calculate a probability matrix
for all sequence pairs, and so they are best used for smaller
numbers of sequences (e.g. ∼five times slower than the fastest
programs but ∼five times faster than T-Coffee). All three
programs are currently available for the analysis of amino
acid sequences only.

Another iterative program worth mentioning is Praline
(Heringa 1999). Among other things, it has the ability
to perform a structure-based refinement in its last set of
iterations for amino acid alignments. It does this by using
one of several protein structure-prediction programs to
predict the 3D structure of each sequence in the multiple
alignment, and then in the next iteration using a different
substitution weight matrix for each position depending on
whether it is predicted to be part of an α-helix, a β-strand
or a coil (Simossis and Heringa 2005). A similar strategy
has been proposed by Jennings et al. (2001), although
they preferred two-state structure predictions. This general
approach is probably limited by the fact that automatic
structure prediction currently has an accuracy of <80%.
The Praline-PSI version of the program also uses as its
starting point profiles of sequences gathered from database
searches (using the PSI-BLAST program), rather than the
original unaligned sequences (i.e. during the progressive
procedure all sequence–sequence and sequence–profile
alignments are turned into profile–profile alignments). This
can help considerably with the alignment of sequences with
low identity (Simossis et al. 2005), as has been shown for
pairwise alignment for database searches (Ohlson et al.
2004) and sequence comparison (Margulies et al. 2006).
The SPEM program (Zhou and Zhou 2005) also offers
amino-acid alignments based on pre-processed sequence
profiles and secondary-structure prediction, and may give
superior results to Praline as it is based on a consistency
measure. The main limitation of these programs is time
usage, which exceeds that of all of the other programs.
Zhang and Kahveci (2006) try to bypass this problem by
using sequence weights based on secondary structure in a
novel algorithm, which seems to produce high quality with
reasonable speed.

Alternative refinement tactics also exist, all of which seek
to improve a pre-existing multiple alignment. For example,
Thomsen et al. (2002, 2003) use the alignment as the
starting point for a genetic algorithm, thus seeking to
move away from the local optimum that the progressive
alignment has found (as a result of using only the pairwise
context), while still trying to optimise the sum-of-pairs
objective function. Riaz et al. (2005) use a tabu search in
a similar manner, but use consistency as their optimality
function instead. Alternatively, Manohar and Batzoglou
(2005) extend the pairwise dynamic programming algorithm
to groups of three sequences, which allows the local
optimality of the given multiple alignment to be increased.

On a different tack, Thompson et al. (2003) decompose the
alignment into reliable and unreliable segments, and then
modify the unreliable regions (once) to maximise the sum-
of-pairs objective function. This attacks the problem by
modifying blocks of aligned positions rather than individual
sequences. Wang and Li (2004) adopt a similar strategy but
use consistency as their optimality function instead, while
Chakrabarti et al. (2006) use known conserved structural
cores (e.g. from structure databases) as anchor points of
reliable alignment.

A somewhat different approach is adopted by ProAlign
(Löytynoja and Milinkovitch 2003). This is somewhat
similar to ProbCons in that it uses a pair-hidden markov
model to produce a probabilistic alignment, where sequence
sites are modelled using vectors of character probabilities
(including gaps). However, it combines this with the standard
progressive alignment algorithm, without refinement, and
an evolutionary model describing the nucleotide or amino-
acid substitution process. As the alignment procedure is
probabilistic this allows sampling of alternative solutions,
as well as probabilistic evaluation of alignments. Thus, the
posterior probability value of an aligned position can be used
to identify potentially misaligned positions. This approach
has been successful for aligning nucleotide sequences,
probably because it uses an evolutionary model (which most
other programs do not do for nucleotides), but less so for
amino acid sequences, probably because its model here is less
sophisticated than that of other programs. It has recently been
extended, in the program Prank (Löytynoja and Goldman
2005), to treat insertions differently from deletions, which
can be done since the guide tree is rooted. Insertions are then
treated as individual events, whereas deletions are treated
in the usual manner. This potentially leads to more realistic
alignments, although the result is very sensitive to the order
of progressive alignment.

Another approach is to replace the progressive alignment
strategy with an alternative. For example, the PSAlign
program (Sze et al. 2006) uses the idea of consistency among
pairwise alignments as its quality measure, as above, but
instead applies this only to those pairs defined by edges
on a given tree. Thus, it replaces the heuristic progressive
alignment step with an exact procedure that is rather more
restricted. Using a minimum spanning tree results in the
shortest alignment (i.e. with the minimum number of added
gaps). This seems to be quite successful, although not
necessarily better than iterative refinement of a progressive
alignment.

In the last 10 years there have been at least 50 different
methods described for multiple sequence alignment (Wallace
et al. 2006), and I am not going to list all of them here.
What I have described is intended to be no more than a
brief introduction to the more relevant or commonly used of
those methods. Wallace et al. (2006) provide an interesting
classification of some of the methods that I have discussed.
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Speed and genomes
In this post-genomic era it is also important to consider
options for making the alignment process faster, because the
speed of the algorithms becomes important as the number of
sequences and / or the length of those sequences increases.
The most significant point to note is that progressive
alignment programs spend most of their time doing a lot
of pairwise alignments for the sole purpose of producing
the guide tree (Yu and Deng 2005), because most of
the multiple alignment is actually produced by sequence–
profile and profile–profile alignment (rather than sequence–
sequence alignment). For example, for 30 taxa there are
30 × (30–1) / 2 = 435 pairwise alignments that need to be
calculated to get the guide tree but no more than 30 / 2 = 15
of these will then be used in the multiple alignment; and
this situation becomes combinatorially worse as the number
of taxa increases. So, ‘scaling up’ such programs to larger
datasets is not trivial.

The Clustal program offers the option to speed up its
production of the guide tree by calculating the pairwise
distances based on k-tuples, as this does not require the
pairs of sequences to be aligned and thus avoids the use
of dynamic programming (Blaisdell 1986). This is the sort
of strategy for assessing sequence similarity that is used
by database-search programs such as BLAST and FASTA,
and thus it is very, very fast indeed. However, it results in
a much rougher guide tree, and so alignment accuracy is
being sacrificed for speed. There are now several programs
available that offer this strategy for increased speed but
follow it by several rounds of iterative refinement (using tree-
based partitioning), which is itself a speedy process (since it
involves a small number of profiles rather than a large number
of individual sequences). These programs combine this
strategy with other speed improvements designed to deal with
increasing sequence length, such as compressed alphabets,
fast fourier transformation and k-tuple extension (Katoh et al.
2002; Edgar 2004a). Programs such as MAFFT (Katoh et al.
2005a) and Muscle (Edgar 2004b, 2004c) therefore can be
extremely fast, and yet they still produce results that are
comparable to the best of the other alignment programs,
although there is still a significant trade-off between speed
and accuracy (Katoh et al. 2005b). These are the programs
recommended for high-throughput applications and larger
numbers of sequences, at least for amino acid sequences.
Indeed, MAFFT is the current moving target in the alignment
world, with the authors seemingly determined to incorporate
every new development into their program (Katoh et al.
2005b), so that it now offers more alignment strategies than
most users will know how to deal with.

You may have noted that so far in this review I have
said nothing specifically about aligning whole genomes.
This is not because it is an unimportant topic; indeed,
multiple alignment is seen as having a central role in the
post-genomic era (Lecompte et al. 2001; Batzoglou 2005).

Rather, it is because the current approach is simply to take
the philosophy of the similarity programs and to upgrade
their performance to deal with more data (reviewed by
Pollard et al. 2004; Batzoglou 2005). For example, specialist
programs (reviewed by Dewey and Pachter 2006) first find
locally conserved regions in the genomes and then combine
these anchor sites into larger (global) alignments. This is
known as chaining. As an alternative tactic, one can simply
identify the different genome segments independently and
then align them individually using a program such as Clustal,
which seems to be how most phylogeneticists deal with
mitochondrial and plastid genomes.

Development of specialised algorithms for genomic
sequence alignment is nevertheless considered to be a high
priority (Miller 2001; Chain et al. 2003). This is because they
have to cope with genomic re-arrangements, as discussed
earlier, which confound any alignment strategy based on
individual residues as single characters; this issue cannot be
ignored when dealing with whole genomes, as it often can be
for individual gene sequences. They also have to deal with
the fact that the time requirement of the pairwise algorithms
usually depends on the square of the sequence lengths, which
becomes unacceptable for genome lengths. However, the
main problem from the phylogeny point of view is that
different genome regions may require different alignment
strategies. For example, different genes may require different
strategies, and coding v. non-coding regions almost certainly
will. In this sense, the concern reflects the current interest in
partitioned tree-building analyses, where different sequence
partitions have different substitution models (e.g. protein-
coding regions might have a codon model, RNA-coding
regions have a doublet model and non-coding regions a
single-nucleotide model). Any issue considered to be a
problem for secondary homology assessment may also be
a problem for primary homology assessment.

Nor have I yet said anything about parallel processing.
Both the progressive alignment (Li 2003; Ebedes and Datta
2004; Schmollinger et al. 2004; Oliver et al. 2005) and
iterative refinement (Kleinjung et al. 2002) procedures are
candidates for parallel computing, as also are alternative
alignment strategies such as genetic algorithms (Anbarasu
et al. 2000; Nguyen et al. 2002) and direct optimisation as
discussed in the next section (Janies and Wheeler 2001;
Parmentier et al. 2004). This will increase their speed even
further, thus making some of the more impractical methods
practical.

Alternative alignment philosophies

I have noted at length that sequence alignment is primary
homology assessment while tree building is secondary
homology assessment. Having said this, it might then seem
odd to you that in practice we treat the two things so
differently—basically, we behave as a bunch of pheneticists
when doing primary homology assessment, using similarity
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and / or structural information to maximise the phenetic
content of the sequence alignment, and then behave as a bunch
of cladists when doing secondary homology assessment,
constructing an evolutionary tree based on sister-group
relationships. An alternative viewpoint is to treat these
two procedures as two sides of the one coin, and thus adopt
the same practices for both operations.

Hennig (1966) did not provide an explicit method for
phylogeny reconstruction, but in his book he makes it
clear that primary and secondary homology assessment are
iterative procedures of reciprocal illumination. That is, we
propose a primary homology and we then test it on a tree; if
there is homoplasy on the tree then we must either re-assess
the hypothesised homology or modify the tree. His objective
for a phylogenetic analysis was to find a set of self-consistent
homology statements plus a homoplasy-free tree, so that
the primary and secondary homologies are congruent. This
procedure was made operational in what is now known as
the parsimony method of phylogenetic analysis. However,
there has, in general, been little interest in re-aligning
sequences to reduce homoplasy on a phylogenetic tree, so
that the iterative part of his procedure has largely been lost
in practice.

This idea of reciprocal illumination was formalised
for sequence alignment by Sankoff et al. (1973), who
first pointed out that we should be optimising the alignment
and the tree simultaneously, since they are inter-dependent.
These workers did not solve the optimisation problem in
any practical sense (Sankoff and Cedergren 1983), since
this problem is mathematically max-SNP-hard (Jiang et al.
1994), and so this philosophy was abandoned along with the
proposed practice. Instead, we have treated alignment as a
separate issue, which is pretty much the way a traditional
phylogeneticist would do it—deciding on the homology of
morphological and anatomical characters requires quite a
different set of skills and knowledge compared to those
required for constructing a phylogenetic tree.

For sequence alignment, however, we have adopted a
series of greedy heuristic strategies to get approximations
to an optimal solution in a purely mathematical sense (as
described above), since this has made the alignment problem
tractable (Chan et al. 1992). Unfortunately, there is little
biological realism in these alignment procedures (i.e. they
model the sequence patterns without regard to how those
patterns have been formed during evolution). On the other
hand, biological realism has been a much stronger focus
in tree-building procedures, where increasingly complex
analyses are being devised in order to make the results more
relevant biologically (Morrison 2006), thus providing explicit
predictions of homology and plausible explanations of
evolutionary processes in addition to accurate descriptions of
sequence patterns. More to the point, the assumptions applied
to alignment and tree-building procedures are often not the
same, an obvious example being gap penalties, which are

usually treated very differently in the two analyses (Phillips
et al. 2000). There is thus an uncomfortable dichotomy
between the practice of sequence alignment and the practice
of tree building.

However, there are definitely two schools of thought
that have pursued the idea that tree building and alignment
go hand in hand, arguing that consistency of approach
for both of the steps in homology assessment (primary
and secondary) is to be desired (Phillips et al. 2000).
Hence, instead of treating alignment and tree building as
unrelated activities performed sequentially, they are treated as
companion activities performed simultaneously. Not as much
progress has been made as their proponents would like, in
terms of making the procedures practical, and this is at least
one reason why our current customs have continued as they
have.

One of these two schools adopts a probabilistic
(sometimes called statistical) approach to tree building
and therefore adopts the same criterion for sequence
alignment as well (reviewed by Lunter et al. 2005). Explicit
models of sequence evolution are constructed, usually in
a likelihood context, and some criterion is then used to
optimise the parameters in relation to the model, such as
maximising the likelihood or maximising the bayesian
posterior probability. For tree building these models have
become quite sophisticated, but the progress with models
for alignment since the pioneering work of Bishop and
Thompson (1986) has been slow until recently. The problem
with this approach to alignment has been how to incorporate
indel events into the model as explicit evolutionary events.
Indels are effectively ignored in the likelihood models
currently used for tree building (by treating gaps as
equivalent either to missing data or an extra substitution
character state), but clearly they cannot be ignored for
alignment. More to the point, if a contiguous set of gaps
represents a single indel then it is very problematic to
incorporate them into a model, as I have emphasised several
times. At the moment, phylogeneticists try to bypass this
problem by coding gaps as separate presence-absence
characters and then analyse them using what is effectively
a Jukes-Cantor model.

Nevertheless, if indels can be incorporated into the model
as individual evolutionary events, then we can go straight
from the sequences to the tree without the necessity of
an intermediate multiple alignment. That is, the optimal
result is the combined alignment and tree that maximises
the likelihood (relative likelihood for a maximum-likelihood
analysis and integrated likelihood for a bayesian analysis),
rather than the one that separately optimises the alignment
score (e.g. sum-of-pairs, consistency or log-expectation) and
then the tree score (e.g. likelihood). Quite a few people have
had a go at addressing this issue using likelihood models
(see Lunter et al. 2005 for an introduction to the literature),
each of them putting another individual piece into a complex
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jigsaw that Thorne et al. (1992) characterised as ‘inching
toward reality’. Unfortunately, this may be over-estimating
the speed of progress, as these methods are still too limited,
either in terms of the size of the dataset that can be analysed
(e.g. computer memory and time required) or the simplicity
of the models (e.g. all gap positions are assumed to arise
independently), so that none of them is yet of practical
value for a realistic phylogenetic analysis. Nevertheless,
two promising versions have been implemented in the
AliFritz (Fleissner et al. 2005) and BAli-Phy (Redelings
and Suchard 2005) computer programs, along with POY
(Wheeler 2006).

Note that this is an explicit attempt to put some
biological insight into sequence alignment, by building
mathematical models derived from the biological processes
of evolution. Most of the alignment algorithms mentioned
in previous sections make little or no reference to any
underlying evolutionary model (Thorne and Churchill
1995). Unfortunately, even the approach discussed here
still uses evolutionary models that are quite limited.
For example, other mutational events that affect blocks of
sequence simultaneously, such as inversions, translocations,
transpositions and tandem duplications, have not yet
been incorporated into the models, which will be a
major challenge. Similarly, models that incorporate
non-independence among characters have not yet been
employed, such as codon models for protein-coding
sequences (allowing gaps of three positions) and doublet
models for structural RNAs (allowing for base pairs in
helices). This means that different types of sequences
(e.g. protein-coding, RNA-coding, non-coding) cannot yet
be analysed with different models, which will probably
be necessary for a comprehensive phylogenetic analysis.
Furthermore, in the probabilistic context it is perhaps
anomalous to be pursuing a single multiple alignment
(i.e. a point estimate), as this ignores the large set of
almost-equally optimal alignments, which leads to biases
in the parameter estimates and tree probabilities. A use of
bayesian posterior probabilities may be a more effective
strategy (Allison and Wallace 1994; Zhu et al. 1998) as
this automatically provides an assessment of reliability.
Finally, it has long been recognised (Allison et al. 1992)
that selection pressure is missing from all of our alignment
and tree-building models (although see Hein and Støvlbæk
1996), which biases the estimates of the rates and types of
substitutions occurring (e.g. accounting for synonymous v.
non-synonymous substitutions).

The other school of thought adopts the parsimony
principle for tree building and thus also adopts the same
criterion for sequence alignment (Vingron 1999; Wheeler
2001a, 2001b, 2005). This was actually the approach adopted
by Sankoff et al. (1973). Here, the correct alignment is seen
to be the one that produces the minimum-cost phylogenetic
tree, where all of the cost parameters (substitution costs, gap

penalties, sequence weights, etc.) are specified concurrently
for both the alignment and the tree. This makes the overall
phylogenetic approach philosophically consistent, as the
parsimony criterion is used to evaluate both the (implied)
alignment and the (explicit) tree. However, it also makes the
optimisation problem extremely difficult, if not impossible,
because the optimisation has to occur simultaneously over
all possible alignments and all possible trees, and even
parsimoniously reconstructing indels on a given tree is NP-
hard (Chindelevitch et al. 2006). Thus, a heuristic approach
is needed in practice, the first being provided by Hein
(1990) who iterated between evaluation of the alignment and
construction of a distance-based tree (trying to minimise the
edge lengths of the tree). This approach has subsequently
been developed by Vingron and von Haeseler (1997),
Schwikowski and Vingron (1997a, 1997b, 2003), Lancia
and Ravi (1999) and Trystram and Zola (2005) under the
name generalised tree alignment. Alternatively, Wheeler
and Gladstein (1994) provided a more direct parsimony
implementation by performing an iterative heuristic search
through tree space for the alignment that produces the
minimum-cost tree.

However, these procedures simply use tree
construction / search to produce a multiple alignment.
Wheeler (1996, 1998, 2002, 2003a) has devised heuristic
methods (under the name direct optimisation) that bypass
the need to produce a separate multiple alignment at all, by
directly optimising ancestral sequences while treating gaps as
a fifth character state rather than as missing data, thus moving
closer to the likelihood methodology described above. This
approach has been extended by Wheeler (1999, 2003c) to
treat a contiguous series of gaps as a single evolutionary
event (i.e. an indel), but not yet explicitly the other sequence-
block events. These methods are all implemented in the
POY computer program. None of them have yet been tested
thoroughly (unlike the progressive alignment strategies),
although there have been investigations of the effect of
varying parameters such as gap costs and fragment size
(Cognato and Vogler 2001; Giribet 2001, 2002; Petersen
et al. 2004; Aagesen et al. 2005; Terry and Whiting 2005).
(Note that these parameters are estimated in the probabilistic
models above rather than fixed, whereas here substitution and
gap costs are set so as the maximise secondary homology.)
Other issues that need addressing include: the fact that
the parsimony score is only an approximation (Shull et al.
2001); potential problems with sequence blocks (Lee 2001);
and quantifying uncertainty in the phylogenetic tree, since
methods such as bootstrapping are inappropriate due to that
fact that the aligned characters are no longer independent
(Redelings and Suchard 2005).

Note that the argument for an alignment-free tree-building
method, by either the statistical or parsimony approach, is
at the heart of the philosophical difference from current
practice. Both the probabilistic and parsimony methods
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are applied to directly derive a phylogenetic tree from the
individual sequences, thus effectively bypassing the need to
produce a separate multiple alignment at all. This is because
an alignment has a built-in phylogenetic structure and a
phylogenetic tree implies a particular alignment, so that the
duality obviates the need to estimate them separately. If a
multiple alignment is explicitly needed then it can be derived
by aligning the sequences onto the tree (i.e. by inferring the
sequences of the ancestors), a procedure known as implied
alignment (Wheeler 2003b; Giribet 2005) or posterior-
decoded or most-likely alignment (for the probabilistic
methods). Note that this alignment will depend on the
tree (i.e. a different tree will imply a different alignment),
which in turn will depend on the specific sequences
and regions included in the dataset (see the example in
Shull et al. 2001).

From this perspective, current practice is seen to
add an unnecessary step to the process of constructing
a phylogenetic tree (i.e. a separate multiple sequence
alignment). Furthermore, this extra step is performed by a
type of analysis that has been co-opted from the sequence-
comparison literature rather than being specially developed
for phylogenetic analysis. (Note, the sequence-comparison
people think that ideally the phylogenetic tree should come
first, so that they can derive an evolutionary-based multiple
alignment from it, as this is a useful thing for database
searching and structure prediction.) Therefore, not only
are we using an inappropriate methodology for sequence
alignment, but we don’t actually need to be using it at all (De
Laet 2005). Moreover, these procedures are designed to deal
explicitly with the fact that similarity = homology + analogy,
by integrating primary and secondary homology assessment.
None of the traditional alignment procedures do this, since
they rely entirely on pattern matching.

The alternative viewpoint is that historically homology
assessment and tree construction have been treated as
separate issues, with good reason, and so it doesn’t seem
strange to treat sequence data in the same way today. That
is, we have always used comparative biology to produce our
hypotheses of homology and then tested these hypotheses
on a tree. Thus, we have kept hypothesis generation separate
from hypothesis testing, which matches our historical
separation of primary and secondary homology assessments
(Simmons and Ochoterena 2000). However, because we
are using the same data to generate the hypotheses and
to test them, this cannot be seen as a valid test in either
a philosophical or a statistical sense. For example, all
alignment methods shuffle character states among characters
as they proceed (as noted earlier) but they do so with the
implicit objective of defining the characters (the columns in
the alignment). Shuffling the character states while building
the phylogenetic tree means that congruence among the
characters becomes part of the definition of the characters
rather than a test of them. If nothing else, this can create

artefacts as a result of the inter-play of alignment and
tree building.

Perhaps one of the most obvious objection to combining
primary and secondary homology assessment is that it
weakens the independence of different datasets when they are
combined, because the tree topology supported by one dataset
(e.g. the gene tree for a locus) can influence the alignment
of another dataset (Simmons 2004). This second dataset is
then not being used to independently test the tree supported
by the first dataset but is instead merely being assessed for
its degree of congruence with that tree.

However, the biggest conceptual issue from the
perspective that I have been pursuing in this paper is that
of homology. We can combine alignment and tree building
provided they both recognise that character homology is at
the heart of phylogenetic analysis. The parsimony approach
is usually considered to do this (Haszprunar 1998) but it is not
clear that the likelihood models do so. Indeed, both methods
compound the confusion between descriptive and ontological
parsimony alluded to earlier, because this methodological
criterion is now applied to both character definition and
character testing. This leads to the situation where a set
of ambiguously aligned characters (i.e. where there are
several equally optimal alternative alignments) can be made
congruent with a single unambiguously aligned character,
resulting in an apparently well-supported, unambiguous
alignment (Simmons 2004). This is a form of indirect
character and character-state weighting.

From the practical viewpoint, it is unlikely that either the
parsimony or the model-based alignments will be what we
actually want. That is, the maximum-parsimony alignment
may be philosophically justifiable and the maximum-
likelihood alignment may be statistically justifiable,
but it is improbable that either will represent the true
evolutionary alignment. When a comparison is made to
structure-based alignments, neither the parsimony nor the
model-based alignments are closer than are the common
heuristic alignment algorithms (Morrison and Ellis 1997;
Miklós et al. 2004; Gillespie et al. 2005a), although the
parsimony and model-based approaches certainly add more
gaps to the multiple alignment than do the progressive-
alignment programs (Morrison and Ellis 1997; Whiting
et al. 2006). Thus, combining two mathematical optimality
problems into one does not necessarily get you any closer
to biological reality. There have also been several empirical
comparisons of alignments from the POY and Clustal
programs. Unsurprisingly, those people who used the
parsimony score as the assessment criterion found that
the parsimony alignment was best (Giribet et al. 2002;
Wheeler 2003b; Terry and Whiting 2005; Whiting et al.
2006), and those who used the likelihood criterion found
that the model-based alignment was best (Whiting et al.
2006). This is uninformative because Clustal does not
try to optimise either score. Clearly, what is needed is an
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independent assessment criterion, such as congruence with
taxonomy (e.g. Shull et al. 2001; Belshaw and Quicke 2002;
Laurenne et al. 2006).

Biological sequence alignment

A result obtained from any computational method is
unlikely to be the ultimate answer to a particular biological
inference—the method is unlikely to give the mathematically
highest score to the biologically correct result under all
circumstances. In the previous sections I have repeatedly
emphasised this point with regard to multiple sequence
alignment for phylogenetic purposes. Without knowledge
about the processes that generated the patterns of residue
variation, alignment cannot be accurate. Indeed, given the fact
that phylogeny deals with historically unique events, maybe it
is illogical even to think that there could be a general method
for phylogenetic analysis. Each dataset may need to be taken
on its own merits, with a unique approach adopted depending
on the specific interaction that has occurred between data and
history.

Even if we do adopt a mathematical approach, most of the
commonly used multiple-alignment programs are not based
on any evolutionary considerations at all, but simply use some
mathematically tractable algorithm for maximising sequence
similarity. Their success for our purposes is thus predicated
solely on the extent to which similarity = homology. That
they ‘work’ at all probably tells us quite a lot about the role
of analogy in evolutionary history, or at least our perception
of it.

Moreover, most of the recent attempts to improve these
programs apply only to amino acid sequences. Amino acids
come in a wide range of flavours, with distinct patterns
of physico-chemical properties, which means that there is
more information to extract and use in developing alignment
strategies. This is not so for DNA sequences, and so the
scope is more limited. Even worse, gaps in RNA-coding
and non-coding (e.g. with regulatory motifs) sequences often
appear to be more haphazard than they are for protein-coding
sequences, with the nucleotides not lined up in neat columns
the way amino acids often are. It is therefore unsurprising
that the developers of alignment programs have found DNA
alignment to be a nuisance (Higgins et al. 2005).

The development of statistical alignment and direct
optimisation techniques is one possible response to this
general situation, where the evolutionary and philosophical
models used for constructing phylogenetic trees are extended
to include sequence alignment as well. It is not yet clear
how productive these attempts will be, but obviously they
are unlikely to succeed to any greater extent than they do for
tree building alone. We certainly have a long way to go if we
want any of the models to be biologically realistic.

So, quality control in multiple sequence alignment for
phylogenetic purposes relies entirely on the biological insight
of the scientist. The biologist needs to control the alignment

process at all stages to make sure that the final alignment
represents a series of plausible hypotheses of homology.
This does not require an entirely manual alignment strategy,
but it does seem to imply manual quality control at least.
In this sense, it has been suggested that we should only
use the mathematical algorithms as heuristic procedures
to produce a first approximation for the final multiple
alignment (Higgins et al. 1996; Poch and Delarue 1996).
This section of the review discusses how we might go about
doing this.

Objectivity and reproducibility

It is a basic tenet of science that the component activities
should be objective and reproducible. So, if phylogenetic
analysis is to be a part of science then the process by
which we obtain a multiple sequence alignment must,
itself, be objective and reproducible. One of the most
common arguments against manual intervention in sequence
alignment has been that it is not objective, in the sense that
there is no explicit protocol to describe how it is done, and
it is not reproducible, in the sense that different researchers
are likely to get different results when aligning the same set
of sequences. Clearly, I am not going to suggest alignment
strategies that can be subject to either of these objections.
I therefore need to be explicit about what objectivity and
reproducibility mean in the context of a multiple sequence
alignment.

Here, objectivity simply refers to the scientist’s ability to
adequately describe and justify the criteria being used to make
decisions. An automated procedure is usually considered
to be objective rather than subjective because the decision-
making activities have been incorporated into an algorithm,
and the scientist has no direct say in the subsequent decisions.
Unfortunately, this attitude begs the question, because all that
has happened is that the subjective decision has been moved
back one step, so that it exists in the choice of an algorithm
in the first place rather than in the choice of which residues
to align.

That is, there is no generally accepted protocol for
sequence alignment, and no apparent objective means of
choosing among the available protocols. The decision as to
which computer program (i.e. algorithm) to use is thus a
subjective one. More to the point, few people seem either
to describe how the choice was made or to justify the
criteria used for that choice. Given that it is well known
that the choice of algorithm can have a major effect on
the result (and this effect increases as sequence identity
decreases), computerised sequence alignment is currently, in
practice, not particularly objective. Potential subjectivity in
computerised alignment is dealt with by convention rather
than by objectivity.

Reproducibility has two different components, which
should not be confounded: (i) imitation, which is the ability
to ape a specified series of steps to arrive at an identical
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conclusion; and (ii) repeatability, which is the ability to
independently arrive at the same conclusion irrespective of
the precise series of steps. Scientific evidence is predicated
upon (ii), since independent replication is seen as the
strongest form of evidence, while computers are good at
(i) only, without the intervention of the user.

The key to (i) is a precisely detailed set of instructions,
such as a laboratory protocol or a computer program.
However, whereas a laboratory protocol usually leaves
considerable leeway for adjustment by not being too specific
about many of the details, a computer program can only
imitate itself time after time. The key to (ii) is an explanation
of the objective and how it has been implemented, so that we
can think about it and independently execute it. However, a
computer program can easily be subject to unthinking use,
literally at the press of a button. Imitation is often held up as
a positive feature of computing, which it is, but the problem
is that it is not a substitute for repeatability, which is what a
scientist needs.

The important distinction, then, is not between ‘manual’
alignments and ‘automated’ alignments, as it is often
presented in the literature. Both types of alignment can fail
the criteria of objectivity and repeatability and both can meet
them. A good recent example of a carefully reasoned manual
assessment of a multiple alignment is presented by Lebrun
et al. (2006), in which the authors provide a meticulous
structural and functional analysis of a difficult alignment
problem before phylogenetic analysis.

As far as computerised alignments are concerned, they add
little to science if imitation is their only utility. For example,
in this age of computerised databases there is little practical
purpose to being able to reproduce someone else’s alignment
by re-running the same program, since it could be stored in a
database. More to the point, thousands of people could use the
same program and yet get different results, because (almost
all of) these programs have parameters that can be adjusted.
From this perspective, it is not the use of the computer
program itself that makes the result reproducible but the use
of the same parameter values (cf. Kjer et al. 2006). The main
difference from manual alignment is simply the ease with
which the alignment protocol can be described (and also
carried out). Unfortunately, the computerised protocols are
rarely specified in enough detail for repeatability, because we
are often not told which version of the program was used nor
what were the parameter settings, and sometimes not even
what program was used.

A simple example will suffice to emphasise the need
to specify all three details (program, version, parameters)
in order to be able to reproduce a computerised analysis.
Figures 3 and 4 of Morrison and Ellis (1997) show the
effect on a particular alignment of varying the gap-opening
(GOP) and gap-extension (GEP) parameter values when
using ClustalW version 1.5. Included in the display are
the results from the supposed default parameter values

(GOP = 10, GEP = 0.5). However, the results shown are
not those derived from simply accepting the default values
(i.e. by changing nothing before running the program), but
are instead those derived by manually changing the parameter
values (i.e. manually changing the parameter settings to the
default values). This is because the two alternative procedures
did not produce the same alignment. This ‘feature’ is,
fortunately, absent from the current release of ClustalW,
where automatically and manually choosing the default
values do produce the same result.

It is therefore worth highlighting that perhaps the most
under-appreciated aspect of different version numbers of
alignment programs is possible changes to the default GOP
and GEP, which are often changed substantially between
versions (e.g. Katoh et al. 2005b). This can have a quite
dramatic effect on the resulting alignment (indeed, that is
often the main reason for making the change), so that
alignments are only reproducible if the exact version number
of the program is specified.

For manual intervention in alignments, we need to have
explicit criteria for the procedures being used, so that we
can clearly describe those procedures along with some
quantitative measure that tells us whether our alignment is
‘improved’ by the intervention or not. A minimum standard
in science is that sufficient information should be provided
for an independent experimenter to be able to repeat the
work, and this applies to all forms of sequence alignment as
well (Henikoff 1991). We do not necessarily need the minute
details of each individual adjustment made, but we do need a
description of why and how the adjustments were carried out.
We also need a copy of the final alignment so that anyone who
attempts to repeat the procedure can compare the previous
results to their new ones. To this end, all phylogenetic
multiple alignments should be publicly available;
for example, the alignment can be deposited in one of
the available database repositories such as EMBL-Align
(Lombard et al. 2002), PopSet (Brawley 1999) or TreeBASE
(Morell 1996).

Unfortunately, there are several reasons why sequences
cannot be accessed freely in databases, even if they have
been submitted. For example, the authors (= owners) can
usually specify release dates, and can keep modifying those
dates. Also, they often have the ability to delete information
after it has been released. They may also not provide
the correct reference information, or that information
may subsequently be changed. For example, Lawrence
et al. (2002) refer to three databased amino-acid sequence
alignments (EMBL DS43278, DS43279, DS43280) for their
137 kinesin sequences. However, none of these alignment
numbers can currently be accessed in the EMBL database.
Instead, the alignments can be accessed in that database
under the numbers ALIGN 000356, ALIGN 000357 and
ALIGN 000358, as indicated by Lawrence et al. (2004).
Unfortunately, the latter two alignments are identical, while
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the first alignment has slightly different taxon names and
almost always shorter sequence lengths than the other
two alignments (except for CelU61947, which has a
completely different sequence), none of which matches the
published descriptions. Alternatively, Kroken and Taylor
(2001) quote a TreeBASE number (SN376-1131) for their
sequence alignment. However, ‘SN’ numbers are temporary
submission numbers, and cannot be used by other people
to access the data. Failure to get a permanent ‘S’ study
accession number means that the data remain unreleased
and therefore inaccessible to others. Laurenne et al. (2006)
quote the TreeBASE Referee PIN instead of the study
accession number, thus making the data unavailable in
a normal search.

Having the alignment, exactly as analysed by the authors,
available as supplementary material on the journal’s web
page should therefore be considered essential. This allows
the reader to check the alignment and, if necessary, re-
interpret the authors’ conclusions in the light of any
apparent discrepancies or inconsistencies. One example is
the alignment of the 23S (large subunit) rDNA sequences
associated with the paper by Badger et al. (2005) about
possible horizontal gene transfer in α-proteobacteria. In the
journal’s online data file there are 2133 aligned positions,
but gapped positions have been removed and so the full
alignment cannot be reconstructed. Nevertheless, there are
clear misalignments in several places, usually where a long
motif in one of the sequences is not aligned against the
identical motif in the other sequences. These require a single-
nucleotide gap to be placed at either end of the motif in
order to effect each re-alignment. Unfortunately, these re-
alignments affect 10 of the 18 species in the dataset; and
they have consequences for the tree building needed for the
authors’ arguments.

Alignment within context

It may seem a bit trivial to say it, but it is important to point out
that every phylogenetic multiple alignment exists only within
its own immediate context. That is, if either the character
sampling or the taxon sampling is changed then the alignment
is likely to change. This is because we are trying to reconstruct

historically unique events, and our ability to do so depends
entirely on the information contained in the particular dataset
at hand. A straightforward way to add biological insight to a
sequence alignment is thus to carefully plan the framework
within which the alignment will take place.

A simple example to illustrate this point is shown in
Fig. 10. For these 10 intron sequences there is a complex
gap structure near position 20, consisting of two separate
gapped blocks. This alignment structure is dominated by
the presence of Spartina bakeri, which is the only sequence
that spans both blocks. If this species is removed then
the two gaps are concatenated by the alignment algorithm.
Thus, two different sets of hypotheses of homology emerge,
depending on whether S. bakeri has been sampled or not.
This occurs because the optimisation procedure used by the
computer program only produces a result that is optimal
for the local context—there is no such thing as a universal
optimal alignment, only an alignment that is optimal for the
particular dataset being analysed.

The effect of taxon sampling on sequence alignment
cannot be over-stressed (Simmons and Freudenstein 2003;
Simmons et al. 2004). It is therefore always recommended
that taxon sampling be increased to whatever extent is
practicable, as this reduces the chance that some of the
sequences will have no near relatives and thus be hard to align
(i.e. it has the same effect as breaking up long branches in a
tree-building analysis). Sampling only selected exemplars is
often seen as an acceptable strategy in phylogenetic analysis,
but this approach should not be taken lightly for sequence
alignment.

To this end, a strategy commonly used in the sequence-
comparison and database-search literature is to construct
sequence profiles, thus employing profile–profile alignment
rather than sequence–sequence alignment. The increased
context of the profiles can allow sequences with very
low similarity to be aligned, because the other sequences
in the profiles form a series of linking intermediates in
terms of similarity. This approach is built into the MAFFT
and Praline computer programs, as discussed above. The
sequences for the profiles are obtained by database searching,
and are chosen solely for their similarity to the sequences

                        1       10        20        30        40
Spartina alterniflora   GTGAGCCTATTTCCGTCCG---TTGCCGTATTGGGAGGGTT
Spartina maritima       GTGAGTCTATTTCCGTCCG---TTGCCGTATTGGGTGGGTT
Spartina foliosa        GTGAGCCTATTTCCGTCCG---TTGCCGTATTGGGAGGGTT
Spartina argentinensis  GTGAGTCTGTTTTCGTCCG---TTGCCGTGTTGGG-GGGTT
Spartina densiflora     GTGAGTCTATTTTC----G---TTGCCGTATTGGG--GGTT
Spartina cynosuroides   GTGAGAGCCTGCAT----GAGCTTGTCGT-TTGGG--GTTT
Spartina arundinacea    GTGAGAGCCTGCAT----GAGCTTGTTGT-TTGGG--GTTT
Spartina patens         GTGAGAGCCTGCAT----GAGCTTGTCGT-TTGGG--GTTT
Spartina bakeri         GTGAGAGCCTGCATGCATGAGCTTGTTGT-TTGGG--GTTT
Spartina pectinata      GTGAGAGCCTGCAT----GAGCTTGTCGT-TTGGG--GTTT

Fig. 10. Beginning of the ClustalW (v1.83 with default settings) alignment of intron 8 of the
granule-bound starch synthase (Waxy) gene of ten species of Spartina (Poaceae). The S. bakeri
sequence provides the context for the alignment of the remaining sequences. The nucleotide
data are from Baumel et al. (2002).
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being aligned (i.e. their taxonomic relationship to the study
sequences is not taken into consideration). These database
sequences only play a part in the sequence alignment, and
are discarded again after the alignment has been constructed.
This strategy has apparently not been adopted in phylogenetic
analyses, but it may pay dividends for sparsely sampled
taxonomic groups.

Constrain the alignment

One of the simplest ways to add biological insight to
a progressive sequence alignment is to constrain various
aspects of the procedure so that they conform to pre-
existing biological knowledge. This prevents artefacts of
character and taxon sampling from dominating the final
alignment, and allows the user’s personal knowledge of
the dataset to over-ride the generic ‘conventional wisdom’
embodied in computer programs (Myers et al. 1996). The
two most obvious features to constrain are the order in which
the sequences are aligned and the presence of conserved
sequence blocks (e.g. motifs). Both of these constraint types
can be implemented in a semi-automatic manner.

Aligning sequences in the order specified by a pre-existing
taxonomic scheme is a long-standing suggestion (Mindell
1991). For the procedure to be objective and repeatable
all that is required is a description of the sequence groups
that are to form the initial profiles and the source of
the taxonomy / phylogeny. For example, Page (2000) used
ClustalX to align 225 domain III 12S rRNA sequences
of insects, but instead of using an automatically generated
guide tree he constrained the progressive procedure to
match a putative phylogeny. That is, taxonomic groups of
sequences (e.g. termites) were aligned separately, and then
these small alignments were combined using profile–profile
alignment in the order specified by the phylogenetic tree.
Similarly, Pettersson et al. (2005) used ClustalW to align
179 glutathione S-transferase amino-acid sequences, but
constrained the order of alignment to match the known
structural classes of the enzyme. That is, sequences were
first aligned within each of the 12 classes, and then these small
alignments were combined using profile–profile alignment in
the order specified by previous studies of the phylogenetic
history. The newly acquired sequences were then added at
the end, using sequence–profile alignment.

Some of the progressive-alignment computer programs
will allow the user to control the order of alignment, notably
the Clustal programs. Unfortunately, many others offer no
such facility. It is also important to note that genetic similarity
may be a better criterion than sister-group relationships for
defining constraints, as the latter may result in quite dissimilar
sequences being aligned if the relationship involves long
branches on the phylogenetic tree (Edgar 2004c).

The concept of constraining sequence blocks was
discussed in an earlier section. In this strategy, sequence
blocks that are conserved across most (or all) of the sequences

are used as anchor points between which automatic alignment
can occur. If the constraints are defined by the user based on
prior biological knowledge, then the rationale for identifying
such sites needs to be made explicit (e.g. the location of gene
boundaries, functional sites or structural features), if the
procedure is to be objective and repeatable. Alternatively,
if the constraints are determined automatically, such as by
using computerised motif searching or some other local
alignment strategy, then the biological foundation needs
to be carefully thought out, if there is to be any increase
in biological insight.

An example is provided by the work of Titus and Frost
(1996). These authors used the MALIGN computer program
(Wheeler and Gladstein 1994) to align the mitochondrial
12S rRNA and valine tRNA sequences from their group of
10 lizard species. However, they constrained the alignments
so that the stem regions of the sequences (i.e. the double-
stranded parts of the helices) were aligned to one another,
while allowing sequence similarity to determine the optimal
placement of gaps in the other regions of the sequences.
The stem regions were identified using published secondary-
structure models, based on positional similarity, base-pair
complementarity and compensatory substitutions. Of the
1129 positions in the alignment, 457 were constrained,
based on 35 helical regions. Their argument for proceeding
in this manner was that there is no extrinsic model for
postulating positional homology in non-stem regions, and so
mathematical optimisation is appropriate for these parts of
the sequences. Similar examples are provided by Shull et al.
(2001) and Giribet (2002), although Shull et al. (2001) used
sequence motifs as well as secondary structure to define the
constraints.

A range of computer programs are available that directly
implement constraint alignment, as listed in an earlier section,
although not all of these allow user-specified constraints.
Also, some alignment workbenches allow sequence
blocks to be manually anchored and thus not subject to
automatic re-alignment, notably BioEdit, ClustalX, PAT
and MACAW.

Staggered alignment

Multiple sequence alignment for phylogenetic purposes
is all about producing hypotheses of potential homology,
where each aligned position represents a set of hypothesised
evolutionary events. Thus, only residues that we are
proposing to be homologous should be aligned, while residues
that have no homologues should not be aligned against any
other residues. Unfortunately, most computerised alignment
procedures do not do this, because the parsimony principle
leads them to compress gaps as much as possible, leading to
over-lapping non-homologous sequences (sometimes called
over-alignment). Therefore, perhaps the simplest way to
increase the biological insight of a multiple sequence
alignment is to apply this clear-cut dictum manually.
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This issue is related to the distinction between sensitivity
(or power) and selectivity (or confidence) in a data analysis.
Here, sensitivity refers to the ability to detect all of the
residues that should be aligned (i.e. no false negatives) and
selectivity refers to the ability to align only those residues that
should be aligned (i.e. no false positives). Assessment of the
accuracy of sequence alignment procedures has concentrated
on sensitivity rather than selectivity (Lambert et al. 2003),
given that there is a trade-off between the two (increasing
one decreases the other if the sample size remains constant).
This means that falsely aligning non-homologues has not
been seen as a problem that needs addressing, and hence
users must deal with this for themselves.

The basic dilemma appears to be that keeping non-
homologous residues unaligned creates alignments that do
not match most biologists’ idea of what an alignment should
look like. In fact, this form of alignment has been referred to
as a staggered alignment (Barta 1997), because the residues
within gapped regions no longer form neat columns but are
offset with respect to each other. A similar issue has been
identified for alignments of protein structures (Marsden and
Abagyan 2004), where some methods ‘over-align’ compared
to others.

An illustrative example is shown in Fig. 11, where
two versions of the same HIV-1 sequence region are
juxtaposed. The gapped part of the alignment, presumably

Original alignment 
       1       10        20        30        40        50        60        70 
 C.1   TCAGAACAGAAC---------------------------------AGAGCCAACAGCCCCACCAGAAGAGAG 
 C.2   CCAGAACAGATCAGAGCCAGCAGCCCCAAC---------------AGTACCAACAGCCCCACCAGCAGAGAG 
 C.3   TCAGAGCAGACCAGAGCCAACAGCCCCACCAGAGAGTCTCAGACCAGAGCCAACAGCCCCACCACCAGAGAG 
 C.4   CCAGAGTAGACC---------------------------------AGAGCCAACAGCTCCACCAGCAGAGAG 
06.1   TCAGAACAGGCC---------------------------------AGAGCCAACAGCCCCACCCATAGAGAG 
06.2   TCAGAACAGGCC---------------------------------AGAGCCAACAGCCCCACCCGCGGAGAG 
06.3   TCAGAACAGGCC---------------------------------AGAGCCAACAGCCCCACCCGCAGAGAG 
06.4   CCAGAACAGGCCAGAACAGAACAGGCC------------------AGAACCCTCAGCCCCACCTGCAGAGAG 
12.1   TCAGAACAGGCC---------------------------------AGAACCAACAGCCCCACCAGCAGAGAG 
12.2   TCAGAACAGGCC---------------------------------AGAGCCAACAGCCCCGCCAGCAGAGAG 
12.3   TCAGAACAGACC---------------------------------AGAGCCAACAGCCCCGCCAGCAGAGAG 
12.4   TCAGAACAGGCC---------------------------------AGAGCCAACAGCCCCGCCAGCAGAGAG 
13.1   TCAGAGCAGACCAGGACCAACAGCCCCACCAGAGAGCAGACC---AGAGCCAACAGCCCCACCAGCAGAGAG 
13.2   TCAGAGCAAACCAGGGCCAACAGCCCCACCAGAGAGCAGACC---AGAGCCAACAGCCCCACCAGCAGAGAG 
14.1   CCAGAACAGGCC---------------------------------AGAGCCAACAGCCCCACCCGCAGAGAG 
14.2   CCAGAACAGGCC---------------------------------AGAGCCAACAGCCCCACCCGCAGAGAG 
14.3   CCAGAACAGGCC---------------------------------AAAGCCAACAGCCCCACCCGCAGAGAG 
14.4   CCAGAACAGGCT---------------------------------AGAGCCAACAGCCCCACCCGCAGAGAG 
 O.1   GCAGAGACCAGC---------------------------------ACACCCATCAGCCCCACCGATGGAGGA 
 O.2   GCAGAAACAAGT---------------------------------GTCCCCATCAGCCCCACCAATGGAGGA 
 O.3   GCAGAGACAAGT---------------------------------GTCCCCATCAGCCCCACCGATGACGGA 
 O.4   ACAGAGACAAGT---------------------------------GTCCCCATCAGCCCCACCGATGACGGA 
 N.1   CCAGACAACAACAAGGAA---------------------------AGAGCCCACAGCCCCGCCACTAGAGAG 
 N.2   CCAGACAACAACAAGGAG---------------------------AGAGCCCACAGCCCCGCCACTAGAGAG 
 
Homology alignment 
       1       10        20        30        40        50        60        70        80        90 
 C.1   TCAGAACAGAAC------------------------------------------------------AGAGCCAACAGCCCCACCAGAAGAGAG
 C.2   CCAGAACAGATCAGAGCCAGCAGCCCCAAC------------------------------------AGTACCAACAGCCCCACCAGCAGAGAG
 C.3   TCAGAGCAGACCAGAGCCAACAGCCCCACCAGAGAGTCTCAGACC---------------------AGAGCCAACAGCCCCACCACCAGAGAG
 C.4   CCAGAGTAGACC------------------------------------------------------AGAGCCAACAGCTCCACCAGCAGAGAG
06.1   TCAGAACAGGCC------------------------------------------------------AGAGCCAACAGCCCCACCCATAGAGAG
06.2   TCAGAACAGGCC------------------------------------------------------AGAGCCAACAGCCCCACCCGCGGAGAG
06.3   TCAGAACAGGCC------------------------------------------------------AGAGCCAACAGCCCCACCCGCAGAGAG
06.4   CCAGAACAGGCC---------------------------------AGAACAGAACAGGCC------AGAACCCTCAGCCCCACCTGCAGAGAG
12.1   TCAGAACAGGCC------------------------------------------------------AGAACCAACAGCCCCACCAGCAGAGAG
12.2   TCAGAACAGGCC------------------------------------------------------AGAGCCAACAGCCCCGCCAGCAGAGAG
12.3   TCAGAACAGACC------------------------------------------------------AGAGCCAACAGCCCCGCCAGCAGAGAG
12.4   TCAGAACAGGCC------------------------------------------------------AGAGCCAACAGCCCCGCCAGCAGAGAG
13.1   TCAGAGCAGACCAGGACCAACAGCCCCACCAGAGAG---CAGACC---------------------AGAGCCAACAGCCCCACCAGCAGAGAG
13.2   TCAGAGCAAACCAGGGCCAACAGCCCCACCAGAGAG---CAGACC---------------------AGAGCCAACAGCCCCACCAGCAGAGAG
14.1   CCAGAACAGGCC------------------------------------------------------AGAGCCAACAGCCCCACCCGCAGAGAG
14.2   CCAGAACAGGCC------------------------------------------------------AGAGCCAACAGCCCCACCCGCAGAGAG
14.3   CCAGAACAGGCC------------------------------------------------------AAAGCCAACAGCCCCACCCGCAGAGAG
14.4   CCAGAACAGGCT------------------------------------------------------AGAGCCAACAGCCCCACCCGCAGAGAG
 O.1   GCAGAGACCAGC------------------------------------------------------ACACCCATCAGCCCCACCGATGGAGGA
 O.2   GCAGAAACAAGT------------------------------------------------------GTCCCCATCAGCCCCACCAATGGAGGA
 O.3   GCAGAGACAAGT------------------------------------------------------GTCCCCATCAGCCCCACCGATGACGGA
 O.4   ACAGAGACAAGT------------------------------------------------------GTCCCCATCAGCCCCACCGATGACGGA
 N.1   CCAGACAACAAC------------------------------------------------AAGGAAAGAGCCCACAGCCCCGCCACTAGAGAG
 N.2   CCAGACAACAAC------------------------------------------------AAGGAGAGAGCCCACAGCCCCGCCACTAGAGAG

Fig. 11. Two alternative alignments of part of the gag gene from seven HIV-1 subtypes, with 2–4 sequences per subtype. The second alignment
aligns only homologous positions, thus illustrating the concept of a staggered alignment. The nucleotide data are from the 2001 HIV-1 Subtype
Reference Alignment of the HIV Sequence Database (http://hiv-web.lanl.gov/content/index; accessed 19 November 2006).
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representing insertions in some of the sequences, seems
to be phylogenetically informative, at least for some of
the HIV-1 subtype groups. The alignment of the insertions
is straightforward within each subtype, but is not always
so between subtypes. For example, the alignment of
subtype 13 against subtype C is unproblematic (and seems
to indicate an historical association), but the alignment
between these subtypes and either subtypes 06 or N is
somewhat arbitrary.

Thus, a more plausible alignment is presented in the
second part of the figure, where only putatively homologous
nucleotides are aligned. In this case, three independent
indel events are postulated for the different subtypes (one
in subtype N, one in 06, and one in C + 13), followed
by two independent indels within subtype C, to create the
complete gapped region. This alignment also maintains the
reading frame of the amino acids, as all of the gaps are
in multiples of three nucleotides. (Note that there is little
evidence here for the monophyly of subtype C.)

The matter of the non-neat alignments that result from
not aligning indel regions is discussed at more length by
Higgins et al. (2005), who suggest that a visual paradigm
shift is needed. Our current perception of alignments
started when automated procedures were developed in the
late 1980s; previous manual alignments were frequently
staggered (e.g. the well studied alignment of Kreitman 1983),
but they have rarely been employed since then (e.g. Hancock
and Vogler 2000; Kelchner 2000; Sanchis et al. 2001).
The only computer program currently available that treats
insertions as unique events that should not be aligned against
other sequence blocks is Prank, as discussed in a previous
section.

Thus, in practice staggered alignments may need to
be produced by manual re-alignment of a pre-existing
alignment. If so, then some criterion needs to be specified
for how non-homology is to be recognised. Perhaps the
simplest criterion is to identify indel regions where there
is no clear similarity between the sequences, as I did in
the example above—unaligning such sequences is then a
conservative procedure (i.e. homology is only postulated
when the primary homology assessment is clear, so that
‘I don’t know’ is treated as equal to ‘not homologous’).
The objective is that our primary homology assessment
should result in an alignment that explicitly indicates both
potential homology (aligned residues) and non-homology
(unaligned residues). Our hypotheses of homology can
then be assessed on a phylogenetic tree, for confirmation
or rebuttal.

Criteria for manual realignment

Several literature surveys (e.g. Whiting et al. 2006; Kjer
et al. 2006) have suggested that the most commonly reported
procedure for multiple sequence alignment is to use a

computer program and then to follow this with manual
readjustment (i.e. ‘by eye’). As I have argued, this can be
an effective way of introducing some biological (as opposed
to bioinformatic) insight into the resulting alignment.
Moreover, formal comparisons with the results of other
alignment strategies have indicated that this approach is
not necessarily any less accurate than fully computerised
procedures (e.g. Sanchis et al. 2001; Giribet 2002; Whiting
et al. 2006; Kjer et al. 2006). However, this can only be
considered to be a scientific procedure if it is objective
and repeatable. This involves having (a) a description of
the manual process that is detailed enough for someone
else to be able to repeat it, and (b) a quantifiable criterion
for determining whether the alignment quality has been
improved by the procedure. Here, I discuss various ways in
which both of these conditions might be met.

The informal objective of manually scanning an alignment
is to look for ‘problems’ that need fixing. Our minds have a
simultaneous overview of the alignment that is not available
to the computer programs, especially those based on a
progressive strategy, and thus we expect that we will be able
to identify issues that the programs cannot. The information
that I have provided in previous sections indicates that we
know quite a lot about where and when automated alignment
procedures fail, and thus we know what sorts of problems to
look for. This means that it should be possible to develop (and
describe) repeatable procedures for manual re-alignment of
sequences. Each procedure may be unique to a particular
dataset, depending on the characteristics of the starting
alignment and the data. These characteristics include the
following, all of which can be clearly described and thus
meet condition (a) above. These problems are not mutually
exclusive, of course.

(1) Inconsistent sequence features. Progressive alignment
procedures, in particular, make alignment decisions
sequentially, and therefore do not always make these
decisions in a consistent manner. For example, highly
similar sequence pairs are sometimes misaligned. Also,
in protein-coding sequences start and stop codons
are often not aligned, and the codon reading frame
is sometimes not maintained (especially if there are
sequencing errors).

(2) Conserved sequence features that are not aligned. There
are many situations where sequences share a similar
region but are otherwise not similar, and if there is
information about the location of these regions then their
alignment should be checked. These regions include:
(i) functional sites, such as catalytic regions, sites of
intermolecular interactions, substrate binding sites and
transcription-factor binding sites; and (ii) structural
regions, such as helices, sheets and disulphide bridges
in protein-coding sequences, and helices, tetraloops
and bulges in RNA-coding sequences. Most conserved
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regions are associated with motifs, which can make
them easy to locate, but sometimes they involve isolated
residues (e.g. cysteines in disulfide bridges).

(3) Single-event sequence blocks that are misaligned.
Almost all alignment programs treat each aligned
position independently, and thus they cannot be
expected to deal correctly with inversions, translocations,
transpositions and tandem (or other) duplications. These
features create some of the most commonly encountered
problems in multiple alignments, especially as most
indels are associated with tandem repeats; and so I will
discuss them separately below.

(4) Inconsistent decisions. Many alignment decisions are
apparently arbitrary, in the sense that several equally
good solutions exist irrespective of what optimality
criterion is used. Any such arbitrary decisions should be
made in a consistent manner. For example, if there are
several codons with one nucleotide missing from each,
and there is no information that allows a non-arbitrary
decision (such as similarity to related sequences),
then the gap should be placed in the same position
for each codon.

The basic problem that we are trying to avoid by
checking for inconsistent alignments is that sometimes the
‘phylogenetic informativeness’ of an aligned position is
a by-product of an incorrect alignment (i.e. informative
positions are created where they do not exist). Moreover, these
principles apply at all spatial scales. For example, the plant
chloroplast genome usually has two copies of an inverted
repeat (IRA, IRB), and it would be inconsistent if these
two regions were not aligned in an identical manner whenever
possible. In exchange for avoiding inconsistency that leads to
spurious informativeness we also don’t want to introduce new
but artefactual informativeness, which is the usual downside
of any subjective procedure. This can probably be best done
by performing any manual re-alignment ‘blind’ (i.e. without
knowledge of the sequence identifications).

As a specific example of possible manual re-alignment
of a conserved sequence feature [i.e. problem type (2)],
Fig. 1h shows part of an amino-acid alignment of the
metallo-β-lactamase protein domain-superfamily. At the
beginning of the alignment there is a pgHtp motif (where
capitalisation indicates an increased degree of conservation)
that is known to contain a zinc-binding residue and three
active-site residues (see Carfi et al. 1995). In the current
release of the Pfam database (version 20.0; Finn et al. 2006),
these sequences are databased in the ‘seed’ alignment for
Lactamase B (accession number PF00753). This alignment
contains 324 sequences, and the motif can be located
unambiguously in 187 of these sequences (and more
ambiguously in many others). However, this functional motif
is aligned very erratically among the sequences, varying by up
to 11 positions in the alignment. It would be straightforward

to manually re-align this motif in an objective and repeatable
manner wherever it can be located unambiguously.

As a specific example of possible manual re-alignment of
an inconsistent sequence feature [i.e. problem type (1)], the
small-subunit rRNA sequences of Sarcocystis buffalonis and
Sarcocystis hirsuta (Apicomplexa) in the alignment of the
European rRNA Database (Wuyts et al. 2004) have 99.6%
nucleotide identity, and yet they are not aligned against each
other in three different places: stems E21-3, E21-6 and 47,
using the numbering system of Gagnon et al. (1996). These
misalignments are easy to correct.

The main objective of manual re-alignment is to consider
possible mechanistic explanations for the origin of each
gap, and then to align the residues so that they reflect the
simplest (i.e. most parsimonious) explanation. Step 1 is to
identify those characteristics of the gap that might indicate
a single origin (e.g. duplication, inversion), and if they
exist then use them to guide the alignment. If there are no
such characteristics, then Step 2 is to consider whether the
sequences should be aligned as a single unit, and either
to align them based on similarity, or to unalign them if
there is no evidence of homology. In all cases, if there is
no evidence to choose among equally plausible alternatives,
then you should consistently follow some explicitly stated
convention. That is, in the absence of any logical basis for a
decision (such as evaluation of empirical evidence) the only
way to make the decision repeatable is to adopt an explicitly
stated convention.

This suggested procedure for manual re-assessment of a
multiple alignment can be best illustrated using an example.
Figure 1A of Kawakita et al. (2003) shows the gapped
regions of the arginine kinase (ArgK) intron of several
Bombus species (bumble bees). The authors describe their
alignment strategy as: ‘we used ClustalX version 1.81 with
the default parameter settings. The alignments were then
corrected manually for obvious misalignments . . . [there
were] relatively long gaps that were easily aligned . . . ’
Here, I restrict my commentary to those 12 gaps (numbered
according to Kawakita et al. 2003) involving the 17 ingroup
species, as the three outgroup species have several sequence
segments that are apparently unrelated to those of any of the
ingroup:

Gap-1—for two sequences, a three-base insertion in a well conserved
region, so that the location is unambiguous.

Gap-2—for two sequences, deletion of one copy of a four-base perfect
tandem repeat (TATT); by convention (see below) the remaining
copy has been placed to the left of the gap.

Gap-4—for three sequences, a nine-base deletion in an almost perfectly
conserved region, so that the location is unambiguous.

Gap-6—for two sequences, deletion of one copy of an imperfect eight-
base tandem repeat (AACTATAA); unfortunately, the remaining
copy has been split, so that the initial AA is aligned against the
first copy in the other sequences and the CTATAA is aligned against
the second copy; this should be corrected for consistency; in this
case it is the first copy of the repeat that is imperfect (AACTATAA
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in six sequences, AATTATAA in nine sequences and AACCATAA
in the outgroup) and so the single copy should be aligned against
the perfect copy, to the right of the gap.

Gap-8—for three sequences, a three-base insertion in a perfectly
conserved region, so that the location is unambiguous.

Gap-9—for two sequences, a one-base addition to a poly-A repeat; by
convention the residues have been left-aligned so that the gap is at
the right.

Gap-10—for most of the sequences an AATTA motif is repeated with
63–75 residues in between, but for three of the sequences both of
the motifs plus the intervening sequence have been deleted, and
replaced with a repeat of the AGT trinucleotide that precedes the
first motif in all of the sequences; it is unlikely that the repeat of the
AGT is homologous with either of the motif copies and so it should
not be aligned against any of the other sequences (i.e. a staggered
alignment).

Gap-11—for two sequences, a nine-base deletion in a well conserved
region; unfortunately, the gap has been misplaced, so that an
ACTATTA motif in these two sequences is aligned against
GCTATAA in all of the other sequences instead of their ACTATTA
(nine sequences plus outgroup), ACTGTTA (two sequences) or
GCTATTA (one sequence) motifs; this should be corrected, thus
moving the gap seven positions to the left.

Gap-12—for two sequences, a three-base tandem repeat (ATT); by
convention the extra copy has been placed to the right (i.e. the
gap in the other sequences is at the right).

Gap-13—for two sequences, an eight-base deletion; by convention the
residues have been left-aligned so that the gap is at the right.

Gap-14—for two sequences, a one-base deletion in a poly-A repeat; by
convention the residues have been left-aligned; however, this aligns
the AA– against AAA (12 sequences), ATA (two sequences) and
AAG (one sequence), which is not ideal because it is arbitrary.

Gap-15—for nine sequences, a one-base deletion in a TT dinucleotide;
by convention the residues have been left-aligned so that the gap is
at the right.

This type of explicit re-assessment of a multiple alignment
is both objective and repeatable. It only remains for an
author to be clear about how their ‘by eye’ assessment was
carried out—unspecified ‘manual adjustments’ cannot be
considered to be scientific. Some example descriptions of
unambiguous procedures from the botanical literature are
provided by Kelchner and Clark (1997), Hoot and Douglas
(1998) and Graham et al. (2000). It is perhaps worth noting
that molecular mechanisms creating gaps are likely to be
more easily detected in non-coding DNA (Kelchner 2000),
such as in my example; e.g. tandem repeats are usually
more numerous in non-coding regions. Moreover, a gap does
not necessarily have to be created by a single mechanism.
For example, in the data of Kreitman (1983) there is a 37-
base insertion in three of the 11 sequences, where 19 bp are
a direct repeat of the 5′ adjacent sequence and 18 bp are the
reverse complement (i.e. an inversion) of a sequence near the
3′ end of the gap—presumably two different evolutionary
events are responsible for this pattern.

If objective manual re-alignment of sequences needs to
be based solely on sequence similarity (i.e. our mechanistic
explanations cannot be used as guides), then what we
need is an editor that interactively displays a score for
the alignment and each position in it, so that the effect of

each manual change can be quantitatively evaluated.
Unfortunately, such programs are currently few and far
between. There are several programs that display position
scores but do not allow manual alignment (such as ClustalX
and MACAW); and most sequence editors will colour-
code the sequences to show residue conservation or a
consensus sequence, which helps visualise the effect of
manual re-alignment, but this is not the same as having
a quantitative score. Of the several dozen alignment
editors that exist, only the following seem to be useful for
quantifying the effects of manual re-alignment on similarity:
BioEdit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html),
DNAMAN (http://www.lynnon.com/), GeneDoc (http://
www.psc.edu/biomed/genedoc/gdpaf.htm), Jalview (http://
www.jalview.org/), PAT (http://www-ab.informatik.uni-
tuebingen.de/software/pat/welcome.html), PFAAT (http://
pfaat.sourceforge.net/) and (perhaps the most adaptable)
SQUINT (http://www.cebl.auckland.ac.nz/index.php?target
=software&item = 6) (all URLs verified 31 October 2006).

The actual criteria that could be used to evaluate manual-
alignment quality include the standard optimality scores such
as similarity, sum-of-pairs, entropy and log-expectation, all of
which would be straightforward to calculate interactively for
each position in an editor. Alternatively, we could calculate a
single global score for the alignment, with the intention that
this global score should increase with each manual change.
This is not as practical, however, as it usually involves a
complex calculation using a separate program (Thompson
et al. 2001; Lassmann and Sonnhammer 2005), and there is
not yet any consensus about how to do this (Batzoglou 2005).
It is also possible to use the quality score of the ensuing
phylogenetic tree as the criterion, as is done in the direct
optimisation and statistical alignment procedures. The topic
of assessing alignment quality is a complex one, which I will
not go into here—it needs someone to undertake a proper
assessment of the state of the art first.

As a specific example of manual re-alignment of
inconsistent decisions [i.e. problem type (4)] based solely
on sequence similarity, we can look at the dataset of Rice
et al. (1997), which is a version of the well known ‘Chase
et al.’ dataset, containing 500 aligned sequences of the
chloroplast ribulose bisphosphate carboxylase large subunit
(rbcL) gene from seed plants. Of the characteristics listed
above, there are two that seem to be most problematic
for these data. First, some of the nucleotides next to (or
even in) gapped regions are aligned against a non-conserved
nucleotide when there is an adjacent conserved nucleotide of
the same type, where conservation is quantified as occurring
in ≥95% of the sequences. There are at least 34 such instances
that could be re-aligned. The potential problem with these
nucleotides is that the original alignment creates parsimony-
informative positions that are simply unnecessary artefacts
of the alignment itself, whereas the re-alignment reduces the
effect of this problem.
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Second, some of the gaps are split across two amino
acids unnecessarily. This means that two amino acids are
‘lost’ in the alignment instead of one (i.e. the codons are
incomplete), which is an important consideration if the gaps
are sequencing artefacts (which they probably are; see below).
In at least 41 cases, the nucleotides at the ends of the gap
can be re-aligned so that instead there is one ‘lost’ amino
acid plus one conserved amino acid, where conservation is
quantified as occurring in ≥95% of the sequences. There
are several other instances where re-aligning the gap would
create one ‘lost’ amino acid plus one non-conserved amino
acid, but there seems to be no objective justification for
making such a re-alignment, as this would create parsimony-
informative positions that are unnecessary artefacts of the
alignment itself.

If these 34 + 41 = 75 manual changes are made then we
can quantitatively compare the two alignments, to assess
objectively whether the new alignment is an improvement
over the original one. The new alignment makes very
little difference to the average pairwise similarity of the
DNA sequences (90.63 v. 90.64%) but slightly improves
the average pairwise similarity of the amino acid sequences
(94.79 v. 94.36%). However, the new alignment increases the
unweighted parsimony score of the resulting phylogenetic
trees based on the nucleotide sequences (9 trees of length
16532 v. 16 trees of length 16531, including uninformative
characters), which might be considered a retrograde step,
depending on whether we focus on the increased score or
the reduced number of equally optimal trees. Alternatively,
the new alignment improves the weighted parsimony score
of the resulting phylogenetic tree based on the amino acid
sequences (length 47040 v. 47119, based on a step matrix
derived from the BLOSUM62 score matrix).

So, whether or not there is a justification for the changes
made using these two manual re-alignment criteria can only
be decided by first specifying an objective criterion for
comparison. The point is, however, that the procedures can
both be described in enough detail for them to be repeatable,
and their effect can be quantitatively assessed based on
specifiable criteria. Manual re-alignment does not need to
be subjective.

Look for repeats and other sequence blocks

Among the most commonly encountered misalignments in
multiple sequence alignments are those caused by single-
event sequence blocks, such as inversions, translocations,
transpositions and tandem (or other) duplications (Kelchner
and Wendel 1996; Benson 1999; Graham et al. 2000; Chang
and Benner 2004). These features are not unexpected in
sequences, as they result from known molecular mechanisms
such as slippage during DNA replication / repair and
deletion of loop regions in DNA secondary structure (for
small blocks), as well as chromosomal processes such as
recombination, gene conversion and horizontal gene transfer

(for large blocks). However, these features violate the
assumptions on which most alignment programs are based,
and they can only be dealt with effectively by specialist
alignment programs, such as RAlign (Sammeth and Heringa
2006), ABA (Raphael et al. 2004) and CombAlign (Wegner
et al. 2004), unless manual intervention is applied. Hence,
these features need to be identified before most automated
alignment procedures, and an explicit decision made as to
how to deal with them.

Sequence blocks have advantages and disadvantages in
a multiple sequence alignment. Within a single sequence,
repeats and inversions have the advantage that they can
form recognisable anchors in the sequences, which can then
be used as constraints to construct an alignment. However,
variability between sequences in a multiple alignment can
create problems. First, variable numbers of blocks may make
homology unclear (e.g. Which block in this sequence should
be aligned with which block in the other sequences?). Second,
inversions, translocations and transpositions will change the
linear order of the sequences (e.g. How does one align a
sequence block in one sequence with its reverse complement
in another sequence?).

There are thus two practical problems encountered with
these sequence blocks. First, the programs treat each block
as arising from a series of evolutionary events rather than a
single event, and so they do not align the blocks as single
units. For example, when there is an unequal number of
units (e.g. two repeats in one sequence and three in another)
the smaller group of units is usually split across the larger
group (e.g. one of the blocks will be split so that it is partly
aligned against each of two other blocks, as in one of the
examples above). Second, some of these blocks cannot easily
be represented by the usual row / column form of alignment.
For example, an inversion in one sequence cannot be aligned
against an uninverted copy of the same block because the
residues will be in a different order. Thus, an alternative
representation is needed, such as a cyclic or acyclic graph
(Grasso and Lee 2004; Raphael et al. 2004; Wegner et al.
2004).

Both of these problems need manual attention, but they can
be dealt with in an objective and repeatable manner. All that
is needed is a specification of how the blocks were detected
and a description of how they were dealt with. Tandem
repeats are the most common problem encountered in the
sorts of sequences used for phylogenetic analysis (along with
minute inversions; Kelchner and Wendel 1996), and so I will
concentrate on them here.

Microsatellite and minisatellite repeats are usually easy
to detect by eye (although there are programs to do it
for you: Castelo et al. 2002; Anwar and Khan 2006), but
longer repeats and non-tandem repeats are more difficult.
There are several programs designed to locate longer repeats
in a single sequence, such as those of Benson (1999),
Kurtz and Schleiermacher (1999), Heger and Holm (2000),
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Szklarczyk and Heringa (2004), Campagna et al. (2005),
Karaca et al. (2005), Wexler et al. (2005), Achaz et al.
(2006) and Boeva et al. (2006), as well as other sequence
re-arrangements (e.g. Darling et al. 2004). Having located
such elements in a sequence, you then have to check whether
they create problems for the between-sequence comparisons
(e.g. Is there a variable number of tandem repeats between
sequences?). There seems to be little automated help
available for such comparisons (although see the VNTRfinder
program at http://www.bioinformatics.rcsi.ie/vntrfinder/ and
the ProDA program at http://proda.stanford.edu/; both URLs
verified 31 October 2006).

Having located the problematic blocks, they need to be
dealt with in some manner, keeping in mind that for our
purposes the goal is to produce plausible (and parsimonious)
hypotheses of potential homology. In the absence of evidence
to the contrary, such blocks can be dealt with either by
deletion or by convention. The deletion approach tries to find
the maximal consistent subset of the sequence lengths that can
be aligned by the standard procedures, while the convention
approach chooses a (possibly arbitrary) way of re-arranging
the sequence blocks so that they can be aligned by the standard
procedures. Inversions, for example, could be deleted as
literally unalignable (in the usual sense), or a convention
could be used that inverts some of the copies so that all of them
are in the same orientation and thus alignable (cf. Graham
et al. 2000). Another convention is to align tandem repeats
against the left-hand side of the gapped region, presumably
based on the idea that the sequences are transcribed from
left to right and the second copy will therefore usually be the
‘repeat’. However, this is only a convention. For example, the
dataset of Kreitman (1983) has an imperfect 37-nucleotide
repeat in some of the sequences, and because the two copies
are not identical it is obvious that the first copy is the repeated
one (or alternatively the one that has been deleted in some of
the sequences).

A more detailed example is shown in Fig. 12, consisting
of a set of microsatellite repeats at the tail end of the
Hsp70 gene from various isolates of the gastrointestinal
parasite Cryptosporidium (Apicomplexa). Here, variations
on a GGT GGT ATG CCA motif are repeated eight or more
times. This is precisely the sort of situation that conventional
computer programs have trouble with, especially when
they occur near the beginning or end of an alignment.
The first alignment shown in the figure is based on the
nucleotide sequences, while the second one is based on
first translating the sequences to amino acids and then
aligning them. The first alignment has several split amino
acids, as well as a split repeat, while both the first and
second alignments misalign some obvious later repeated
patterns. The third alignment shown is a manual attempt
to correct these errors, as well as fixing an obvious slip in
the reading frame (sequence AY120919). However, the end
of the AF221542 sequence is still of dubious alignment,

as are some of the broken repeats (sequences AY120918,
AF221538, AF221541). The third alignment is thus the most
plausible one as far as evolutionary history is concerned, but
it still has improbabilities in it. If these improbabilities cannot
be resolved then these positions should presumably be deleted
before a tree-building analysis.

Translate to amino acids

It has long been recognised that for biological
macromolecules the structure and function are usually
more conserved during evolutionary history than is the
primary sequence. For example, the biochemical constraints
of selective pressures are often assumed to act at the
amino-acid level (Fitch and Smith 1983). Consequently,
reconstructing evolutionary events may be easier if this
secondary and tertiary information is used in addition to
the primary sequence information. This point can be seen
clearly in Fig. 4, where amino acid alignment is shown to
be more reliable then nucleotide alignment as sequence
similarity decreases. As a result, it is often suggested that
protein-coding sequences should be aligned after translating
them to amino acids (and then back-translating the alignment
to the equivalent nucleotide sequence for tree building,
if desired). This is an objective and repeatable way of
increasing the biological insight used in sequence alignment.

However, the actual evolutionary events happen to
the DNA, and so there is a lot more information in the
nucleotide sequence than in the amino acid sequence
of the encoded protein for closely related sequences: in
terms of sequence conservation, DNA sequence < protein
sequence < protein structure. This is because almost all
amino acids are associated with multiple codons, and
so there can be nucleotide variation without amino-acid
variation. Indeed, serine can be coded without nucleotide
alignment conservation at any of the three codon positions,
and leucine requires conservation at only the second codon
position (the other amino acids require conservation at
both the first and second positions). As a typical example,
the alignment for the mitochondrial cytochrome c oxidase
subunit 1 (cox1) gene provided by Cooper et al. (2001) for
seven ratites and three outgroup birds has 1548 aligned
nucleotide positions. In the middle, there is a stretch of
143 amino acids that are conserved across all 10 taxa.
However, only 284 of the 429 nucleotide positions are
conserved, leaving 145 (33.8%) variable positions. There is
thus no phylogenetic information (about the tree topology)
at the amino-acid level but there is potentially considerable
information at the codon and nucleotide levels. It is for this
reason that phylogeny reconstruction from amino acids is not
often recommended.

However, it is also for this reason that sequence alignment
of protein-coding genes is recommended to be conducted
at the amino acid level rather than at the nucleotide level:
the alignment is often much easier because of the reduced
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Nucleotide alignment 
                   10        20        30        40        50      
AF221529   GGMPGGMPGGMPGGMPGGMPGGMPGGMP?-------------------------- 
AY120920   GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPG---------------------- 
AY120916   GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPG---------------------- 
AF221539   GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPG?--------------------- 
AY120918   GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGG?--------------- 
AF221540   GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPG—- 
AF221530   GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGSN-------- 
AF221533   GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGSNG----------- 
AF221536   GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPG?--------- 
AF221532   GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMSGSNG?------ 
AF221531   GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMSGS?------------ 
AF221534   GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGSN---- 
AF221538   GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMGGSN------------ 
AY120917   GGMPGGMPGG----MPGGMPGGMPGGMPGGMPGGMPGGMPGSN?----------- 
AF221537   GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMP?IYM?-------------- 
AF221535   GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGSNGPTG 
AF221528   GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGSNGPTVEEVD 
AF247536   GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMP??LMVQL?----------- 
AY120919   GGMPGGMPGGMPGGMPGGMPGGMPGG?PGGLPGGMP??LM?-------------- 
AF221541   GA??GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGPTVEEV--- 
AF221542   GA??GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMSEGPAIGI?------- 
AF221543   GA??GGMPGG--------------------------------------------- 

Amino acid alignment 
                   10        20        30        40        50        
AF221529   G---GMPGGMPGGMPGGMPGGMPGGMPGGMP?--------------------------
AY120920   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPG----------------------
AY120916   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPG----------------------
AF221539   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPG?---------------------
AY120918   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGG?---------------
AF221540   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPG--
AF221530   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGSN--------
AF221533   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGSNG-----------
AF221536   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPG?---------
AF221532   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMSG----SNG?--
AF221531   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMSGS?------------
AF221534   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGSN----
AF221538   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMGGSN------------
AY120917   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGSN?---------------
AF221537   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGSIW---------------
AF221535   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGSNGPTG
AF221528   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGSNGPTVEEVD
AF247536   G---GMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGSNGPTV------------
AY120919   G---GMPGGMPGGMPGGMPGGMPGGMPGGCQEVCQEVCQDLM?---------------
AF221541   GAAGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGPTVEEV-------
AF221542   GAAGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMSEGPAIGI?-----------
AF221543   GAAGGMPGG------------------------------------------------- 

Alignment of repeats 
                   10        20        30        40        50        60     
AF221529   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMP?----------------------------------
AY120920   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPG------------------------------
AY120916   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPG------------------------------
AF221539   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPG?-----------------------------
AY120918   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPG---GG?--------------------
AF221540   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPG----------
AF221530   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMP--------GSN--------
AF221533   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMP------------GSNG-------
AF221536   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMP--------G?---------
AF221532   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMS--------GSNG?------
AF221531   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMS------------GS?--------
AF221534   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMP----GSN--------
AF221538   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGM-G-----------GSN--------
AY120917   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMP----------------GSN?-------
AF221537   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMP----------------GSIW-------
AF221535   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMP----GSNGPTG----
AF221528   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMP--------GSNGPTVEEVD
AF247536   ---GGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMP----------------GSNGPTV----
AY120919   ---GGMPGGMPGGMPGGMPGGMPGGMPGG?PGGLPGGMP----------------GSN?-------
AF221541   GAAGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPG--------------GPTVEEV-
AF221542   GAAGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGMPGGM------------------SEGPAIGI?-
AF221543   GAAGGMPGG---------------------------------------------------------

Fig. 12. Three alternative amino-acid alignments of the end of the 70-kDa heat shock protein (Hsp70) gene from 22 isolates of Cryptosporidium
(Apicomplexa). This demonstrates the problems that sequence repeats (paralogues) can cause for automated alignment procedures. The first alignment
is based directly on the nucleotides, and the second alignment is based on first translating the nucleotides to amino acids (both calculated by ClustalW
1.83 with default settings). The third alignment is a manual re-arrangement of the second alignment, emphasising the pattern and variation in the
repeat nature of the sequences. A ‘?’ indicates an unknown amino acid due to either a deleted or a non-sequenced nucleotide. The original nucleotide
data are from Xiao et al. (2002).
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variability (i.e. it can be easier to find plausible locations
for indels). The other main reasons for using amino acids
are the increased character-state space (i.e. 20 amino acids v.
4 nucleotides; Simmons et al. 2004), and that the gaps will
be inserted in groups of three nucleotides, thus maintaining
the reading frame of the sequences (which single-nucleotide
indels will destroy). For the same reasons, amino acids are
also recommended for database searching, even if the original
data are nucleotide sequences (Wernersson and Pedersen
2003).

As an example to illustrate the potential advantages
for sequence alignment, Fig. 13 shows part of the DNA
polymerase A gene from various species of the endoparasite
Leishmania (Kinetoplastida). The first alignment is based
on the nucleotide sequences, while the second one is based
on first translating the sequences to amino acids and then
aligning them, followed by back-translation. The nucleotide
alignment tries to minimise the number of gaps in the
first four sequences as well as to maximise the similarity

of the first triplet after the gap (i.e. it aligns CAC against
GAC rather than against CGC / CGT / CGA). However,
CGC / CGT / CGA all code for arginine, a basic amino acid,
while GAC codes for aspartic acid, an acidic amino acid.
Since CAC codes for histidine, another basic amino acid, the
amino acid alignment maximises the similarity in the type
of amino acid. The second alignment seems to be more
biologically plausible, since it hypothesises evolutionary
events that will have less effect on the structure of the resulting
protein.

This re-alignment of the first gap creates a second indel in
the affected sequences, which is most parsimoniously aligned
with the second indel in the other three sequences. This
second indel is created by a lack of repeat somewhere in a set
of GAC / GAT (aspartic acid) repeats or a set of GAG / GAA
(glutamic acid) repeats. The amino acid alignment places the
gap at the boundary between the two series of repeats, as this
maximises the consistency of the first and last columns of
the repeats (i.e. the gaps are placed in a mixture of Asp and

Nucleotide alignment 
                 1       10        20        30        40        50        60
L. aethiopica    AAGCGGGGC------------------CACGACGACGAGGAGGAGGATGGCAAACGGAAG
L. arabica       AAGCGGGGC------------------CACGACGACGAGGAGGAGGATGGCAAACGGAAG
L. tropica       AAGCGGGGC------------------CACGACGACGAGGAGGAGGATGGCAAACGGAAG
L. major         AAGCGGGGC------------------CACGACGACGAGGAGGAGGATGGCAAACGGAAG
L. chagasi       AAGCGGGGCCGC---------------GACGACGAGGAGGAGGAGGATGGGAAGCGGAAG
L. infantum      AAGCGGGGCCGT---------------GACGACGAGGAGGAGGAGGATGGGAAGCGGAAG
L. donovani      AAGCGGGGCCGC---------------GACGACGACGAGGAGGAGGATGGGAAGCGGAAG
L. mexicana      AAGCGGGGCCGC---------------GACGACGACGAGGAGGAGGATGGCAAGCGGAAG
L. amazonensis   AAGCGGGGCCGC---------------GACGACGACGAGGAG---GATGGCAAGCGGAAG
L. gymnodactyli  AGGCGGGGTCGA---------------GACGACGATGAAGAGGAGGATGGCAAGCGGAGA
L. tarentolae    AGGCGGGGTCGA---------------GACGACGATGAAGAGGAGGATGGCAAGCGGAGA
L. hoogstraali   AGGCGGGGTCGA---------------GACGACGATGAAGAGGAGGATGGCAAGCGGAGA
L. adleri        AGGCGGGGTCGA---------------GACGACGACGAAGAGGAGGATGGCAAGCGGAGG
L. braziliensis  AAGCGGGGCCGC---------------GACGACGACGAGGAG---GATGGCAAGCGGAAG
L. panamensis    AAGCGGGGCCGC---------------GACGACGACGAGGAG---GATGGCAAGCGGAAG
L. deanei        AAGCGCAGCCGC---------------GACGATGAGGGAGAGGAGGATGGCAAGCGGAAG
L. hertigi       AAGCGCAGCCGC---------------GACGATGAGGGAGAGGAGGATGGCAAGCGGAAG
L. herreri       AAGCGCAGCCGTGGCGGTGGCGGCGACGAGGATGACGGGGAGGAAGATGGCAAACGAAAG
E. monterogeii   AAGCGCAGCCGTGGCGGTGGCGGCGACGACGACGACGGGGAGGAAGATGGCAAGCGAAAG
 
Amino acid alignment 
                 1       10        20        30        40        50        60
L. aethiopica    AAGCGGGGCCAC---------------GACGAC---GAGGAGGAGGATGGCAAACGGAAG
L. arabica       AAGCGGGGCCAC---------------GACGAC---GAGGAGGAGGATGGCAAACGGAAG
L. tropica       AAGCGGGGCCAC---------------GACGAC---GAGGAGGAGGATGGCAAACGGAAG
L. major         AAGCGGGGCCAC---------------GACGAC---GAGGAGGAGGATGGCAAACGGAAG
L. chagasi       AAGCGGGGCCGC---------------GACGACGAGGAGGAGGAGGATGGGAAGCGGAAG
L. infantum      AAGCGGGGCCGT---------------GACGACGAGGAGGAGGAGGATGGGAAGCGGAAG
L. donovani      AAGCGGGGCCGC---------------GACGACGACGAGGAGGAGGATGGGAAGCGGAAG
L. mexicana      AAGCGGGGCCGC---------------GACGACGACGAGGAGGAGGATGGCAAGCGGAAG
L. amazonensis   AAGCGGGGCCGC---------------GACGAC---GACGAGGAGGATGGCAAGCGGAAG
L. gymnodactyli  AGGCGGGGTCGA---------------GACGACGATGAAGAGGAGGATGGCAAGCGGAGA
L. tarentolae    AGGCGGGGTCGA---------------GACGACGATGAAGAGGAGGATGGCAAGCGGAGA
L. hoogstraali   AGGCGGGGTCGA---------------GACGACGATGAAGAGGAGGATGGCAAGCGGAGA
L. adleri        AGGCGGGGTCGA---------------GACGACGACGAAGAGGAGGATGGCAAGCGGAGG
L. braziliensis  AAGCGGGGCCGC---------------GACGAC---GACGAGGAGGATGGCAAGCGGAAG
L. panamensis    AAGCGGGGCCGC---------------GACGAC---GACGAGGAGGATGGCAAGCGGAAG
L. deanei        AAGCGCAGCCGC---------------GACGATGAGGGAGAGGAGGATGGCAAGCGGAAG
L. hertigi       AAGCGCAGCCGC---------------GACGATGAGGGAGAGGAGGATGGCAAGCGGAAG
L. herreri       AAGCGCAGCCGTGGCGGTGGCGGCGACGAGGATGACGGGGAGGAAGATGGCAAACGAAAG
E. monterogeii   AAGCGCAGCCGTGGCGGTGGCGGCGACGACGACGACGGGGAGGAAGATGGCAAGCGAAAG

Fig. 13. Two alternative alignments of part of the DNA polymerase A gene from 18 Leishmania and an
Endotrypanum species (Kinetoplastida). This illustrates the advantages of aligning protein-coding sequences
as amino acids rather than as nucleotides. The first alignment is based directly on the nucleotides, and the
second alignment is based on first translating the nucleotides to amino acids (both calculated by ClustalW 1.83
with default settings). The original nucleotide data are from Croan et al. (1997).
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Glu amino acids). The nucleotide alignment places the gaps
at the end of the second series of repeats. Since the sequences
are ‘read’ from left to right, it seems more plausible to place
such gaps at the end of the series of repeats, although there
is no reason why repeats could not be added or subtracted at
any position.

Thus, there are distinct advantages to aligning amino
acids rather than nucleotides. However, the major problem
with using amino acids to align nucleotides is simply that
it assumes that the only cause of gaps in the alignment is
insertion or deletion of an amino acid. Clearly, there are
two other serious possibilities.

(1) Sequencing artefacts or curation artefacts (such as
misplaced introns, intron / exon boundaries or start and
stop signals). A good illustrative example is the dataset
of Rice et al. (1997) described above. For the 500 aligned
sequences, there are 423 internal gaps (as well as many
terminal ones) among the 1398 aligned nucleotide
positions, 406 of which are shown in the graph of
Fig. 14 (the remaining gaps are 15–180 nucleotides
long). The frequency distribution fits a logarithmic
series extremely well, implying that a single process
has created this set of gaps. Clearly, given the gap
lengths, insertion or deletion of amino acids is not that
process, since these would create gaps in multiples of
three nucleotides. Indeed, it seems more likely to be
the quality of the sequencing that is the culprit here, as
the gaps are concentrated in relatively few (96 of 500)
of the sequences, and the data date from 1993 when
laboratory techniques were less sophisticated than they
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Fig. 14. Frequency histogram of the gap size for 406 of the 423 internal
gaps in the 500-taxon dataset of Rice et al. (1997). The histogram fits
a logarithmic series extremely well, implying that a single process has
created this set of gaps. The remaining gaps are 15–180 nucleotides long
and do not fit the series, suggesting that they were created by one or more
additional processes.

are now. (The number of in-frame stop codons is also a
bit of a give-away.)

(2) A true slip in the reading frame that is quickly
corrected and thus affects only a few amino acids.
Two simple examples are shown in Fig. 15, based
on adding two outgroup taxa to some of the
Cryptosporidium data discussed above. The first example
(the actin gene) is apparently quite straightforward from
the point of view of the protein sequences (the top
alignment in the figure), as there is a single amino-
acid indel (probably an insertion) in the Plasmodium
falciparum II sequence, followed by an amino-acid
substitution one position later. However, from the point
of view of the DNA sequences these two differences
involve a series of changes over the nine positions
involved (positions 16–24); even the unchanged amino
acid in the middle involves a nucleotide substitution.
Therefore, it is more parsimonious to postulate a quite
different evolutionary history for the DNA sequences
(the bottom alignment), involving re-alignment of all
of the other sequences relative to P. falciparum II. This
replaces all of the substitutions with a smaller number
of indel events. The consequence for constructing
a phylogenetic tree is that the pattern of shared
character states among the sequences is very different
between the two alignments, and so they support
different trees.

The second example (the Hsp70 gene) is in some ways
more subtle, because there is no length variation in the amino-
acid sequences, but it has an equally big effect. From the
protein perspective there are two amino-acid substitutions
(and no indels) in the P. falciparum sequence compared to
the others. However, from the DNA perspective these changes
involve five nucleotide substitutions out of six positions (top
alignment). Therefore it is more parsimonious to postulate
an insertion–deletion pair in the DNA sequence, which
causes a short frame-shift, and no substitutions at all (bottom
alignment). These are obviously quite different hypotheses
of the molecular evolution. However, there is also a practical
importance for phylogenetic tree building, because in the
bottom alignment all of the character-state differences are
unique to P. falciparum, and so will probably not affect
the choice of tree topology, while in the top alignment
position 13 has a character state shared between P. falciparum
and Cryptosporidium canis, which can quite definitely affect
the choice of tree.

In both of these examples translating the sequences to
amino acids to perform the alignment is probably counter-
productive, even if there is apparently no length variation in
the unaligned sequences. In fact, from this point of view it is
actually quite difficult to work out what the word ‘homology’
means with reference to an amino acid sequence when frame-
shifts have occurred. Note that the homology hypotheses in



Multiple sequence alignment Australian Systematic Botany 521

Amino acid alignment          Actin                           Hsp70
                  1       10        20        30      1       10        20
P. falciparum_II  AAACGTTCTGAAGAACATTCAGATGAAATAGAA
P. falciparum_I   AAAACATCTGAACAA---AGCAGTGATATTGAA   TTAGATGTT-TGCTCCTTATCATTA
B. bovis          AACTCTTCTGCATCA---TCTAGTGAAATCGAG   CTCGATGTC-GCTCCACTCTCCCTC
C. parvum_human   AAGAAATCTCAAGAA---TCTTCTGAATTAGAG   TTGGATGTT-GCTCCATTATCACTC
C. canis_dog      AAGAAGTCTCAGGAG---TCTTCAGAATTAGAA   TTGGATGTT-GCCCCACTGTCCCTC
C. baileyi        AAGAAATCACAGGAA---TCATCTGAACTTGAA   TTAGATGTT-GCTCCATTATCACTT
C. felis          AAAAAGTCTCAGGAG---TCTTCCGAACTTGAA   CTGGATGTT-GCTCCTTTGTCTCTC
C. wrairi         AAGAAATCTCAAGAA---TCTTCTGAATTAGAG   TTGGATGTT-GCTCCATTATCACTC
C. saurophilum    AAGAAATCTCAAGAA---TCTTCTGAGCTTGAA   TTGGATGTT-GCTCCTTTGTCTCTT
C. meleagridis    AAGAAATCTCAAGAA---TCTTCTGAATTAGAG   TTGGATGTT-GCTCCATTATCACTT

Nucleotide alignment          Actin                           Hsp70
                  1       10        20        30      1       10        20
P. falciparum_II  AAACGTTCTGAAGAACATTCAGATGAAATAGAA
P. falciparum_I   AAAACATCTGAACAAAG--CAG-TGATATTGAA   TTAGATGTTTGCTCC-TTATCATTA
B. bovis          AACTCTTCTGCATCATCT--AG-TGAAATCGAG   CTCGATGTC-GCTCCACTCTCCCTC
C. parvum_human   AAGAAATCTCAAGAATCTTC---TGAATTAGAG   TTGGATGTT-GCTCCATTATCACTC
C. canis_dog      AAGAAGTCTCAGGAGTCTTC---AGAATTAGAA   TTGGATGTT-GCCCCACTGTCCCTC
C. baileyi        AAGAAATCACAGGAATCATC---TGAACTTGAA   TTAGATGTT-GCTCCATTATCACTT
C. felis          AAAAAGTCTCAGGAGTCTTC---CGAACTTGAA   CTGGATGTT-GCTCCTTTGTCTCTC
C. wrairi         AAGAAATCTCAAGAATCTTC---TGAATTAGAG   TTGGATGTT-GCTCCATTATCACTC
C. saurophilum    AAGAAATCTCAAGAATCTTC---TGAGCTTGAA   TTGGATGTT-GCTCCTTTGTCTCTT
C. meleagridis    AAGAAATCTCAAGAATCTTC---TGAATTAGAG   TTGGATGTT-GCTCCATTATCACTT

Fig. 15. Partial alignments of the actin and 70-kDa heat-shock protein (Hsp70) genes for seven species of
Cryptosporidium plus Babesia bovis and Plasmodium falciparum (Apicomplexa). This illustrates the disadvantages
of aligning protein-coding sequences as amino acids rather than as nucleotides. There are two actin genes for P.
falciparum (paralogues I and II) but only one gene for Hsp70. The alignments were derived using the ClustalW
1.83 program, with default settings. Two alternative alignments are shown for each gene. The bottom alignment
was created using the DNA sequence data, while the top alignment was created after the DNA data had been
translated to the equivalent amino-acid sequence (and then back-translated to nucleotide sequences). The original
nucleotide data are from Xiao et al. (2002).

the amino acid alignment are wrong for Hsp70, because the
cysteine (TGC) is not homologous to the alanines (GCT,
GCC) and nor is the serine (TCC) homologous with the
prolines (CCA, CCT). At the nucleotide level, the serine T
is homologous to the alanine T while the serine CC is
homologous to the proline CC, and so the serine has no simple
homologue among the other amino acids (and neither does
the cysteine).

So, if you choose to align nucleotides as translated
amino acids then you should always check the nucleotide
sequences afterwards, to see if the potential homologies are
plausible and parsimonious. Note, also, that in possibility
(2) the gap represents an indel, while in (1) it does not.
This emphasises the point that gaps and indels are not the
same thing.

There are several computer programs that have been
designed to automate the translation, alignment and back-
translation of protein-coding sequences. These include
MRTrans (ftp.virginia.edu in pub/fasta/other/mrtrans.shar;
verified 2 November 2006), RevTrans (Wernersson and
Pedersen 2003), CodonAlign (http://www.sinauer.com/hall;
verified 2 November 2006), and transAlign (Bininda-
Emonds 2005). Only the latter program attempts to
deal explicitly with shifts in the reading frame, which
it does not always do successfully. Aligning protein-
coding nucleotide sequences in a manner that is robust
to frame-shifts is not easy, even for pairwise comparisons
(Arvestad 1997).

There is also the matter of aligning nucleotide sequences
that only partially code for proteins. That is, we have long
had the ambition to align sequences of coding and non-
coding DNA, with or without frame-shifts, and possibly
with multiple reading frames (Hein 1994). Several usable
algorithms for pairwise alignment under these circumstances
have been developed (Hein and Støvlbæk 1996; Pedersen
et al. 1998; Hua et al. 1999), but the only attempt to produce
multiple alignments is that of Stocsits et al. (2005), with the
CodAln program.

Structure-based alignment

In an earlier section, I argued that it is possible to apply
to molecular sequences the same principles and practice
of detailed structural and functional (e.g. biochemical,
biophysical and genetic) analyses of characters that have
traditionally been used for the assessment of homology in
studies of phenotypic attributes (these studies being based
on the observed close relationship between structure and
function in biology). More to the point, I contend that it
is now quite easy to do so in practice. It is thus usually
unnecessary for phenetic pattern-matching procedures
to continue to dominate molecular phylogeny, because
the sequence–structure–function relationship provides a
straightforward mechanism for explicitly incorporating
evolutionary homology into molecular sequence alignment.
This circumstance does not yet seem to have been widely
appreciated by practicing phylogeneticists, because the
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structure-based multiple-sequence alignments have mainly
been used for predicting the molecular structures themselves,
rather than for phylogenetic analysis.

A deeper understanding of the secondary and tertiary
structures of the molecules should contribute to a better
understanding of evolutionary homology, in the same way
that studies of ontogeny and developmental constraints
have contributed to the assessment of primary homology
for phenotypic data. However, similarity of topology and
shared functional constraints only represent evidence on
which to base hypotheses of homology, and they may still
actually represent homoplasy instead. The argument for
using structural considerations is based on the idea that
it is unlikely that a group of structurally related genes
would arise independently (Gough 2005), and so they
are very likely to have evolved from a common ancestor.
However, the hypothesised homologues may result from
functional convergence (i.e. analogy), and this may not
necessarily be unlikely for the residues of structural genes
(e.g. see the example discussed in detail by Sadreyev and
Grishin 2004).

Nevertheless, for RNA-coding sequences at least, the
use of putative secondary-structure models is very likely to
produce multiple-sequence alignments that are close to the
true alignments, in the sense of having aligned evolutionarily
homologous nucleotides (Kjer 1995; Hickson et al. 1996;
Morrison and Ellis 1997), since the higher-order structures
inferred from comparative analyses are now quite refined.
This will be especially important in situations where the
phylogenetic signal is weak (Taylor 1986; Kjer 1995), such as
in remotely related taxa, since small errors in the data matrix
can then have large effects on the subsequent phylogenetic
inferences.

In particular, the existence of plausible structure models
provides an explicit and repeatable criterion for aligning
variable regions of the sequences (Taylor 1986; Kelchner
2000). These regions have traditionally been considered
to have ambiguous alignments, because there can be
multiple equally optimal alignments in these areas if
maximising similarity is the only criterion used. Furthermore,
these ambiguously aligned regions are often excised from
phylogenetic studies because of their presumed unreliability.
(Note that this is different from simply excluding gapped
regions from subsequent analyses, since gapped regions
are not necessarily ambiguously aligned.) However, if the
structure models can be successfully used for alignment
then the ambiguities are reduced (along with the multiple
optima), because the acceptable alignment is chosen only
from among those that maintain the conserved structural
features; for example, compensatory base changes in rRNA
structures provides evidence on which to base hypotheses of
homology. Under these circumstances, exclusion of portions
of the sequences could then be based on their apparent lack

of phylogenetic information rather than on artefacts such as
pattern-matching ambiguities. Finally, the structure models
also provide a valuable framework for checking the accuracy
of the individual sequences themselves (i.e. proofreading),
since the consistency of conserved motifs must be maintained
(Taylor 1986; Kjer 1995, 2004; Hickson et al. 1996; Gillespie
et al. 2005b).

A specific example is shown in Fig. 16, based on the
sequences of the α and β chains of human haemoglobin.
These two genes are considered to be the product of an
ancient duplication and thus are paralogous. The proteins
also fold into almost identical structures. However, the
alignment as shown has some ambiguities in it, which
cannot easily be resolved by either nucleotide or amino-acid
similarity. These can be dealt with by making the alignment
reflect the structural and functional relationships between the
two chains. It is principally the α chain that requires gaps
in order to align it to the longer β chain, and so it is the
gaps in the α chain that need adjusting. The DLS amino-acid
motif near position 150 appears to be well aligned between
the two chains, but the side-chain of the histidine (H) near
position 160 of the α haemoglobin occupies approximately
the same structural space as that of the methionine (M) at
position 173 of the β chain. More importantly, these two side-
chains have the same function, which is to ‘glue’ this part of
the amino-acid sequence to the core of the protein (which
the histidine does by a salt bridge and the methionine does
via hydrophobic contacts). So, both structural and functional
considerations suggest aligning the H with the M, which are
currently shown at opposite ends of the gap. Note that this
contradicts the alignments presented by both Fitch and Smith
(1983) and Knudsen and Miyamoto (2003).

As a more extreme example, we can consider aligning the
large-subunit rRNA genes from the mitochondrial genomes
of the 13 species that have currently been sequenced from
nematodes. The 11 sequences from the class Chromadorea
have 61–84% pairwise nucleotide identity, which means that
they are difficult to align accurately using sequence similarity
alone. However, they are all easy to align (even manually)
against the sequence alignment (for three of the species)
and secondary structure (for one species) provided by the
CRW database (Cannone et al. 2002). On the other hand, the
two sequences from the class Enoplea have only 40–48%
pairwise nucleotide identity with the other sequences (sharing
only a couple of small motifs), and they are thus very difficult
to align even under these circumstances. Nevertheless, they
can both be aligned with the other sequences based on their
own secondary-structure diagrams (provided in the original
publications), as all of the structures are still very similar. This
can be done either manually or using a computer program that
aligns RNA secondary structures. It is, of course, another
matter whether a phylogenetic analysis based on primary
sequence patterns would be productive at this low level of
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              1       10        20        30        40        50        60        70
              ATGGTG---CTGTCTCCTGCCGACAAGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCGCGCACGCTGGCGAGTAT
Human_alpha    M  V  -  L  S  P  A  D  K  T  N  V  K  A  A  W  G  K  V  G  A  H  A  G  E  Y
Human_beta     M  V  H  L  T  P  E  E  K  S  A  V  T  A  L  W  G  K  V  -  -  N  V  D  E  V
              ATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTG------AACGTGGATGAAGTT

              80        90       100       110       120       130       140       150
              GGTGCGGAGGCCCTGGAGAGGATGTTCCTGTCCTTCCCCACCACCAAGACCTACTTCCCGCACTTC---GACCTGAGC
Human_alpha    G  A  E  A  L  E  R  M  F  L  S  F  P  T  T  K  T  Y  F  P  H  F  -  D  L  S
Human_beta     G  G  E  A  L  G  R  L  L  V  V  Y  P  W  T  Q  R  F  F  E  S  F  G  D  L  S
              GGTGGTGAGGCCCTGGGCAGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCC

               160       170       180       190       200       210       220       230
              CAC---------------GGCTCTGCCCAGGTTAAGGGCCACGGCAAGAAGGTGGCCGACGCGCTGACCAACGCCGTG
Human_alpha    H  -  -  -  -  -  G  S  A  Q  V  K  G  H  G  K  K  V  A  D  A  L  T  N  A  V
Human_beta     T  P  D  A  V  M  G  N  P  K  V  K  A  H  G  K  K  V  L  G  A  F  S  D  G  L
              ACTCCTGATGCTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTG

                 240       250       260       270       280       290       300       310
              GCGCACGTGGACGACATGCCCAACGCGCTGTCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTC
Human_alpha    A  H  V  D  D  M  P  N  A  L  S  A  L  S  D  L  H  A  H  K  L  R  V  D  P  V
Human_beta     A  H  L  D  N  L  K  G  T  F  A  T  L  S  E  L  H  C  D  K  L  H  V  D  P  E
              GCTCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCCTGAG

                   320       330       340       350       360       370       380       390
              AACTTCAAGCTCCTAAGCCACTGCCTGCTGGTGACCCTGGCCGCCCACCTCCCCGCCGAGTTCACCCCTGCGGTGCAC
Human_alpha    N  F  K  L  L  S  H  C  L  L  V  T  L  A  A  H  L  P  A  E  F  T  P  A  V  H
Human_beta     N  F  R  L  L  G  N  V  L  V  C  V  L  A  H  H  F  G  K  E  F  T  P  P  V  Q
              AACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCACCCCACCAGTGCAG

                     400       410       420       430       440       450 
              GCCTCCCTGGACAAGTTCCTGGCTTCTGTGAGCACCGTGCTGACCTCCAAATACCGTTAA 
Human_alpha    A  S  L  D  K  F  L  A  S  V  S  T  V  L  T  S  K  Y  R  *
Human_beta     A  A  Y  Q  K  V  V  A  G  V  A  N  A  L  A  H  K  Y  H  *
              GCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACTAA 

Fig. 16. Alignment of the human haemoglobin α and β chains, showing both the DNA and amino acid sequences. The alignment was
produced by ClustalW version 1.83 based on the amino acid sequences, and does not reflect the structural and functional relationships
between the two chains. The example is modified from Rodriguez and Vriend (1997).

identity. It is just as likely that the conservation of structure
is a result of functional constraints instead of evolutionary
homology (see Schultes et al. 1999), in which case the
sequence alignment will be of little use for phylogenetic
purposes.

It also needs to be recognised that the alignment of
sequences against structure models for proteins and RNAs
is not perfect, and the placement of some residues will
remain arbitrary. For example, the helices and strands are the
structurally conserved regions of proteins while the loops and
coils are more loosely conserved, and consequently alignment
of the helical and strand regions is much more straightforward
(Poch and Delarue 1996). Alternatively, for RNAs it is the
loops and bulges that are usually well conserved (because of
their role in protein recognition), while the double-stranded
parts of the helices are usually the easiest to align because of
the compensatory base changes needed to maintain the stems
(Varani and Pardi 1994). As an example, in Fig. 16 it seems
that at the nucleotide level the two valines (V) at position
5 are aligned, but in the folded protein the α-chain valine
actually occupies the same structural position as the adjacent
histidine (H) of the β chain. Here, secondary structure and
primary similarity contradict each other unresolvably.

There can also be potential problems of non-homology
in the alignments, which can result, for example, from

variability in the size and position of helices, local
structural rearrangements caused by nearby mutations,
mutation ‘hotspots’ where reversals and parallelisms are
common, phenomena such as replication slippage, or simply
misapplication of the method due to subjective bias (Kjer
1995; Hickson et al. 1996; Hancock and Vogler 2000;
Kelchner 2000; Gillespie 2004). An obvious example is
the hypervariable regions that occur in rRNA, where there
is extreme length variation (e.g. Gillespie et al. 2005b),
and replication slippage often leads to convergence on
similar primary and secondary structures (see the instances
discussed by Hancock and Vogler 2000 and Shull et al. 2001).
Homology assessment in such regions can be difficult or
impossible, and such regions may be best left unaligned.
There is also non-homology due to functional constraints,
as discussed above.

Thus, it is important to emphasise here that I am
not advocating the use of pure structure alignments as
phylogenetic alignments. Structure multiple alignments are
useful for structure prediction but not necessarily for
phylogenetic analysis. Instead, what I am referring to is
structural consistency, which can be thought of as a structure-
based alignment. Although there is no simple definition of
a structure-based alignment (e.g. what components it must
or must not have), the distinction can be made clear with
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reference to an alignment of RNA sequences, as shown in
Fig. 17. Here, three possible alignments are shown, with
the first one based solely on sequence similarity and the
second one based solely on structural similarity (these are
thus optimal alignments based on two different criteria). In
the similarity alignment, the hypotheses of homology are
complex, as three of the aligned residues in each sequence
are postulated to have changed their functional role in
the formation of the short stem. This is a rather unlikely
scenario, and it is certainly not parsimonious. In the structure
alignment, equivalent structural residues are aligned, so that
three gap positions are introduced into each sequence in order
to align those residues that are paired in the stem (i.e. the
complementary base pairs). This scenario thus postulates
at least four indels, which may not be any more likely
evolutionarily, and it is not much more parsimonious. The
structurally consistent alignment, on the other hand, bases
the alignment on sequence similarity with the proviso that
if one half of a stem-pair is aligned then the other half must
also be aligned. It thus differs from the structure alignment in
not insisting that all paired residues be aligned. In this case,
only one indel is postulated in each sequence, both involving
a change in function for the other residue, plus one other
change in function in each sequence.

A specific example of a structure-based alignment is
shown in Fig. 18, for 22 ITS2 rRNA gene sequences from
two families of mites. This form of alignment presentation

Similarity alignment

Structure alignment

Structurally consistent

Taxon1

Taxon2

Taxon1

Taxon1

Taxon2

Taxon1

Taxon2

Taxon2

AACCAAAAAGAGAA

AAC–CAAAAAGAGAA––

AACCA–AAAAGAGAA

AA–CUUAAAAGAGAA

AACUUAAAAGAGAA

A
A A
A

A A

A
A

A A A A AG

U
U

A–

C G–

A

A A

C – G

C – G

A

A

AACUU–AAA–A–GAGAA

..<<.....>.>..

..<.<...>>....

..<–<.....>.>..––

..<.<–...–>–>....

..<<.–....>.>..

..–<.<...>>....

Fig. 17. An artificial example of the difference between pairwise
alignment of two RNA sequences based on similarity, structure and
structural consistency. On the left, each of the two sequences is
shown along with its secondary structure, where complementary
paired residues in a short stem are indicated by angle brackets,
so that ‘<’ indicates the 5′ residue of the pair and ‘>’ indicates the
3′ residue. A schematic diagram of each stem structure is shown on the
right. Each alignment proposes a different set of hypotheses concerning
the homology of the residues between the two stems. This example is
based on one published by Gardner and Giegerich (2004).

makes it clear where the homology problems are and what
they are, when trying to align sequences across taxonomic
groups. Thus the plausibility of hypotheses of homology
can be evaluated; and unalignable regions can be explicitly
defined. The visual presentation of such alignments for RNA
sequences is discussed in more detail by Kjer et al. (1994),
Kjer (1995) and Gillespie (2004).

In this example, it is usually considered that ITS2
molecules form a four-stem structure, as discussed by Schultz
et al. (2005), with the stems labelled I–IV. The whole
structure forms a closed loop, because the preceding (5′)
sequence in the 5.8S molecule pairs with the succeeding
(3′) sequence in the 28S molecule. The ITS2 is thus easily
excised from the growing ribosomal macromolecule by
simply cutting one stem.

In rRNA sequences, many of the helices are easily aligned
both within and between taxonomic groups, as they are
often length-invariant and very similar due to the functional
necessity of base pairing; even the single-stranded bulges can
usually be aligned. For example, in this example helices 0 and
III are unproblematic (Fig. 18). However, helices I and IV
are difficult to locate, with the I′ and IV′ sides apparently
straightforward to align but not the opposite side of these
stems.

Some of the characteristic features of the ITS2 also
occur only sporadically in these sequences. For example,
the unpaired U–U in helix II exists in all Phytoseiidae
species except for Metaseiulus occidentalis but not in the
Rhinonyssidae (where there is an A–T or G–T pair). The
same taxonomic distribution occurs for the UGGU motif at
the base of helix III.

Moreover, in this example helix II–II′ is easily aligned
for the Phytoseiidae but not for the Rhinonyssidae, and thus
it is difficult to align across both taxonomic groups. Also,
helices can be regions of expansion or contraction (REC),
where parts of the helix are not homologous between
groups, such as helix II–II′ in this example, where the
paired region IIa–IIa′ is common to both families but region
IIb–IIb′ is unique to the Phytoseiidae. Helices can also help to
determine which alignment gaps are likely to be sequencing
artefacts, since each helix base must pair with another base.
For example, the four-base gap in helix 0′ of Neoseiulus
californicus must be an artefact, as the corresponding paired
nucleotides exist in helix 0.

The helix terminal (hairpin) loops of rRNA are usually
easily aligned within taxonomic groups but are often doubtful
between groups, even when they are length-invariant.
For example, the terminal loop of helix II–II′ is six bases
long in both families but they are doubtfully homologous.
The initial TG of most of the Rhinonyssidae sequences may
actually be homologous with the initial unpaired TG between
helices IIa and IIb of the Phytoseiidae; and, indeed, the
similarity-based sequence-alignment programs all align this
TG motif across the two groups.
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The other unpaired regions (i.e. the connecting sequences
between helices) sometimes cannot even be aligned easily
within taxonomic groups. In these cases the sequences
are shown unaligned, the nucleotides simply being moved
to one end or the other of the region (called regions of
ambiguous alignment, RAA). However, in this example the
regions between helices I′ and IIa, IIa′ and III, and IV′ and 0′
are length-invariant and very similar across both groups, and
thus are shown aligned here.

The objective of a structure-based alignment is thus to
delimit the various structural regions of the end product
molecule (e.g. protein or RNA), which defines a set of
sequence zones within each of which homology can be
assessed separately. Some of these zones will have clear
primary-sequence similarity and some will not. Among the
latter zones will be those that can be aligned even in the
absence of sequence similarity, as well as those that cannot.
The aligned zones can be used as anchor points irrespective of
whether there is any sequence conservation or not, followed
by further attempts at alignment using primary sequence
similarity, if desired.

Incorporating structure information into alignment

In order to incorporate structural information into multiple-
alignment protocols, as suggested above, there are three
possible strategies: (i) perform a manual alignment according
to some structure model; (ii) incorporate structure-based
parameters into an automated alignment procedure; and
(iii) base the alignment directly on a pre-existing structure-
based alignment. The latter two avenues have recently been
explored in the literature, with the first one being better
explored for protein-coding sequences and the latter for
RNA-coding sequences.

For proteins, many experimentally determined (e.g. by
NMR) three-dimensional structural models now exist, and
are available in the Protein Data Bank (Westbrook et al.
2003). It is recognised that the organisation of these
molecules into helices, strands and loops, coils or turns
results in unequal probabilities of indels occurring in each
of these three functional regions (Pascarella and Argos
1992), and alignment procedures for protein-coding genes
should take this phenomenon into account [i.e. strategy (ii)].
Computerised alignment algorithms have been developed
to do this, by having position-specific gap penalties (which
control the number of indels inferred in the sequences) rather
than having an average value that is applied throughout the
sequence (e.g. Henneke 1989; Bell et al. 1993; Higgins et al.
1996; Taylor 1996), or by including the amino acid properties
(such as hydrophobicity, polarity, size, charge) as weights
(e.g. Taylor 1986; Johnson et al. 1990; Zhang and Kahveci
2006). It is also possible to use information from structure-
prediction programs directly in an alignment strategy

(Al-Lazikani et al. 2001; Jennings et al. 2001; O’Sullivan
et al. 2004; Simossis and Heringa 2005; Zhou and Zhou 2005;
Armougom et al. 2006).

For RNA-encoding sequences, models of structure and
function are now very well developed indeed (Higgs 2000),
both experimentally determined for smaller molecules and
derived from comparative sequence analysis (also called
homology modelling) for larger molecules (Gutell et al.
2002). The models provide details of the secondary-structure
arrangement of the RNA molecules into helices (with double-
stranded stems as well as single-stranded bulges and loops)
and non-helical regions; and the tertiary structure of some
of the molecules is also now beginning to be addressed
(Gutell et al. 2002). There are many programs available to
predict RNA secondary structure (see Gardner and Giegerich
2004), and some of these simultaneously predict structure
and produce a multiple alignment (e.g. Hofacker et al. 2004;
Touzet and Perriquet 2004; Bauer et al. 2005a, 2005b;
Holmes 2005; Siebert and Backofen 2005; Bafna et al.
2006; Dalli et al. 2006), although this is a very difficult
process, especially for long genes.

Alternatively, strategy (i) suggests that these structure
models for proteins and RNAs could be used to aid manual
alignment of the sequences. For example, Ponting and Birney
(2000) give some advice for manually improving a multiple
alignment in relation to conserved structural features of
proteins. However, in practice manual alignments have been
restricted almost entirely to RNA-coding sequences (other
than manual alignment of protein-coding sequences that
are almost identical). This effectively involves comparative
sequence analysis of new sequences against pre-existing
structure models, searching for compensatory base changes
(Kjer et al. 1994). Kjer (1995) gives details of a manual
method for structure-based RNA alignment (see also the
jRNA website: http://hymenoptera.tamu.edu/rna/index.php;
verified 31 October 2006; Gillespie et al. 2005a); and
suitable templates can be developed based on sequence
motifs (Hickson et al. 1996; Kjer 1997; Kelchner 2002;
Gillespie et al. 2005b). This method is detailed and
explicit enough so that empirical evidence indicates it
to be at least as repeatable as any automated procedure
(Kjer et al. 2006).

More important, though, is strategy (iii), which points
out that multiple-sequence alignment can be performed by
automatically aligning new sequences against a database
of sequences that have themselves already been aligned
against known structures. That is, the database sequences
are used as alignment templates (or seed alignments) to
guide subsequent alignment procedures, thus explicitly
using the structural models to improve the homology of the
resulting alignments (Rost and Valencia 1996). This can
be thought of as ‘jump-starting’ alignment (cf. Mecham
et al. 2006), where all of the hard work done to produce
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previous alignments is not wasted but is instead used as
the starting point for later work. Personally, I (and others,
e.g. Nicholas et al. 2002) think that this approach will be
the way of the future for multiple sequence alignment for
phylogenetic purposes (and probably also for phylogenetic
analysis in general). To this end, there is a growing trend to
provide curated databases of aligned genome sequences for
particular groups of organisms that can be used as alignment
templates (e.g. HIV Sequence Database: http://hiv-
web.lanl.gov/content/index; Database of Homologous
Sequences from Complete Genomes: http://pbil.univ-
lyon1.fr/databases/hogenom.html; Organellar Genome
Retrieval system: http://drake.physics.mcmaster.ca/ogre/;
GreenGenes: http://greengenes.lbl.gov/; all URLs verified
31 October 2006).

For protein-coding sequences, perhaps the most useful of
the general databases for the creation of multiple alignments
is the Pfam database (Finn et al. 2006), which has alignments
of all of the sequences from the Swiss-Prot / TrEMBL amino
acid databases, these alignments being grouped based on
the protein structural domains from the ProDom database.
If you want an amino acid alignment for a gene then you can
simply download an alignment from the database, although
the alignment will be for only those parts of the sequence
with a recognised (i.e. classified) structural domain. This
set of downloaded sequences can be used as a template for
aligning your own sequences. Nucleotide alignments of these
same sequences are available in the Pandit database (Whelan
et al. 2006), which may thus be of more direct relevance for
phylogenetic analysis.

Similarly, online databases of the known (i.e. published)
sequences now exist for many RNAs in the Rfam database
(Griffiths-Jones et al. 2005), as well as in specialised
databases for the 5S (Szymanski et al. 2002) and small-
and large-subunit (Cannone et al. 2002; Cole et al. 2005;
Wuyts et al. 2004; DeSantis et al. 2006a) rRNA genes,
as well as for the tRNA (Helm et al. 2000; Rainaldi et al.
2003; Sprinzl and Vassilenko 2005), tmRNA (Gueneau
de Novoa and Williams 2004), uRNA (Zwieb 1997),
SRP-RNA (Andersen et al. 2006), and RNase P RNA
(Brown 1999) genes. All of these databases store the
sequences in a format based on the alignment inferred
from the secondary-structure models. For these DNA
sequences there is thus no need to use computerised
pattern-matching algorithms to produce multiple-sequence
alignments—the alignments are simply downloaded from the
appropriate database.

There are also non-coding sequences that have
characteristic secondary structure. These include: introns,
such as the Group II cis-splicing introns which have a
stem–loop structure that is necessary for autosplicing
(Kelchner 2002); spacers, such as the internal transcribed
spacers in RNA-coding regions (Schultz et al. 2005) and

inter-genic spacers (Kelchner 2000); and the many types
of non-coding RNA now being recognised (Eddy 2002b).
Where these sequences are conserved within a taxonomic
group, and are presumably therefore under some form
of evolutionary constraint, they are useful phylogenetic
markers. Unfortunately, these sequences are less likely to
have had their structure elucidated for your study group (see
Schultz et al. 2005), and so you may have to do it yourself
(as I did above for the mite ITS2 sequences). There are
currently no specialised databases of alignments available
for access, although Rfam has some alignments of intron
domains.

Unfortunately, none of the databases that I have listed is
yet set up perfectly for phylogenetic analysis. For example,
the protein databases are usually arranged by conserved
domains, and most proteins have two or more domains. This
means that the gene sequences will have somewhat different
names in different parts of the database, and sometimes have
non-obvious abbreviated names. Also, the sequences may
have no direct structure annotation; and the non-conserved
sequences between the domains are not included. Moreover,
the particular structure models chosen for each database
can influence the alignment and therefore the phylogenetic
inference (Winnepenninckx and Backeljau 1996; Marchler-
Bauer et al. 2002).

Perhaps most importantly, none of these databases is
perfectly curated, and so manual checking of the aligned
sequences for consistency among closely related taxa
is still necessary. For example, in the current release of
the Rfam database (version 7.0; Griffiths-Jones et al.
2005), the 5.8S sequence alignment in accession number
RF00002 has a consensus secondary structure diagram
(for Homo sapiens) that does not match the secondary
structure diagram shown in the cited literature reference.
Alternatively, the alignments provided by the databases are
not necessarily either structurally consistent or consistent
with their structure model. For example, there are three
Plasmodium falciparum (Apicomplexa) sequences in the
5.8S sequence alignment of the Comparative RNA Website
(Cannone et al. 2002), and these have two stems where there
are inconsistencies. In the first stem (sometimes called B7),
sequence U48228 has a structure diagram with a five-base
hairpin loop and is aligned that way, but sequence U21939
is aligned as a five-base loop but shows a structure with a
three-base loop. In the second stem (sometimes called B8),
U21939 has a structure and an alignment with a four-base
hairpin loop, U48228 has a structure with a four-base
loop but is aligned as a six-base loop, and sequence
AL031746 is indicated as having a six-base loop that
is not aligned with either of the other two sequences.
Caveat emptor.

Use of these databases requires you to align your
new sequences against a pre-existing alignment. Some of
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the web services provided with the databases allow you
to align a new sequence against their database online,
including the Pfam (Finn et al. 2006), Rfam (Griffiths-Jones
et al. 2005), RDP-II (Cole et al. 2005), HPV (http://hpv-
web.lanl.gov/stdgen/virus/hpv/; verified 31 October 2006),
NAST (DeSantis et al. 2006b) and European rRNA
(http://pbil.univ-lyon1.fr/databases/rnali.html; verified
31 October 2006) databases, which can be effective if you
have a small number of sequences. These methods often
use hidden markov models (or their extensions, called
stochastic context-free grammars) rather than profiles,
so that the resulting alignments can be of high quality.
You can also adopt this strategy yourself by using the
programs directly (Eddy 1998, 2002a). For protein-coding
sequences, it may be sufficient simply to use the profile-
alignment option of a standard progressive alignment
program (Jennings et al. 2001). Alternatively, several
computerised alignment algorithms have been developed to
align new RNA sequences against a sequence or pre-existing
alignment based on both primary and secondary structures
(e.g. Corpet and Michot 1994; Notredame et al. 1997;
Lenhof et al. 1998); Page (2000) discusses an alignment
web-server based on this idea. Alternatively, one can treat
the structure alignment as a profile and then use position-
specific gap penalties and sequence weighting to align
this to new sequences (e.g. O’Brien et al. 1998; Thébault
et al. 1999).

If either strategy (i) or (ii) is being used, then it is helpful
if the multiple sequence alignment editor has the capability
to interface with a program that deals with structures. For
protein-coding sequences, such editors include AntheProt
(Deléage et al. 1988), InterAlign (Pible et al. 2005), Jalview
(Clamp et al. 2004), STRAP (Gille and Frömmel 2001) and
ViTO (Catherinot and Labesse 2004). For RNA sequences,
it is necessary that the editor takes into account and displays
the secondary structure, so that structural consistency
can be maintained in paired regions. There are a few
such programs, including BioEdit (Hall 1999), but there
are also specialist editors such as DCSE (De Rijk and
De Wachter 1993) and RALEE (Griffiths-Jones 2005).
It also helps if you can extract the structure information
from the databases along with the sequences (see Telford
et al. 2005).

If strategy (iii) is being used, then it is helpful to have
an appropriate tool to maintain your own databases of
alignments, to which you can align your new sequences. The
only such tools available at the moment are ARB (Ludwig
et al. 2004), jPHYDIT (Jeon et al. 2005) and RibAlign
(Teeling and Gloeckner 2006), with the former being the most
generally useful package.

Conclusions
Sequence alignment is often seen as a bioinformatics
procedure rather than a biological one. Thus, many

previous reviews of multiple alignment have concentrated
on descriptions of algorithms rather than on biological
principles. I have tried to redress the balance by covering a
series of topics that seem to me to have been under-stressed or
under-valued, particularly within the context of phylogenetic
analysis.

First, sequence alignment in a phylogenetic analysis
is about assessing homologies: the residues aligned
should be homologous in the evolutionary sense.
These homologies are hypotheses about unknowable
evolutionary events rather than empirical observations.
Thus, a phylogenetic alignment can differ considerably from
other forms of sequence alignment. For molecular structure
prediction we need to align structurally equivalent residues,
and for sequence comparison we need to align functionally
equivalent motifs. Both of these criteria are amenable
to empirical quantification, and they do not necessarily
involve the alignment of residues that share evolutionary
descent—analogy can be just as effective as homology for
these alignments. For database searching we need to align
residues that maximise the difference between homologous
and non-homologous sequences, rather than homologous
residues. This can be quantified statistically to some
extent, and it also does not necessarily involve homology
of residues.

Second, homology assessment for sequence alignment
should involve information from whatever source is
appropriate. Traditionally, sequence similarity has been
the primary criterion for assessing residue homology,
but this becomes increasingly inadequate as sequence
identity decreases. Therefore, information from structural
and functional studies needs to be incorporated into sequence
alignment procedures, not as a replacement for sequence
similarity but as an adjunct to it. Decisions about residue
homology can be based on sequence similarity, structural
similarity and functional similarity.

Third, much is now known about the circumstances under
which computer programs based on progressive sequence
alignment will fail. While a lot of this information comes
specifically from studies of amino acid sequences rather
than nucleotide sequences, it still has direct relevance
to phylogenetic studies. The pattern-matching algorithms
in the commonly used programs were designed for
sequence-comparison alignment rather than for phylogenetic
alignment, and so they cannot be expected to produce
alignments suitable for reconstructing phylogenies except
under specific circumstances. I have provided an original
summary of this information, which should be taken
into account when planning a phylogenetic analysis.
Common problems include terminal and internal gaps,
orphan sequences and strong subset groupings, and repeated
sequence blocks.

Fourth, there have been many recent developments
in the matter of producing multiple alignments, but few
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of these have yet had much impact on phylogenetic
studies. I have summarised the recent attempts in the
sequence-comparison literature to improve progressive
sequence alignment procedures, especially for amino acid
sequences. Instinctively reaching for your copy of Clustal
is not necessarily the wisest choice of alignment tool.
I have also summarised recent attempts to synthesise
alignment and tree building, thus producing a coherent
one-step phylogenetic analysis. There is still some
way to go before these become practical procedures,
but some enthusiasm from the customers would not
go astray.

Fifth, I have provided some explicit suggestions
for increasing the biological insight that is employed
when constructing a multiple sequence alignment for
phylogenetic purposes. Most of these suggestions
consist of nothing more than taking into account
known evolutionary processes when making alignment
decisions, thus supplementing simple sequence similarity
with information from a broader context. The most
important of these suggestions involves incorporating the
sequence–structure–function relationship into the alignment
procedure. These procedures can be objective and
repeatable, and can involve computerised algorithms
to automate much of the work. However, I have not offered
any explicit protocols for implementing any of these
methods, as each dataset needs to be taken on its own
merits. Human quality control should not be ignored in
science, and human judgements cannot be avoided when
erecting hypotheses.

Finally, alignment should not be seen as a process that
is started anew for every dataset. Alignment should be
seen as a process where new sequences are added to a
pre-existing alignment that has been manually curated
by the biologist. That is, the time and effort that has
gone into producing alignments of high quality for
phylogenetic purposes should be added to rather than
discarded, by using previous alignments as templates for
subsequent alignments.
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Edgar RC, Sjölander K (2004) A comparison of scoring functions for
protein sequence profile alignment. Bioinformatics 20, 1301–1308.
doi: 10.1093/bioinformatics/bth090

Edgar RC, Batzoglou S (2006) Multiple sequence alignment. Current
Opinion in Structural Biology 16, 368–373.
doi: 10.1016/j.sbi.2006.04.004

Elias I (2003) Settling the intractability of multiple alignment. Lecture
Notes in Computer Science 2906, 352–363.

Ellis J, Morrison D (1995) Effects of sequence alignment on the
phylogeny of Sarcocystis deduced from 18S rDNA sequences.
Parasitology Research 81, 696–699. doi: 10.1007/BF00931849
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Giribet G (2005) Generating implied alignments under direct
optimization using POY. Cladistics 21, 396–402.
doi: 10.1111/j.1096-0031.2005.00071.x

Giribet G, Wheeler WC (1999) On gaps. Molecular Phylogenetics and
Evolution 13, 132–143. doi: 10.1006/mpev.1999.0643

Giribet G, Wheeler WC, Muona J (2002) DNA multiple sequence
alignments. In ‘Molecular systematics and evolution: theory and
practice’. (Eds R DeSalle, G Giribet, W Wheeler) pp. 107–114.
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pp. 323–352. (Birkhäuser Verlag: Basel)

Wheeler WC (1995) Sequence alignment, parameter sensitivity, and
phylogenetic analysis of molecular data. Systematic Biology 44,
321–331. doi: 10.2307/2413595

Wheeler W (1996) Optimization alignment: the end of multiple
sequence alignment in phylogenetics? Cladistics 12, 1–9.
doi: 10.1111/j.1096-0031.1996.tb00189.x

Wheeler W (1998) Alignment characters, dynamic programming
and heuristic solutions. In ‘Molecular approaches to ecology
and evolution’. (Eds R DeSalle, B Schierwater) pp. 243–251.
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